湖泊科学   2022, Vol. 34 Issue (2): 349-375.  DOI: 10.18307/2022.0201
0

综述

引用本文 [复制中英文]

史小丽, 杨瑾晟, 陈开宁, 张民, 阳振, 于洋, 湖泊蓝藻水华防控方法综述. 湖泊科学, 2022, 34(2): 349-375. DOI: 10.18307/2022.0201
[复制中文]
Shi Xiaoli, Yang Jinsheng, Chen Kaining, Zhang Min, Yang Zhen, Yu Yang. Review on the control and mitigation strategies of lake cyanobacterial blooms. Journal of Lake Sciences, 2022, 34(2): 349-375. DOI: 10.18307/2022.0201
[复制英文]

基金项目

中国科学院STS项目(KFJ-STS-QYZD-2021-01-002)和国家自然科学基金项目(32071573,41877544)联合资助

通信作者

史小丽, E-mail: xlshi@niglas.ac.cn

文章历史

2021-12-23 收稿
2022-02-08 收修改稿

码上扫一扫

湖泊蓝藻水华防控方法综述
史小丽1 , 杨瑾晟1,2 , 陈开宁1 , 张民1 , 阳振1 , 于洋1     
(1: 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 南京 210008)
(2: 中国科学院大学, 北京 100049)
摘要:由于人类活动和全球气候变化的叠加影响,湖泊富营养化和蓝藻水华仍是未来相当长一段时间内的水生态环境问题.蓝藻水华暴发会引发湖泊生态系统的灾害和饮用水安全风险,因此湖内蓝藻水华防控必不可少.现有蓝藻水华防控长效方法主要基于营养盐控制理论、浅水湖泊稳态转换理论和生物操纵理论,技术措施包括内源营养盐控制、生态修复、生物操纵.应急处置方法可以削减局部水域蓝藻水华强度,主要包括物理、化学方法.本文基于国内外研究治理案例,梳理了单项蓝藻防控技术运用的边界条件、蓝藻削减效果及防控成本.湖泊富营养化控制和蓝藻水华防控是一个长期而艰巨的系统工程,必须采取流域污染削减和湖内防控相结合的治理策略.湖泊水质与水生态的持续跟踪监测以及水质和水生态预测模型的构建,是动态调整治理方案、保障治理效果长效稳定的基础.
关键词蓝藻水华    长效解决方案    应急处置方法    适用性和可行性    
Review on the control and mitigation strategies of lake cyanobacterial blooms
Shi Xiaoli1 , Yang Jinsheng1,2 , Chen Kaining1 , Zhang Min1 , Yang Zhen1 , Yu Yang1     
(1: State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China)
(2: University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
Abstract: Lake eutrophication and cyanobacterial blooms are water ecological and environmental problems for a long time to come, due to the synergistic effects of human activities and global climate change. The outbreak of lake cyanobacterial blooms would entail water ecological risk and drinking water crisis, thus curative methods to suppress the proliferation of cyanobacteria bloom are imperative. Nutrient control, shallow lake regime shifts and biological manipulation are theoretical basis for the long-term strategies for cyanobacteria blooms prevention and control. Accordingly, external and internal nutrient loading reduction, ecological restoration and biomanipulation are sustainable control and management approaches. In addition, methods used for emergency situations can mitigate the intensity of cyanobacterial bloom, mainly including physical and chemical approaches. Based on the review of the domestic and international cases on cyanobacterial bloom control, we sort out the applicable conditions, cyanobacterial mitigation efficiency and performance cost of each approach. In fact, lake eutrophication management and cyanobacterial bloom mitigation are a long-term and systematic process. These in-lake strategies should invariably be accompanied by nutrient input reductions. The continuous monitoring of lake water quality and water ecology as well as the building of prediction model support the further adjustment of strategies and measures to ensure long-term success and sustainability.
Keywords: Cyanobacterial bloom    long-term and sustainable strategies    emergency measures    applicability and feasibility    

水体富营养化造成的湖泊蓝藻水华是全球范围内的重大水环境问题. 防控湖泊蓝藻水华的根本方法是通过流域综合治理削减入湖营养盐负荷,使湖库营养盐水平达到或低于限制藻类大量增殖的浓度阈值. 然而高强度人类活动所产生的流域污染负荷量大,使得这一目标难以在短期内实现. 同时,全球变暖和极端气候频次增多又进一步增加了蓝藻水华发生的概率[1-2],导致湖泊蓝藻水华将在未来较长一段时间内存在. 蓝藻水华暴发期间,大量藻类聚集会对湖泊生态系统结构和功能产生严重影响,蓝藻产生的藻毒素和嗅味物质还会威胁饮用水安全. 为了保障湖泊敏感水域水质和生态安全,湖库管理者需要在外源污染还没有得到有效控制的背景下采取一系列湖内措施,旨在削减蓝藻生物量,降低其影响程度,保障供水安全.

近40年来,我国围绕湖泊蓝藻水华防控采用了各种长效治理和应急保障措施,但由于对单项技术运用边界条件和适用范围认识不足[3],浪费了大量人力物力,很难达到预期效果. 因此,对于现有富营养化治理和藻类防控技术手段的系统总结和梳理十分迫切. 本文简述了蓝藻水华防治的相关理论依据;将现有的蓝藻水华防控方法分为三大类,包括长效治理的营养盐控制、生态修复与调控以及应急处置方法,结合国内外研究和治理案例,初步界定了各类技术的适用边界条件、应用范围和作用效果,分析了各项技术的经济成本;最后,对湖泊富营养化与蓝藻水华系统防控提出了建议,以期为湖泊管理决策者制定湖泊蓝藻防控方案提供科学依据.

1 湖泊蓝藻水华治理的理论基础

湖泊蓝藻水华暴发是由于其流域氮磷营养盐过量输入、藻类过度增殖所致,并随生态系统逐步退化而加重. 自1980s, 围绕蓝藻水华发生机理、蓝藻水华防治等开展大量研究,形成了一些理论,支撑了湖泊蓝藻水华长效治理和生态修复措施的实施.

1.1 氮磷营养盐控制理论

湖泊藻类水华暴发是由水体营养浓度增加导致藻类大量增殖所引起的,可见削减氮磷营养盐是控制蓝藻水华的有效途径. 通常认为,水华暴发的边界条件是总氮(TN)浓度超过0.5 mg/L、总磷(TP)浓度超过0.02 mg/L[4]. 研究表明,温带湖泊中蓝藻占据优势的概率与TP浓度相关:TP浓度低于0.03 mg/L时,概率低于10 %;浓度达到0.03 mg/L时,概率提升至40 %;当TP浓度接近0.1 mg/L时,概率可以达到80 % [5]. 蓝藻水华优势种属也受湖泊营养状态的影响,例如微囊藻(Microcystis)是富营养和超富营养水体的优势属,而丝状蓝藻如长孢藻(Dolichospermum)、束丝藻(Aphanizomenon)和项圈藻(Anabaenopsis)是中营养水体蓝藻水华的优势属[6]. 水体中无机磷在0.014~0.200 mg/L、无机氮在0.3~0.8 mg/L时,蓝藻生长速率快速增加[7]. 但控制富营养化与蓝藻水华究竟是控磷为主还是氮磷双控,仍是国际湖沼学争议的热点[8]. 20世纪加拿大227号湖泊中进行的营养盐添加试验,形成了以控磷为主的湖泊富营养化控制理论基础[9-11]. 近年来美国1382个湖泊数据分析结果表明,虽然TN和TP都与叶绿素a浓度显示一定相关性,但贫营养、中营养和富营养湖泊叶绿素a浓度与TP浓度的相关性大于TN浓度,重富营养湖泊叶绿素a浓度才与TP和TN浓度高度相关[12]. 通过削减氮磷营养盐控制蓝藻水华具有很强的可操作性和很好的效果,德国博登湖、Müggel湖和荷兰Veluwe湖的治理表明减少营养盐输入能显著降低蓝藻生物量;在日本琵琶湖富营养化得到控制后,蓝藻水华基本消失[13].

1.2 浅水湖泊稳态转换理论

欧洲和北美湖泊现场研究和恢复发现,湖泊中存在多种不稳定状态或两种稳定状态. Scheffer等[14-16]提出了“浅水湖泊稳态转换理论”,指出生态系统存在多个稳定状态,浅水湖泊在一定营养条件下(TP在0.05~0.15 mg/L之间)可处于2个不同的典型状态,一个为浮游植物占优势的“浊水态”,另一个为沉水植物占优势的“清水态”. 丹麦204个湖泊观测结果也支持了这一理论[17]. 藻类占优势的藻型湖泊水体浑浊,光在水下迅速衰减,阻碍沉水植物发展;沉水植被占优势的草型湖泊水体清澈,沉水植物可以阻止沉积物再悬浮,为浮游动物提供庇护,浮游动物生物量增加,对藻类的下行效应增加,同时沉水植物还可以分泌化感物质抑制藻类生长,水体透明度增加又有利于沉水植物迅速扩增,产生一系列正反馈,保持清水状态[15, 18]. 该理论在1990s末被介绍和应用到我国[19],之后一直被应用于以沉水植物恢复为核心的湖泊生态恢复和藻类水华防治研究与示范工程中[20-23].

