投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:刘朔孺,杨敏,张方辉,张晟.基于支持向量机分类的嘉陵江草街水库甲藻水华预警.湖泊科学,2015,27(1):38-43. DOI:10.18307/2015.0105
LIU Shuoru,YANG Min,ZHANG Fanghui,ZHANG Sheng.Research on early warning of dinoflagellate bloom in Caojie Reservoir base on support vector machine classification. J. Lake Sci.2015,27(1):38-43. DOI:10.18307/2015.0105
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4237次   下载 2123 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于支持向量机分类的嘉陵江草街水库甲藻水华预警
刘朔孺1,2, 杨敏1, 张方辉1, 张晟1
1.重庆市环境科学研究院, 重庆 401147;2.重庆大学城市建设与环境工程学院, 重庆 400045
摘要:
嘉陵江草街水库自建成后2011-2013年连续3年发生甲藻水华现象,给当地经济发展和生态安全带来影响.根据2011年5月至2013年7月草街水库大坝上、下游8个断面的逐月调查数据,利用支持向量机在处理小样本问题、非线性分类问题和泛化推广方面的优势,构建了基于支持向量机分类的草街水库甲藻水华预警模型.结果表明,利用本月理化数据和本月倪氏拟多甲藻(Peridiniopsis niei)密度数据建立的模型,对测试样本取得了80%以上的判别正确率,且对甲藻水华样本的判别正确率为100%.因此,支持向量机作为新兴的机器学习方法,可以为环境管理部门发布水华预警信息提供科学依据,并在环境保护领域具有广阔的应用前景.
关键词:  支持向量机  甲藻水华  草街水库  倪氏拟多甲藻
DOI:10.18307/2015.0105
分类号:
基金项目:重庆市环境保护局环保科技项目(环科字2012第02号)和重庆市基本科研业务费计划项目(2013cstc-jbky-01604)联合资助
Research on early warning of dinoflagellate bloom in Caojie Reservoir base on support vector machine classification
LIU Shuoru1,2, YANG Min1, ZHANG Fanghui1, ZHANG Sheng1
1.Chongqing Academy of Environmental Science, Chongqing 401147, P. R. China;2.Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, P. R. China
Abstract:
Dinoflagellate bloom consecutively occurred in Caojie Reservoir from 2011 to 2013 and threatened the local economy and ecology.Recently, support vector machine(SVM) was reported to have advantages of only requiring a small amount of samples, high degree of prediction accuracy, and generalization to solve the nonlinear classification problems. In this study, the SVM-based prediction model for dinoflagellate bloom was established by monthly field date collected from May 2011 to July 2013 at 8 transects in Caojie Reservoir. The maximum accuracy excessed 80% by choosing environmental variables data and Peridiniopsis niei abundance of current month, and accuracy arrived at 100% for dinoflagellate bloom samples. The results showed that the SVM classification is an effective new way that can be used in monitoring dinoflagellate bloom in Caojie Reservoir and have a promising application prospect for environmental protection.
Key words:  Support vector machine  dinoflagellate bloom  Caojie Reservoir  Peridiniopsis niei
分享按钮