1.3 生物操纵理论

“生物操纵理论”是通过去除浮游动物食性鱼类(planktivores)或放养肉食性鱼类(piscivores)降低浮游动物食性鱼类数量,提高枝角类浮游动物生物量,增加浮游动物对浮游植物的摄食效率,从而降低浮游植物数量. Shapiro等[24]首先提出了生物操纵术语和方法(biomanipulation),这种方法也被称作食物网操纵(food-web manipulation). 与生物操纵理论相关的还有McQueen等[25]提出的“营养级衰减理论”, 也称为上行与下行效应(top-down/bottom-up effect),该理论认为每一营养级的最大生物量是由下一级营养水平所决定的,处于上层的捕食者数量受下层食物资源控制,浮游植物生物量是由上行效应(力)与下行效应(力)共同决定的[26]. Jeppesen等[27]比较了丹麦湖泊长期和短期生物操纵结果,发现中富营养化湖泊Lake Vaeng藻类控制效果明显,而富营养化湖泊Frederiksborg Castle生物操纵响应弱,虽然枝角类浮游动物DaphniaBosmina密度3年内增加了40~60倍,但水体TP浓度没有显著下降,并认为要保证生物操纵的成功有必要长期持续去除浮游动物食性鱼类和放养凶猛肉食性鱼类;同时控制水体TP浓度低于0.100 mg/L和恢复沉水植物也是生物操纵成功的关键. 一系列研究证实热带和亚热带湖泊中生物操纵的响应要弱于温带湖泊[28-29]. “非经典生物操纵”也称为“鱼类控藻”学说,其原理是滤食性鱼类,诸如鲢、鳙,主要以滤食浮游生物为生,因而它们直接可以作为生物操纵工具来控制夏季藻类生长,特别是体形较大的蓝藻. Xie[30]提出在东湖水质保持现状情况下,鲢、鳙放养密度超过40~50 g/m3时,水华可以得到有效遏止. Crisman等[31]支持这一观点,他认为在热带和亚热带地区枝角类种类较少,体型也小,滤食性鱼类是更为合适的生物操纵工具.

蓝藻水华形成与发生机理是近20年来湖泊科学领域的研究热点,研究主要集中于两个方面,一是有利于蓝藻成为优势的生理特性,如具有伪空泡和胶鞘、过量吸收和贮藏营养、具有CO2浓缩机制、固氮作用、适应低光、防御强光、产生藻毒素和产生厚壁孢子进入休眠状态等;二是环境因子对蓝藻水华形成的影响,包括营养盐、氮磷比、温度、pH值、微量元素、水文水动力和气象条件等[8, 13, 32-34]. 这些研究不断加深人们对蓝藻水华的科学认识,支撑蓝藻水华的防治.

2 蓝藻水华防治技术与边界条件及效益分析 2.1 营养盐控制

外源营养盐控制是湖泊富营养化治理的根本,否则任何湖内治理都很难获得长期效果. 然而现实操作层面上,外源污染治理难度巨大,治理周期长,短时间内效果不明显. 此外,很多湖库管理者对外源营养盐究竟要削减到什么程度才能控制蓝藻水华的认知还不够,削减程度通常还不至于导致湖泊营养状态发生根本性转变,以致对外源污染削减的有效性产生了怀疑.

2.1.1 外源营养负荷削减的程度

国际上最简单、经典的用于估算外源污染负荷削减程度的模型是Vollenweider模型,湖泊水体磷浓度是水滞留时间校正后的磷负荷函数,公式为:

$ P = \frac{{{L_{\rm{P}}}/{q_{\rm{s}}}}}{{(1 + \sqrt {{\tau _{\rm{w}}}} )}} $

式中,P为湖内总磷浓度(mg/m3);LP为磷的年负荷(mg/(m2 ·a));qs为出水处水深(m/a);τw为1/ρw(a-1),其中ρw=Q/VQ为湖泊的排水量(m3/a),V为湖泊体积(m3).

Cullen和Forsberg[35]评估了43个湖泊对外源负荷削减的响应结果:整体上外源磷负荷削减量在2/3~3/4之间,其中15个湖泊的营养等级明显降低,总磷浓度为0.025 mg/L;9个湖泊的总磷和Chl.a浓度下降,但营养状态没有变化,19个湖泊的总磷浓度有小幅度、但不显著的下降,Chl.a浓度没有变化,这两类湖泊水体总磷浓度仍在0.1 mg/L以上. Uttormark和Hutchins[36]对13个湖泊的评估结果表明,9个湖泊在总磷浓度为0.02 mg/L时营养状态发生了转变. 即使水体总磷浓度还不足以低到改变营养状态,湖库仍会对外源负荷的削减有所响应,水质可能会有所提升. 华盛顿湖(Lake Washington)富营养化控制与水质改善方面取得了明显的效果,被视为湖泊治理和生态恢复的典范. 华盛顿湖平均水深37 m,冲刷率0.4 a-1,治理前TP浓度为0.064 mg/L,透明度(SD)为1.0 m,Chl.a浓度为36 μg/L;治理后TP浓度为0.019 mg/L,SD为3.1 m,Chl.a浓度为6 μg/L[37];治理成功得益于88 % 的外源磷削减,同时该湖水体较深,换水周期短,水体下层不缺氧,富营养化历史相对短,内源污染负荷不严重.

大型湖泊空间异质性高,因此外源负荷削减对湖体的影响还会有空间上的差异. 匈牙利Balaton湖削减了45 % ~50 % 的外源磷负荷,西部小湖区藻类生物量下降(面积38 km2, 平均水深2.3 m),但东北两个大湖区(面积分别为600和802 km2,平均水深分别为3.2和3.7 m)藻类生物量却持续上升,其中一个东北湖区外源负荷削减11年后内源释放增加了5~6倍[38].

2.1.2 内源污染物的削减

当外源负荷大量削减后,湖泊水质仍不能得到有效提升,湖泊生态系统无法恢复,内源负荷的削减就尤为迫切和重要. 相对于深水湖泊,富营养化浅水湖泊底泥释放对水体营养盐的贡献不可忽视. 削减和控制湖泊内源污染有底泥疏浚、底泥抽槽、底泥洗脱和引水冲刷等物理手段,还有锁磷剂、凹凸棒土等原位磷钝化方法(表 1).

表 1 湖泊内源污染物削减技术 Tab. 1 Mitigation strategies for reducing internal pollution of lake

(1) 底泥疏浚

底泥疏浚是目前较为常见的湖泊富营养化治理方法[39],一般选择受人类活动影响较大、底泥污染物含量较高的重污染湖湾区、河口、入湖河道和湖岸区作为疏浚区[40],疏浚成本在30~65元/m3之间[41]. 其中,污染底泥的总磷通常≥700 mg/kg, 总氮≥2000 mg/kg,有机质≥3.5 %;重金属生态风险指数[42]≥300;氮磷释放通量可以分别达到100和10 mg/(m2 ·d)[40, 43-44].

我国许多湖泊中均有运用底泥疏浚技术的实例[42, 45-46]. 贵州阿哈水库底泥疏浚使得底泥TN、TP、TOC平均含量从4800、1259、40700 mg/kg分别削减至3200、477、18700 mg/kg,降低比例分别高达34.9 %、62.1 %、54.1 % [47]. 武汉南湖底泥TN(1000~8400 mg/kg)、TP(2080~6990 mg/kg)在疏浚后均有显著降低[48]. 滇池草海在疏浚后,水体中TN、TP和Chl.a分别降低了37.8 %、40.5 %、62.5 % [49].

疏浚对湖泊治理效果和水质改善的持续性往往受到争议[40],如在对南京玄武湖[50]进行疏浚后,水质并未发生好转,部分指标甚至出现了恶化. 典型的有效案例多来自国外,如瑞典的Trumment湖在疏浚后,水质改善状况维持长达18年;而国内案例的改善效果通常维持一个月到一两年不等[45]. 造成这种状况的原因也相对复杂,外源负荷高、原位水土界面扰动、水力作用产生的异位污染、原有生态系统结构和功能转变等均会对疏浚效果产生影响[44]. 范成新等[40]提出基于必要性分析、工程量设计、疏浚工艺选择和可行性分析4个方面,科学、全面地对疏浚工程全过程进行剖析,避免因认知缺陷导致处理效果偏离预期. 此外,还有诸多呼声指向底泥疏浚与生态修复集成技术的探究,以及采取湖泊-流域综合措施[51-52],因为只有在外源污染物得到有效控制的前提下,才能达到疏浚对内源释放的长期控制效果,否则大量外源性污染物输入在湖泊中形成新生污染界面的释放将降低疏浚效果.

(2) 底泥抽槽

抽槽技术适用于风浪扰动较大、水流汇集区或沉积物污染较重的入湖河口、离岸湖滨带、航道等湖区[53]. 底泥抽槽很好地利用了湖泊水动力,通过设置底部凹槽来收集沉积物,并降低风浪扰动所产生的影响,从而减少营养盐的释放;同时保留了泥水界面的微生物和化学过程,很大程度上减少了对湖底生态系统的破坏[53];此外,由于工程量较疏浚小很多,成本也能够得到大幅削减.

抽槽技术最早可以追溯到2002年Van Liere和Jonkers提出的“深坑计划”,但成功案例鲜有报道[54]. “十三五”期间该技术在国内有些突破,太湖、巢湖试验结果表明:底槽内沉积物厚度和营养盐含量远高于周边区域,抽槽能有效收集湖底的有机质、藻种、氮磷等营养盐,从而实现内源污染控制,成本低、效率高、环境影响小[55],不过污染削减的程度尚缺乏具体的数据报道.

(3) 底泥洗脱

底泥洗脱是近年来国内研发的一项新技术,其原理是通过机械扰动使底泥中粒径较小的有机颗粒再悬浮,分离后进行磁加载、絮凝等操作,去除内源污染,出水再排回原水体;同时,大部分粒径较大的无机颗粒原位沉降后,形成了稳定的覆盖层,阻止底泥深层污染物的释放[56]. 底泥洗脱适用于湖湾、岸带、敞水区等富营养化(含黑臭)、富含有机质底泥的各类地表浅型水体[57],投资成本与疏浚相当,大致在55~105元/m2修复面积(https://www.sohu.com/a/425211340_99899283). 洗脱技术能够有效去除底泥中40 % ~80 % 的有机质、50 % ~90 % 的TN和40 % ~80 % 的TP[56-58]. 目前成功运用到北京凉水河旧宫段、河北北戴河国家湿地公园、安徽池州市百荷公园、广东茂名石化竹园人工湖等水体,基本能够实现黑臭水体向Ⅳ类,或劣Ⅴ类向Ⅲ类转变,同时还发现了藻型湖泊逐步向草型湖泊过度的现象,表现出了良好的运用前景(http://www.ahlake.com/).

(4) 引水稀释和冲刷

稀释和冲刷是两个概念,稀释是引入比湖泊营养盐水平低的“清洁水”,且两者营养水平相差越大效果越好,不仅能降低湖泊营养盐水平,还能将藻细胞带出湖体;冲刷只具备后者功能,且冲刷速率必须相当于或接近藻类生长速率才能有效抑制藻类生长. 引水稀释通过释放环境容量的方式减少水体内源污染,同时达到降低藻含量、削减异味物质的目的[59-60],通常在小水体中取得良好效果[61]. 美国西雅图的Green Lake从1965--1978年期间引入低磷浓度水,冲刷速率为每天0.24 % ~0.65 %,经过5年的处理,夏季水体透明度提升了4倍,Chl.a降低了90 %,总磷下降了50 %. 如果引入中、高营养的水,大约(10 % ~15 %)/天的冲刷速率也可以抑制藻类的生长[62]. 例如洪泽湖的主要水量来自于淮河,东部湖区为淮河过水通道,虽然该湖区总氮和总磷浓度远远高于蓝藻水华发生阈值,但因为较高的换水速率,该湖区叶绿素a浓度仍低于其他湖区. 为了缓解太湖、滇池的富营养化和蓝藻水华强度,我国自2002年起从长江向太湖流域调水[63-64],2008年从德泽水库通过盘龙江向滇池调水,并于2013年完成了投资高达12亿美元的牛栏江引水工程,有效减小了水龄[65]. 建模分析结果表明,调水对于滇池TP、TN和Chl.a的改善幅度能分别达到24 % ~32 %、14 % ~16 % 和19 % ~20 %,但运行效果远低于预期[66-67]. 由于水体交换的时空异质性,引水冲刷只能在一定程度上缓解湖泊富营养化、减少藻华的发生,而对太湖重污染区域没有明显的改善作用[68],必要时只能作为缓解藻华的应急措施[69]. 盐城大纵湖的研究结果表明,从长江调水可能会潜在地加剧富营养化程度和藻华发生的频率[70]. 此外调水过程中沉积物因水动力过程增强而再悬浮,可能加速营养盐释放,反而有利于藻华发生[71].

(5) 湖泊下层水排除

该方法适合于内源污染严重、具有热力分层的深水湖泊和小型水库,不适用于混合充分的浅水湖泊. 深水湖库下层水体厌氧促进沉积物中磷、有毒金属、氨和硫的释放,排除下层水可以降低内源污染负荷对湖库水质的影响. 虹吸法是最节省运行费用的方法,即在湖底最深点附近安装管道连接至出水口,出水口水位通常低于湖泊水位. 下层水带出的TP量越高、持续时间越长越能有效提升上层水体水质. Balllinger湖下层水每3个月排除一次,经过3~5年的连续运行上层水质得到显著提升. 瑞士某个湖泊,在削减外源负荷的同时进行下层水的排除,排水速度4 m3/s,4 m以下水体的滞留时间缩短到0.2年,下层水体溶解氧和透明度增加,7年后,下层水体总磷浓度下降了1.50 mg/L,上层水体总磷浓度下降了0.06 mg/L,颤藻(Oscillatoria)生物量从之前的152 g/m2降低到41 g/m2. 美国Lake Wonoscopomuc利用下层水排除技术去除湖泊下层高磷浓度水,实施2年后,沉积物释放的79 % TP被移走,水体TP浓度从0.024~0.030 mg/L降低至0.010~0.014 mg/L,水体溶解氧也有大幅度提高[72-73]. 但是,底层水体可能会含有高浓度的磷、氨、硫化氢、还原型金属离子或其他有毒物质,并且氧气浓度低,会对其排入水体的水质、鱼类等产生负面影响[62].

(6) 原位化学钝化

原位化学钝化通过投加钝化材料,使水体和沉积物中的磷形成稳定化合物,实现磷的原位固定,以限制沉积物中磷向上覆水释放,适用于外部污染源获得稳定控制、湖内水动力作用弱、面积较小的湖泊[74]. 目前已有钝化材料主要包括两种:一是铝、铁、钙等传统的金属盐类材料,如云南大学泽湖(3号湖,1.1万m2)投加FeCl3,将水体中TP从1.63 mg/L降至0.28 mg/L,削减量超过80 % [75],不过这种方法可能对水体造成金属毒性等生态风险;二是膨润土、凹凸棒土等新型黏土类材料,贵州黔灵湖使用铝改性黏土削减了超过80 % 的水体TP,表层沉积物孔隙水中的活性磷削减率超过60 % [76]. 改性黏土材料更为安全有效,例如镧改性膨润土(即锁磷剂)对磷酸根具有天然亲和力,在理论上可实现1 ∶1的简单化学计量配比,展现了较好的选择吸附性能,目前已经在全球200多个湖泊中得以运用[77-78].

国内原位化学钝化材料的运用案例并不多见[79],多数成功案例均来自国外. 荷兰Rauwbraken湖通过添加聚合氯化铝(PAC)和锁磷剂将水柱中TP浓度从0.126 mg/L降至0.014 mg/L,实现了持续5年的低营养状态[80];美国Laguna Niguel湖固定了80 % 的TP和95 % 的溶解反应性磷(SRP)[81];对18个实施锁磷剂钝化处理湖泊的Meta分析表明,水体中超过60 % 的TP和SRP被削减[82]. 国内富营养化湖泊主要是受风浪影响较大的浅水湖泊,虽然国内学者探索了泥水界面频繁扰动情形下改性黏土的适用性[83],但被固定在沉积物中的磷极易因扰动而再悬浮,控磷效果的长效性无法得到保障,磷二次释放的风险很难规避. 此外,温度、pH、溶解性有机质、共存阴离子等均会影响钝化效果[74],增加了原位钝化在实际湖体使用时的不确定性. 暨南大学南湖(亚热带富营养浅水湖泊)的实验结果表明,锁磷剂投加量与目标固定P的质量比为100 ∶1时,才能取得良好的控磷效果[84],与预期使用量有较大偏差. 此外,锁磷剂可能还会带来后续的生态影响,可能会降低沉水植被生物量和相对生长率、增加其根冠比[85],这一定程度上促进底栖动物群落结构和多样性的恢复,但学界对此的生态评价结果并不乐观[86].

2.2 生态修复

运用生态学理念解决湖泊富营养化和蓝藻水华问题,因其长效性,表现出较好的实际运用潜能. 许多湖泊已经实施了生境修复、水生植物构建、食物网调控等生态修复措施(表 2),实现了长效的蓝藻水华控制.

表 2 湖泊生态修复技术 Tab. 2 Strategies for lake ecological restoration
2.2.1 生境修复

(1) 基底修复

由于人类活动的强烈干扰,我国多数湖泊湖滨带地形发生剧烈变化,大量天然滩地消失、生境急剧恶化[87]. 生境营造则是在湖滨带、近岸水域,采用清洁底泥吹填等方式,改善原始沉积物性状,并使基底抬高至水深1 m左右,营造平缓的人工浅滩[88],保持合理的水位以提供充足光照[89-90],营造有利于水生植被恢复的生境条件,促进湖泊生态系统改善和水质提升,从而实现浊水藻型湖泊向清水草型湖泊转变,实现富营养化和蓝藻水华的长效控制[91-92]. 这一技术的主要难点就在于需要有清洁底泥来源,且基底抬高后的实际生境能够实现水生植物的有效恢复. 滇池福保湾东岸生态恢复区实施了清洁底泥吹填工程,对原有污染底泥实现了厚度近1.7 m的清洁底泥覆盖,水深降低至0.8 m,水生植物在工程实施2年内得到了初步恢复[88].

(2) 水位调控

对具备闸控条件的水体进行水位调控,是修复生境的另一种有效途径. 该法是通过调控水位高低,实现水体晒滩、浅滩、浸没等状态切换,从而调节浅水湖泊的生物地球化学循环过程,促进污染物自然降解. 同时还能依据挺水植物、沉水植物的季节生长特性,为其提供最适的生境条件[93],增加生物多样性. 挺水植物的萌发和生长会受水位过高、水下光照不足等因素的抑制[94-95],大型水生植物萌发期应维持较低的适宜水位,快速生长期可提高水位,成熟期维持一定高水位,可促进其生长[96]. 巢湖1960s建闸后,水位波动形式从近自然波动变为反季节波动,大型水生植物的萌生条件剧烈变化,致使其覆盖率从约25 % 锐减至1.73 %,后期由于人类活动的加剧,大型水生植物覆盖率已不足1 % [97];模型模拟研究结果表明,调控生态水位[98]能够显著促进巢湖沉水植物的生长,同时浮游植物生物量也会相应下降[99],不过实现这种调控可能意味着与社会生产生活需要产生矛盾.

2.2.2 水生植物群落构建

生境修复的本质是为水生植物营造更有利生长条件,虽然水生植物的构建需要一定的周期、见效慢[100],却是实现湖泊富营养化长效控制的重要方法[101]. 目前,较为常见的植物修复类型包括沉水植物、漂浮植物和挺水植物[102].

(1) 沉水植物

沉水植物整体位于水下,通过捕获悬浮物、促进颗粒态磷沉淀、根叶吸收底泥和水体中氮磷等营养物质、根际微生物加速反硝化作用、释放化感物质抑制藻类生长、提高水体溶解氧和透明度、为浮游动物提供庇护、优化鱼类种群结构等途径,推动湖泊生态系统向着健康状态转变[103-104],是具有最佳水质改善效果的水生植物类群. 室内试验结果表明苦草(Vallisneria)、黑藻(Hydrilla)、狐尾藻(Myriophyllum)、金鱼藻(Ceratophyllum)等沉水植物对TN、TP、SS的去除率高达75 % [105];室外大桶实验发现沉水植物对TN、TP的去除效果大致在60 % ~80 % 和50 % ~70 % 之间[106];在滇池草海的沉水植物修复示范区,水体中SS、TP、Chl.a浓度分别较修复工程前下降了49.8 %、59.5 %、42.3 %,透明度也有所提高,TN在年尺度上无明显改善[107]. 多数湖湾、岸带、浅水区或小水体能够在沉水植物恢复后维持清水态,而一旦湖体面积过大,操作难度和不确定性增加,水质通常很难实现长期、有效的改善,如在五里湖、滆湖中,水质仅短期好转,甚至未见明显的改善[108];此外,也有研究表明,沉水植物修复后期会有丝状藻类、尤其是附着型丝状藻类增殖等问题[109-110]. 这些都要求对先锋种选取、季节轮种设计、残体打捞等修复步骤进行更加深入的研究[111].

(2) 漂浮植物

漂浮植物通过根系吸收和拦截、根际微生物作用、化感作用、遮光、减少风力作用,促进颗粒沉降、抑制藻类生长[112]. 狭义上的漂浮植物是指整个植物体漂浮在水面上的一类浮水植物,其种类较少,研究和运用较多的是凤眼莲(Eichhornia). 原位水槽实验结果表明,凤眼莲和水浮莲(Pistia)对中度富营养化水体的TN、TP和Chl.a去除率分别达到82.08 %、55.22 %、91.80 % 和77.82 %、54.44 %、95.06 % [113];重污染河道中利用凤眼莲使得水体中TN下降49.7 %,但TP去除效果并不明显[114];中度富营养化水塘内利用凤眼莲去除了66.11 % 的TN和73.20 % 的TP[115]. 随着漂浮栽培技术的成熟,广义的漂浮植物修复,即人工生物浮岛(床)也逐渐兴起,利用菖蒲(Acorus)、美人蕉(Canna)、风车草(Graptopetalum)、彩叶草(Coleus)等[115-117]超富集植物构建生物浮岛,水槽实验结果显示,TN、TP的去除率大致在40 % ~70 % 和50 % ~80 %. 目前,富铁基生态浮床[118]、水质净化和大型植物恢复一体化浮床[119]等新型浮床对TN、TP、Chl.a的削减已超过70 %、98 % 和80 %. 不过,浮岛建设成本更高,且播种、移栽等管理要求更为复杂[120]. 目前国内外对于漂浮植物修复争议较多的是其覆盖率的阈值,一方面,覆盖度(植物量)与污染物去除率、遮光抑藻效果呈正相关;另一方面,过高的覆盖率会影响大气复氧,导致水体缺氧造成水生系统崩溃;已有设计中覆盖率从3 % ~100 % 不等,其中多数超过了60 % [121],但这难以在大湖实现.

(3) 挺水植物

挺水植物的恢复能为其他水生植物的生存创造条件[122-123],并能为水生动物提供栖息环境[124],对于控制湖泊内源污染、维持水体健康具有重要意义. 目前,湿地挺水植物修复已在底泥TN大于2000 mg/kg、TP大于400 mg/kg(滇池1800 mg/kg)等国内富营养化湖泊的湖滨带等得到广泛运用[125-126];通常,修复带宽幅超过50 m可以满足水体净化功能[127]. 大型浅水湖泊的底泥污染控制中,湿地挺水植物可能比疏浚更有效果,且成本更低[126]:湿地挺水植物修复能够去除沉积物中约50 % 的TN[125],磷的积蓄量在不同物种中有所变化,处于1390~4910 g/m2之间[128]. 挺水植物对于水体TN、TP去除也体现了良好效果,其中先锋物种的去除率可超过90 % [129-131],对10种不同湿地挺水植物的研究结果显示,其对TN、TP平均去除率分别为55 % 和64 % [132]. 造成大量挺水植物恢复失败案例的主要原因仍是管护和适用性问题,这是由于不同物种污染净化的动力学特征[133]、季节生长特性[134]、生理生态效应差异和不同底质的影响[135]对湿地挺水植物的修复效果均能产生决定性影响,例如针对湖滨带土壤重金属偏高,选择对Cu、Zn和Pb富集系数较大的芦苇(Phragmites)和丁香蓼(Ludwigia)等植物,对于TN、氨氮污染较为严重的湖滨带,需要选择配置高羊茅(Festuca)等针对氮元素净化能力强的种类, 这要求在修复过程中充分考虑植物的适应性和实际环境条件,以达到效益最大化.

2.2.3 生物操纵

除了水生植物修复,生物操纵也是具有长效控制潜力的方法,即通过对湖泊生态系统内的食物网进行有效调控,以经典(增加浮游动物牧食压力)或非经典(滤食性鱼类牧食)生物操纵手段削减蓝藻,此过程中通常伴随着水生植物、尤其是沉水植被的修复(或恢复)[136].

(1) 经典生物操纵

经典生物操纵通过增加肉食性鱼类、减少杂食性鱼类(如食草、浮游动物食性鱼类),通过营养级联效应[137],调控食物网功能,以保护浮游动物的生长,增加其丰度,对藻类形成摄食压力从而抑制蓝藻水华. 同时,为了加速这种营养级联效应的产生,在生物操纵前通常会捕捞浮游食性和底栖鱼类,前者可以减轻浮游动物生长压力,后者则减少沉积物中营养盐释放、促进大型植物恢复,最终对Chl.a的削减幅度可达20 % ~50 %. 这在36个丹麦湖泊的分析案例中得到印证:经过反复清除这些鱼类(大于200 kg/(hm2 ·3a)),大型水生植物生物量和浮游动物牧食压力增加,水体TN(2.03 mg/L)、TP(0.172 mg/L)、Chl.a(89 μg/L)、总悬浮物质(TSS)等下降了50 % ~70 %,并保持清水态[138]. 惠州西湖是我国较早开展生态修复的湖泊,通过去除浮游食性鱼类,种植沉水植物、放养食鱼性鱼类开展修复,水体中TN、TP、Chl.a、TSS显著下降,分别从1.29 mg/L、0.126 mg/L、20~80 μg/L、21 mg/L降至0.83 mg/L、0.050 mg/L、0.6~30 μg/L、5 mg/L,透明度也显著提升[139];江苏傀儡湖通过调整滤食性鱼类、投放食鱼性鱼类、捕捞底栖和草食性鱼类等实现湖泊中鱼类群落的有效调控,使得沉水植物覆盖度从不足20 % 提升到73 %,水体透明度从51.38 cm提升至101.47 cm,Chl.a浓度从6.30 μg/L下降到3.72 μg/L[140]. 然而,这种方法对生物群落结构有着严格要求,对于与外界交换频繁的湖泊而言,实施难度和工作量都是巨大的挑战;同时,浮游动物可能无法捕食大群体[141],且在藻华暴发(Chl.a> 50~90 μg/L)或营养盐上行效应占主导的水体,经典生物操纵难以发挥作用.

(2) 非经典生物操纵

非经典操纵则是通过增加滤食性鱼类,直接滤食蓝藻[142]. 相对于经典操纵通过食物网逐级传递的不确定性,可更为直接地削减水华蓝藻,密度约为46~50 g鲢鳙/m3[142]. 非经典操纵的成功在于鲢鱼等能够适应高藻生物量(63.3~138 mg/L)[143]、较低的溶氧(> 5 mg/L)[144]环境,且对于微囊藻等具有有效的收集、消化能力[145],对蓝藻的削减量可以达到20 % ~90 %. 鲢鱼去除了千岛湖沿岸池塘中29.0 % ~55.8 % 的蓝藻[146];鲢鳙削减了洱海红山湾28 % ~40 % 的Chl.a[147]. 还有将改性明矾浆应急除藻和鲢鳙放养控藻结合起来的方法,蓝藻数量可削减78 % ~87 %,效果明显优于单纯放养鲢鳙进行除藻的湖州对河口水库[148-149]. 但是,非经典生物操纵仍存有较多争议:如鱼类排泄物促进了水体营养循环,鲢鳙单次滤食无法消化微囊藻、甚至增强其活性等[150-152];而即便罗非鱼能够完全消化蓝藻,鱼粪的营养活化、或无法被它们滤食的微型藻类过度增长,同样是多数操纵失败的原因[153-154].

(3) 软体底栖动物滤食

增加软体底栖动物是另一种生物操纵手段. 这种方法实现水体生态修复的路径主要有两点:一是软体底栖动物能够摄取水体中浮游藻类和营养盐[155-156],并能在Chl.a浓度小于50 μg/L时发挥良好的滤食效果[157-158];二是提升透明度、改善光照、改善沉积物养分等,促进水生植物生长[159]. 因此软体底栖动物修复与水生植被恢复相结合非常必要,否则沉积物表层极易被底栖藻类占据[160],可能会导致其过量生长. 野外大桶实验结果表明,河蚬(Corbicula fluminea)能够使苦草相对生长速率、块茎数、根叶比显著提高,且能够显著降低水体中TN(23.8 % ~31.0 %)、TP(67.9 % ~81.7 %)和Chl.a(84.6 % ~97.4 %),同时底栖藻类、底泥NP含量有所增加[161]. 然而,贝类偏好摄食小型藻类,对大型藻或群体性微囊藻的摄食效果并不突出[162],部分蓝藻还能分泌麻痹性毒素[163-164]抑制贝类的正常生理活动,使得滤食性贝类在生态修复中也存在着不确定因素.

生物操纵中一个生物类群的调控可能会影响到其他类群,并通过食物网反馈到整个湖泊生态系统,要保持其长效机制,需要跟踪监测、适时调整与管理. 例如沉水植物恢复后,要对能够快速恢复的小型鱼类及营养盐实施必要控制[165]. 各种操纵方法各有利弊,却要优化互补,才能具有良好的协同作用. 除了经典和非经典操纵协同[166],鱼贝组合也能改善富营养化水体[167],鱼贝联控可以很好地提升水体透明度,并将Chl.a控制在5 μg/L以下,同时藻类群落结构从蓝藻占比61.8 % 转变为绿藻占比73.5 % [168]. 最后,生境修复、水生植物构建以及生物操纵三者关系紧密,软体底栖动物改善底质生境,修复的生境促进水生植物恢复,大型植物又为经典操纵所恢复的浮游动物提供庇护场所,这构建了整个湖泊系统的生态治理范式,只是它的实现并不容易.

2.3 应急措施

上文详细阐述了富营养化湖泊长效治理的系统措施,这些方法通常需要花费数年至数十年才能完成,在此过程中蓝藻水华的局部暴发无法避免,因此,同样需要科学可靠的应急处置方法. 目前,常见的蓝藻水华应急控制方法可以分为物理法、化学法和生物法(表 3).

表 3 蓝藻水华的应急措施 Tab. 3 Mitigation strategies for cyanobacteria blooms for emergency situations
2.3.1 物理法

物理法包括了曝气、超声、硬质堤坝或软围隔、机械捞藻、压力控藻、引清调度等,一般情况下只有在蓝藻水华暴发时才会使用.

(1) 曝气法

曝气法通过水气掺混,提高水体中溶解氧浓度,并改变蓝藻的时空分布格局以缓解藻类在水面堆积[169-170]. 曝气法成本低、普遍适用各类水体. 我国多数富营养化湖泊属于内源污染严重的浅水湖泊,若采用深层搅动,反而使沉积物中的营养盐重新回归水柱,从而增加藻类的初级生产力[171-172],成功运用基本是在深水水库[173]. 国内曝气法更多是表层水曝气,以缓解藻华时溶解氧急剧减少对水生生物产生的生存威胁(DO < 3 mg/L),防止湖泛黑臭[174].

(2) 超声控藻

超声控藻适合在有藻华聚集的小水体使用[175],主要依靠超声波的“空化效应”,破坏伪空泡,使蓝藻细胞失去浮力而下沉,同时伴随着强剪切力作用和羟基自由基(·OH)的产生,能够损伤或氧化藻细胞[176]. 虽然较高强度的超声波能够有效去除蓝藻,但同时也加速了细胞破裂导致藻毒素释放[177],因此低强度超声运用的更多. 间歇多次35 kHz、强度为35.3 W/L的较低频低强度超声处理,会使得80 % 藻细胞沉降,且未造成细胞破碎[178]. 不过该方法并不能杀灭蓝藻,只能短暂抑制其悬浮和生长. 此外,超声控藻还具有诸多争议,如造成泥水掺混从而加速营养盐释放[179],无选择性地伤害鱼类[180]或杀灭浮游动物[181]等.

(3) 物理阻隔

硬质堤坝或软围隔[182]对大湖近岸进行简单隔离,能够拦截外围蓝藻涌入湖湾[183],防止臭味影响周边人居,拦截率可达50 % [184]. 该方案实质阻碍了湖岸与内湖系统的物质、能量和信息流交换[185],堆积在湖面的水华依旧会聚集在堤坝或围隔外,而藻华的生态危害并不能被减轻或避免,且堤坝建设成本高、围隔寿命[186]有限,在水位激增或风浪过大时,藻华依旧能够越过“防线”入侵湖岸带.

(4) 机械捞藻

机械捞藻是目前最为普遍、成熟的应急方法,通过打捞堆积在近岸带的蓝藻,以解决“表观藻华”,削减次生灾害. 值得肯定的是,这种简易的方法几乎不会产生生态风险,但捞藻并不能实际解决蓝藻水华问题,近岸带蓝藻可能会减少,但大湖面蓝藻华仍会源源不断补充,且除藻成本十分昂贵[187]. 虽然现有技术能够实现较好的藻水分离,如磁分离,使藻密度去除率超过90 % [188-189],但有限的打捞量对湖体本身的影响很小. 太湖原位的实验表明当打捞量大于50 % 时,蓝藻生长速率在15天内得到有效抑制,而现有的打捞强度远远低于该值,还有可能会陷入越捞越长的尴尬境地[190].

(5) 压力控藻

压力控藻是基于对蓝藻伪空泡特性及其浮力调节机制[191]的认识,通过施加0.4~0.7 MPa压力使水华蓝藻伪空泡破裂[192-193],沉入湖底,从而避免在湖面团聚堆积、形成藻华. 已有研究中,压力控藻成功用于Chl.a浓度达到250~8000 μg/L的藻水中,藻类去除(下沉)率达到90 %,但下沉的蓝藻能否消亡还取决于湖底的光照条件,此外沉降在底层的蓝藻会造成厌氧环境,造成营养盐释放,可能再度增加水质恶化风险[194-195].

(6) 引清调度

引清调度[196]和先前提到的引水冲刷类似,不同的是引水冲刷旨在加速湖泊水体更新迭代、缩减水龄,以缓解富营养化状态;而引清调度则是在蓝藻水华暴发时,在短时间内调度大量清洁水源,通过稀释冲刷,降低藻密度,以缓解大湖近岸带的藻华,减轻危害.

2.3.2 化学法

化学方法通过杀灭或抑制藻类生长,对藻华的控制效果更为直接,通常比物理方法见效更快,持续时间也更长. Matthijs等[197]曾综述了包括除藻剂、铜基杀藻剂、氯化钾在内的常用杀/抑藻剂,以及天然化合物或其提取物、L-赖氨酸、血根碱、纳米材料、过氧化氢和其他氧化化合物等具有杀/抑藻效益的新兴材料或药剂的控藻效果. 其中,控制一定剂量的过氧化氢[198],不仅能够选择性地破坏藻细胞使其死亡,对裂解产生、常规药剂无法降解的藻毒素也有很好的氧化性能[199],而且几乎不会在环境中留下化学痕迹[200]. 过氧化氢的适用性也很强,不仅适用藻华暴发前期的预防和暴发时的临时应急控制,还可以在藻华暴发后治理黑臭湖泛[201],或在蓝藻越冬时削减其生物量,以减轻来年的生长强度[202].

2.3.3 物化法

物理化学方法主要利用明矾、氯化铁、壳聚糖等混凝剂[203],但不同于上文提到的原位钝化,这里主要借助它们的絮凝性能[204],将水柱中的水华蓝藻迅速聚集,并使其沉入湖底. 这之中也存在诸多问题,如:金属盐存在潜在毒性,硫酸盐会刺激富营养化,氯化铁效果缺乏稳定性等[182]. 相比之下,壳聚糖的性能更优,对藻类的去除率超过80 % [205],且同样具有杀藻或抑藻活性,能够加速藻细胞的裂解[206],在沉入底泥后能够有利于藻毒素的生物降解[207];可能的弊端是对浮游动物群落造成影响,目前已被证明可以在半年内恢复[208].

2.3.4 生物法

上文讨论的非经典生物操纵也可以作为生物方法用于应急控制藻华,此外微生物控藻因其控藻的特异、安全等特性已有相关研究. 微生物主要通过真菌寄生、病毒侵染、真菌或放线菌分泌溶藻活性物质、原生动物摄食,或营养竞争、限制光合作用等机制实现控藻[209]. 微生物控藻尚处于初级阶段,虽然已有利用EM菌降低围隔水体内70 % 蓝藻的报道[210],但实际的失败案例居多,成功的规模运用及其影响研究较为少见.

3 总结与展望

围绕蓝藻水华发生与防治已形成了一些重要理论和认知,为蓝藻水华防治提供科学依据,但是湖泊生态系统所涉及的环境影响因素和生物类群多样复杂,人们在应对蓝藻水华问题时,往往忽略了关键控制因子,并在实践中显得迷茫. 本文基于已有的理论认知和蓝藻水华治理实践案例,绘制了蓝藻水华防控方案示意图(图 1). 营养盐是导致水华蓝藻过度增殖的主要原因,水体氮磷浓度如果降低到一定程度,蓝藻水华就会自然消失. 虽然氮磷都会在湖内沉降和积累,但氮会因反硝化作用自然转移出水体,而磷会在湖内一直积累,形成内源污染,在很长时间内维持湖泊内蓝藻水华,因此控磷是关键. 水体TP浓度降低到0.02 mg/L以下,水华发生风险就很低.

图 1 蓝藻水华防控方案示意图 Fig.1 Diagram of strategies for the prevention and control of cyanobacterial bloom

在目前流域高强度人类活动和气候变化的双重影响下,我国湖泊外源污染治理可能十分漫长,大多数湖库水体TP浓度很难降低到0.02 mg/L,因此需要优化生态系统结构,加强生物调控措施,达到降低蓝藻水华强度的目的. 湖泊水体TP浓度处于0.05~0.15 mg/L之间,藻型和草型的状态都可能存在;如果外源负荷已经削减到了模型所预测的程度以下,湖库水质仍无改善,需要对沉积物TP含量高的区域进行内源污染削减. 生态修复和食物网调控只有在满足边界条件的前提下才能适当进行. 深水湖泊和浅水湖泊的策略是不同的,浅水湖泊最有效的方法是去除大部分杂食性鱼类并恢复沉水植被,深水湖泊通过增加肉食性鱼类控制食浮游动物鱼类,从而提高浮游动物对藻类的捕食能力. 其他生物调控方法,包括非经典生物操纵、贝类控藻、鱼贝组合控藻等也可以在局部水域开展. 此外,调控生态水位与畅通水系是湖泊恢复与抑制蓝藻的重要举措. 如果水体交换速度小,蓝藻水华暴发风险高,需要做好预测预警和应急处置准备. 应急防控仅是蓝藻水华防控补充手段,不应过度采用. 依据长期监测数据确定重点防控区,根据预测预警结果适时实施防控措施.

湖泊富营养化控制和蓝藻水华防控是一个长期而艰巨的系统工程,必须采取流域污染控制和湖内行动紧密结合的治理途径. 同时湖泊水质与水生态的长期跟踪监测,及其水质和水生态预测模型的构建,为动态调整治理方案和措施提供依据,这是保障湖泊治理和蓝藻水华防控长期有效的关键所在. 此外,还需要专业学者与湖泊管理者提升互动结合程度,并能随着研究认知水平的提高,不断调整与完善治理策略和具体措施.

4 参考文献

[1]
Huisman J, Codd GA, Paerl HW et al. Cyanobacterial blooms. Nature Reviews Microbiology, 2018, 16(8): 471-483. DOI:10.1038/s41579-018-0040-1
[2]
Ho JC, Michalak AM, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 2019, 574(7780): 667-670. DOI:10.1038/s41586-019-1648-7
[3]
Dunalska JA. How the integrated engineering solutions can support the lakes restoration?. Ecohydrology & Hydrobiology, 2021, 21(1): 36-45. DOI:10.1016/j.ecohyd.2020.06.004
[4]
Kong FX, Song LR. Algal blooms process and its environmental characteristics. Beijing: Science Press, 2011. [孔繁翔, 宋立荣. 蓝藻水华形成过程及其环境特征研究. 北京: 科学出版社, 2011.]
[5]
Downing JA, Watson SB, McCauley E. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(10): 1905-1908. DOI:10.1139/cjfas-58-10-1905
[6]
O'Farrell I, Motta C, Forastier M et al. Ecological meta-analysis of bloom-forming planktonic cyanobacteria in Argentina. Harmful Algae, 2019, 83: 1-13. DOI:10.1016/j.hal.2019.01.004
[7]
Xu H, Paerl HW, Qin BQ et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 2010, 55(1): 420-432. DOI:10.4319/lo.2010.55.1.0420
[8]
Qin BQ. Shallow lake limnology and control of eutrophication in Lake Taihu. J Lake Sci, 2020, 32(5): 1229-1243. [秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究. 湖泊科学, 2020, 32(5): 1229-1243. DOI:10.18307/2020.0501]
[9]
Schindler DW. Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 1974, 184(4139): 897-899. DOI:10.1126/science.184.4139.897
[10]
Schindler DW. Evolution of phosphorus limitation in lakes. Science, 1977, 195(4275): 260-262. DOI:10.1126/science.195.4275.260
[11]
Stokstad E. Canada's experimental lakes. Science, 2008, 322(5906): 1316-1319. DOI:10.1126/science.322.5906.1316
[12]
Liang ZY, Soranno PA, Wagner T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Research, 2020, 185: 116236. DOI:10.1016/j.watres.2020.116236
[13]
Ma JR, Deng JM, Qin BQ et al. Progress and prospects on cyanobacteria bloom-forming mechanism in lakes. Acta Ecologica Sinica, 2013, 33(10): 3020-3030. [马健荣, 邓建明, 秦伯强等. 湖泊蓝藻水华发生机理研究进展. 生态学报, 2013, 33(10): 3020-3030. DOI:10.5846/stxb201202140200]
[14]
Scheffer M, Hosper SH, Meijer ML et al. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 1993, 8(8): 275-279. DOI:10.1016/0169-5347(93)90254-M
[15]
Scheffer M, Carpenter S, Foley JA et al. Catastrophic shifts in ecosystems. Nature, 2001, 413(6856): 591-596. DOI:10.1038/35098000
[16]
Scheffer M, Jeppesen E. Alternative stable states. In: Jeppesen E, Sondergaard M, Sondergaard M eds. Workshop on the structuring role of submerged macrophytes in lakes. Freshwater Ctr, Silkeborg, Denmark: 1996: 397-406.
[17]
Gonzalez SMA, Jeppesen E, Goma J et al. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations?. Freshwater Biology, 2005, 50(1): 27-41. DOI:10.1111/j.1365-2427.2004.01290.x
[18]
Jeppesen E, Søndergaard M, Søndergaard M. The structuring role of submerged macrophytes in lakes. New York: Springer, 1998. DOI:10.1007/978-1-4612-0695-8
[19]
Li WC. Multiplicity of stable states in shallow lakes and its application. J Lake Sci, 1997, 9(2): 97-104. [李文朝. 浅水湖泊生态系统的多稳态理论及其应用. 湖泊科学, 1997, 9(2): 97-104. DOI:10.18307/1997.0201]
[20]
Gao YM, Yin CY, Zhao Y et al. Effects of diversity, coverage and biomass of submerged macrophytes on nutrient concentrations, water clarity and phytoplankton biomass in two restored shallow lakes. Water, 2020, 12(5): 1425. DOI:10.3390/w12051425
[21]
Liu CY, Liu PP, Liu ZW et al. Study on the functions of submerged macrophytes in ecological restoration and water quality improvement. Journal of Anhui Agricultural Sciences, 2008, 36(7): 2908-2910. [刘从玉, 刘平平, 刘正文等. 沉水植物在生态修复和水质改善中的作用——以惠州南湖生态系统的修复与构建(中试)工程为例. 安徽农业科学, 2008, 36(7): 2908-2910. DOI:10.3969/j.issn.0517-6611.2008.07.126]
[22]
Liu YC, Yu JL, Chen L et al. Changes of submerged macrohhyte community structure and water quality in the process of ecosystem restoration of a shallow eutrophic lake. Ecological Science, 2008, 27(5): 376-379. [刘玉超, 于谨磊, 陈亮等. 浅水富营养化湖泊生态修复过程中大型沉水植物群落结构变化以及对水质影响. 生态科学, 2008, 27(5): 376-379. DOI:10.3969/j.issn.1008-8873.2008.05.020]
[23]
Lei ZX, Chen GR, Tan Z et al. Growth, competition and purification effect of three submersed aquatic macrophytes in eutrophic water. Journal of Hubei University: Natural Science Edition, 2009, 31(2): 192-196. [雷泽湘, 陈光荣, 谭镇等. 富营养水体中3种沉水植物的生长竞争及其净化效果. 湖北大学学报: 自然科学版, 2009, 31(2): 192-196. DOI:10.3969/j.issn.1001-2375.2009.02.021]
[24]
Shapiro J, Lamarra V, Lynch M. Biomanipulation: An ecosystem approach to lake restoration. In: Brezomik PL, Fox JL eds. Proceedings of a symposium on water quality management through biological control. Gainesville: University of Florida, 1975: 85-96.
[25]
McQueen DJ, Post JR, Mills EL. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(8): 1571-1581. DOI:10.1139/f86-195
[26]
McQueen DJ, Johannes MRS, Post JR et al. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs, 1989, 59(3): 289-309. DOI:10.2307/1942603
[27]
Jeppesen E, Sondergaard M, Mortensen E et al. Fish maniplation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia, 1990, 200: 205-218. DOI:10.1007/bf02530340
[28]
Yu JL, Liu ZW, He H et al. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: Implications for lake restoration. Hydrobiologia, 2016, 775(1): 97-107. DOI:10.1007/s10750-016-2717-7
[29]
Yu JL, Liu ZW, Li KY et al. Restoration of shallow lakes in subtropical and tropical China: Response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water, 2016, 8(10): 438. DOI:10.3390/w8100438
[30]
Xie P. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method. Chinese Journal of Oceanology and Limnology, 1996, 14(3): 193-204. DOI:10.1007/BF02850380
[31]
Crisman TL, Beaver JR. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia, 1990, 200/201(1): 177-185. DOI:10.1007/BF02530338
[32]
Li Y, Zhang JW, Wei J et al. Advances in mechanism of the occurrence, hazard, and prevention/control utilization of cyanophytic blooms in China. Journal of Micorobiology, 2015, 35(4): 93-97. [李媛, 张家卫, 魏杰等. 我国蓝藻水华的发生机理、危害及防控利用研究进展. 微生物学杂志, 2015, 35(4): 93-97.]
[33]
Yang LY, Yang XY, Ren LM et al. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu. J Lake Sci, 2019, 31(1): 18-27. [杨柳燕, 杨欣妍, 任丽曼等. 太湖蓝藻水华暴发机制与控制对策. 湖泊科学, 2019, 31(1): 18-27. DOI:10.18307/2019.0102]
[34]
Qin BQ, Wang XD, Tang XM et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in lake Taihu: Cause and measurement. Advances in Earth Science, 2007, 22(9): 896-906. [秦伯强, 王小冬, 汤祥明等. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策. 地球科学进展, 2007, 22(9): 896-906. DOI:10.3321/j.issn:1001-8166.2007.09.003]
[35]
Cullen P, Forsberg C. Experiences with reducing point sources of phosphorus to lakes. Hydrobiologia, 1988, 170(1): 321-336. DOI:10.1007/BF00024912
[36]
Uttormark PD, Hutchins ML. Input/output models as decision aids for lake restoration. Journal of the American Water Resources Association, 1980, 16(3): 494-500. DOI:10.1111/j.1752-1688.1980.tb03903.x
[37]
Edmondson WT. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science, 1970, 169(3946): 690-691. DOI:10.1126/science.169.3946.690
[38]
Istvánovics V, Somlyódy L, Clement A. Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Research, 2002, 36(13): 3314-3322. DOI:10.1016/S0043-1354(02)00036-2
[39]
Pu PM, Wang GX, Hu CH et al. Can we control lake eutrophication by dredging?. J Lake Sci, 2000, 12(3): 269-279. [濮培民, 王国祥, 胡春华等. 底泥疏浚能控制湖泊富营养化吗?. 湖泊科学, 2000, 12(3): 269-279. DOI:10.18307/2000.0312]
[40]
Fan CX, Zhong JC, Zhang L et al. Research progress and prospect of environmental dredging decision-making of lake sediment. J Lake Sci, 2020, 32(5): 1254-1277. [范成新, 钟继承, 张路等. 湖泊底泥环保疏浚决策研究进展与展望. 湖泊科学, 2020, 32(05): 1254-1277. DOI:10.18307/2020.0506]
[41]
Hu XZ, Jin XC, Lu SY et al. Techniques for sediment pollution control and discussion on the applicability in lakes of China. Engineering Sciences, 2009, 11(9): 28-33. [胡小贞, 金相灿, 卢少勇等. 湖泊底泥污染控制技术及其适用性探讨. 中国工程科学, 2009, 11(9): 28-33. DOI:10.3969/j.issn.1009-1742.2009.09.005]
[42]
Yang P, Yang CH, Ma XY et al. Sediment pollution characteristics and dredging in the Nanfei River Estuary, Chaohu Lake. Environmental Science, 2021, 42(2): 712-722. [杨盼, 杨春晖, 马鑫雨等. 巢湖南淝河河口底泥污染特征及疏浚决策. 环境科学, 2021, 42(2): 712-722. DOI:10.13227/j.hjkx.202005320]
[43]
Sun YJ, Lu SQ, Lin WQ et al. In-situ study on nutrient release fluxes from shallow lake sediments under wind-driven waves. Journal of Hydrodynamics, Ser B, 2016, 28(2): 247-254. DOI:10.1016/S1001-6058(16)60626-1
[44]
Jiang X, Wang SH, Zhang QB et al. Analysis of concepts, conditions and critical problems in environmental dredging. Research of Environmental Sciences, 2017, 30(10): 1497-1504. [姜霞, 王书航, 张晴波等. 污染底泥环保疏浚工程的理念·应用条件·关键问题. 环境科学研究, 2017, 30(10): 1497-1504.]
[45]
Liu LX, Han YW, Liu H et al. Dredging technology and its effect on the treatment of polluted water. Journal of Environmental Engineering Technology, 2020, 10(1): 63-71. [刘丽香, 韩永伟, 刘辉等. 疏浚技术及其对污染水体治理效果的影响. 环境工程技术学报, 2020, 10(1): 63-71.]
[46]
Gao Y, Luo RB, Liu C. Engineering application of dredging and ecological restoration technology in Xuanwu Lake. Jiangsu Water Resources, 2020(11): 48-51. [高扬, 罗荣彪, 刘成. 疏浚及生态修复技术在玄武湖的工程应用. 江苏水利, 2020(11): 48-51.]
[47]
Wang JF, Chen JA, Sun QQ et al. Effect of dredging on the sediment pollution in Aha reservoir. Environmental Engineering, 2018, 36(3): 69-73, 147. [王敬富, 陈敬安, 孙清清等. 底泥疏浚对阿哈水库内源污染的影响. 环境工程, 2018, 36(3): 69-73, 147. DOI:10.13205/j.hjgc.201803014]
[48]
Wan WJ, Zhang YN, Cheng GJ et al. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. Environmental Research, 2020, 188: 109799. DOI:10.1016/j.envres.2020.109799
[49]
Liu HQ. Environmental-protection dredging in treatment of lake pollution internal cause. Port & Waterway Engineering, 2000(11): 21-27. [柳惠青. 湖泊污染内源治理中的环保疏浚. 水运工程, 2000(11): 21-27.]
[50]
Zhu M, Wang GX, Wang J et al. Comparative analysis of changes of pollutants in sediment in Nanjing Xuanwu Lake before and after sediment dredging. Journal of Nanjing Normal University: Engineering and Technology, 2004, 4(2): 66-69. [朱敏, 王国祥, 王建等. 南京玄武湖清淤前后底泥主要污染指标的变化. 南京师范大学学报: 工程技术版, 2004, 4(2): 66-69.]
[51]
Zhang M, Shi XL, Yang Z et al. The variation of water quality from 2012 to 2018 in Lake Chaohu and the mitigating strategy on cyanobacterial blooms. J Lake Sci, 2020, 32(1): 11-20. [张民, 史小丽, 阳振等. 2012--2018年巢湖水质变化趋势分析和蓝藻防控建议. 湖泊科学, 2020, 32(1): 11-20. DOI:10.18307/2020.0102]
[52]
Zhong JC, Wen SL, Zhang L et al. Nitrogen budget at sediment-water interface altered by sediment dredging and settling particles: Benefits and drawbacks in managing eutrophication. Journal of Hazardous Materials, 2021, 406: 124691. DOI:10.1016/j.jhazmat.2020.124691
[53]
Zhang YH, Hu WP, Hu YM. Evaluation of artificial grooves for collecting bottom sediment pollutants in Lake Chaohu, China. Environmental Science and Pollution Research, 2021, 28(25): 32347-32358. DOI:10.1007/s11356-021-12889-8
[54]
Gulati RD, Pires LMD, van Donk E. Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures. Limnologica, 2008, 38(3/4): 233-247. DOI:10.1016/j.limno.2008.05.008
[55]
Hu WP. A new method for the reduction of the inner pollution loading and algae seeds in large shallow eutrophication lake. In: Association for the Sciences of Limnology and Oceanography. Victoria, 2018.
[56]
Li GH, Ye BB, Wu JD et al. Effect of in situ physical elution technology on release features of nitrogen and phosphorus in the sediment of Liangshui River. Chinese Journal of Environmental Engineering, 2020, 14(3): 671-680. [李国宏, 叶碧碧, 吴敬东等. 原位洗脱技术对凉水河底泥中氮、磷释放特征的影响. 环境工程学报, 2020, 14(3): 671-680.]
[57]
Shi RJ, Chen J, Jin ZK et al. Effect of in situ sediment remediation technology for treating polluted river course. Beijing Water, 2019(4): 10-14. [史瑞君, 陈静, 金泽康等. 底泥洗脱原位修复污染河道的治理效果. 北京水务, 2019(4): 10-14. DOI:10.19671/j.1673-4637.2019.04.003]
[58]
Li GH, Ye BB, Wu JD et al. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in situ physical elution. Research of Environmental Sciences, 2020, 33(2): 392-401. [李国宏, 叶碧碧, 吴敬东等. 底泥原位洗脱过程中氮磷含量与形态变化特征. 环境科学研究, 2020, 33(2): 392-401.]
[59]
Tang JZ, Song T, Jiang XY et al. International experiences for river pollution control. World Regional Studies, 1998, 7(2): 114-119. [汤建中, 宋韬, 江心英等. 城市河流污染治理的国际经验. 世界地理研究, 1998, 7(2): 114-119.]
[60]
Gao Y. Review of water eutrophication and control technology of alage blooming. Science and Technology Innovation Herald, 2014, 11(31): 1-3, 5. [高雅. 水体富营养化和水华的控制技术研究现状. 科技创新导报, 2014, 11(31): 1-3, 5.]
[61]
Yang HY, Wang JQ, Li JH et al. Modelling impacts of water diversion on water quality in an urban artificial lake. Environmental Pollution, 2021, 276: 116694. DOI:10.1016/j.envpol.2021.116694
[62]
Cooke GD. Restoration and management of lakes and reservoirs. Boca Raton, FL, USA: CRC Press, 2005.
[63]
Jin L, Yong P. Study on general impact of territorial water diversion on improvement of water environment in wuchengxiyu zone in Taihu Lake Basin. Procedia Environmental Sciences, 2011, 10: 45-50. DOI:10.1016/j.proenv.2011.09.009
[64]
Wu HY, Hu Y. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin. Water Science and Engineering, 2008, 1(3): 36-43. DOI:10.3882/j.issn.1674-2370.2008.03.004
[65]
Peng FJ, Li KF, Liang RF et al. Shallow Lake water exchange process before and after water diversion projects as affected by wind field. Journal of Hydrology, 2021, 592: 125785. DOI:10.1016/j.jhydrol.2020.125785
[66]
Zhang XL, Zou R, Wang YL et al. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?. Journal of Hydrology, 2016, 542: 281-291. DOI:10.1016/j.jhydrol.2016.09.002
[67]
Liu Y, Wang YL, Sheng H et al. Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Science of the Total Environment, 2014, 468/469: 219-227. DOI:10.1016/j.scitotenv.2013.08.054
[68]
Li YP, Tang CY, Wang C et al. Improved Yangtze River diversions: Are they helping to solve algal bloom problems in Lake Taihu, China?. Ecological Engineering, 2013, 51: 104-116. DOI:10.1016/j.ecoleng.2012.12.077
[69]
Dai JY, Wu SQ, Wu XF et al. Impacts of a large river-to-lake water diversion project on lacustrine phytoplankton communities. Journal of Hydrology, 2020, 587: 124938. DOI:10.1016/j.jhydrol.2020.124938
[70]
Yao XL, Zhang L, Zhang YL et al. Water diversion projects negatively impact lake metabolism: A case study in Lake Dazong, China. Science of the Total Environment, 2018, 613/614: 1460-1468. DOI:10.1016/j.scitotenv.2017.06.130
[71]
Tang CY, He C, Li YP et al. Diverse responses of hydrodynamics, nutrients and algal biomass to water diversion in a eutrophic shallow lake. Journal of Hydrology, 2021, 593: 125933. DOI:10.1016/j.jhydrol.2020.125933
[72]
Kortmann RW, Davis ER, Frink CR et al. Hypolimnetic withdrawal: restoration of Lake Wonoscopomuc, Connecticut. In: Lake Restoration, Protection and Management. USA: USEPA-440/5-83-001, 1983: 46-55.
[73]
Nürnberg GK. Hypolimnetic withdrawal as lake restoration technique. Journal of Environmental Engineering, 1987, 113(5): 1006-1017. DOI:10.1061/(asce)0733-9372(1987)113:5(1006)
[74]
Ma XY, Yang P, Zhang M et al. Advances in researches on phosphorous inactivation materials in lake sediment. J Lake Sci, 2021, 34(1): 1-21. [马鑫雨, 杨盼, 张曼等. 湖泊沉积物磷钝化材料的研究进展. 湖泊科学, 2021, 34(1): 1-21. DOI:10.18307/2022.0101]
[75]
Jiang XM, Yang XJ, Wang SX et al. Research and engineering practice of phosphorus removal by the method of iron salt precipitation adsorption in Ze Lake of Yunnan University. Journal of Yunnan University: Natural Sciences Edition, 2021, 43(6): 1183-1191. [蒋小梅, 杨项军, 王世雄等. 铁盐沉淀吸附法除磷在云南大学泽湖中的工程化实践. 云南大学学报: 自然科学版, 2021, 43(6): 1183-1191. DOI:10.7540/j.ynu.20210453]
[76]
Yang HQ, He KK, Lu DP et al. Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: effectiveness and ecological risks. Science of the Total Environment, 2020, 705: 135850. DOI:10.1016/j.scitotenv.2019.135850
[77]
Zhang QY, Du YX, Luo CY et al. Advances in researches on phosphorus immobilization by lanthanum modified bentonite in lakes and its ecological risk. J Lake Sci, 2019, 31(6): 1499-1509. [张巧颖, 杜瑛珣, 罗春燕等. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展. 湖泊科学, 2019, 31(6): 1499-1509. DOI:10.18307/2019.0620]
[78]
Copetti D, Finsterle K, Marziali L et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 2016, 97: 162-174. DOI:10.1016/j.watres.2015.11.056
[79]
You HL, Wu YM, Xu LG et al. Research progress on in-situ inactivation technology for sediment of contaminated water. Jiangxi Science, 2014, 32(6): 806-810. [游海林, 吴永明, 徐力刚等. 污染水体底泥原位钝化技术研究进展. 江西科学, 2014, 32(6): 806-810.]
[80]
Lürling M, van Oosterhout F. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research, 2013, 47(17): 6527-6537. DOI:10.1016/j.watres.2013.08.019
[81]
Bishop WM, McNabb T, Cormican I et al. Operational evaluation of phoslock phosphorus locking technology in Laguna Niguel Lake, California. Water Air & Soil Pollution, 2014, 225(7): 1-11. DOI:10.1007/s11270-014-2018-6
[82]
Spears BM, Mackay EB, Yasseri S et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research, 2016, 97: 111-121. DOI:10.1016/j.watres.2015.08.020
[83]
Yin HB, Kong M, Han MX et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes. Environmental Pollution, 2016, 219: 568-579. DOI:10.1016/j.envpol.2016.06.011
[84]
Gan L, Zhong P, Su L et al. Effects of Lanthanum modified bentonite on the water phosphorus concentration and sediment phosphorus form in a shallow eutrophic lake. J Lake Sci, 2019, 31(5): 1219-1228. [甘磊, 钟萍, 苏玲等. 镧改性膨润土对浅水湖泊水体磷浓度和沉积物磷形态的影响. 湖泊科学, 2019, 31(5): 1219-1228. DOI:10.18307/2019.0517]
[85]
Fu YS, He H, He HY et al. Effect of addition of lanthanum-modified bentonite(Phoslock®) in sediments on growth of Hydrilla verticillata under different water nutrient concentration. J Lake Sci, 2021, 33(2): 388-396. [符亦舒, 何虎, 何宏业等. 不同水体营养盐浓度下沉积物添加镧改性膨润土(Phoslock®)对轮叶黑藻(Hydrilla verticillata)生长的影响. 湖泊科学, 2021, 33(2): 388-396. DOI:10.18307/2021.0209]
[86]
Wu JL, Gan L, Liu SX et al. Effect of restoration on the eutrophication and ecological status of Lake Yanglan (Hubei Province): Assessment based on macroinvertebrates. J Lake Sci, 2019, 31(6): 1547-1558. [吴家乐, 甘磊, 刘素霞等. 修复对湖北洋澜湖富营养化与生态状况的影响: 基于大型无脊椎底栖动物的评价. 湖泊科学, 2019, 31(6): 1547-1558. DOI:10.18307/2019.0616]
[87]
Zhou DD, Wu WW. Study on the technique of basal repair of lakeside zone. Journal of Anhui Agricultural Sciences, 2011, 39(3): 1671-1672. [周丹丹, 吴文卫. 湖滨带基底修复工程技术研究. 安徽农业科学, 2011, 39(3): 1671-1672.]
[88]
Li YJ, Hu XZ, Jin XC et al. Filling technology of clean lake sediment and its application in Fubao Bay, Dianchi lake. Technology of Water Treatment, 2010, 36(3): 123-127. [李英杰, 胡小贞, 金相灿等. 清洁底泥吹填技术及其在滇池福保湾的应用. 水处理技术, 2010, 36(3): 123-127.]
[89]
Li L, Zhong ZL. Ecological restoration and habitat construction of urban wetland—Take the No. 2 stage project of changsha lake wetland park as an example, In: 2017(12th) Urban Development and Planning Conference, Haikou, Hainan, China, 2017: 5. [李立, 钟正龙. 城市湿地的生态修复与生境营造——以长沙洋湖湿地公园二期工程为例. 见: 2017(第十二届)城市发展与规划大会. 中国海南海口, 2017: 5. ]
[90]
Qin BQ, Hu WP, Liu ZW et al. Experiment on water purification by ecological measures in water sources of Meiliangwan of Taihu. China Water Resources, 2006(17): 23-29. [秦伯强, 胡维平, 刘正文等. 太湖梅梁湾水源地通过生态修复净化水质的试验. 中国水利, 2006(17): 23-29.]
[91]
Gao G, Zhang YL, Shao KQ. Shallow lake ecological restoration and grass ecosystem reconstruction—A case study in Lihu of Taihu Lake. Science, 2021, 73(3): 9-12, 4. [高光, 张运林, 邵克强. 浅水湖泊生态修复与草型生态系统重构实践——以太湖蠡湖为例. 科学, 2021, 73(3): 9-12, 4.]
[92]
Liu ZW, Zhang XF, Chen FZ et al. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration. J Lake Sci, 2020, 32(1): 1-10. [刘正文, 张修峰, 陈非洲等. 浅水湖泊底栖——敞水生境耦合对富营养化的响应与稳态转换机理: 对湖泊修复的启示. 湖泊科学, 2020, 32(1): 1-10. DOI:10.18307/2020.0101]
[93]
Liu Y, Guo HC, Zhou F et al. Role of water level fluctuation on aquatic vegetation in lakes. Acta Ecologica Sinica, 2006, 26(9): 3117-3126. [刘永, 郭怀成, 周丰等. 湖泊水位变动对水生植被的影响机理及其调控方法. 生态学报, 2006, 26(9): 3117-3126.]
[94]
Qin JL, Yin XA, Liu HR et al. Analysis of effect of lake water level changes on emergent plants: A case study in the Hongze Lake. Environmental Engineering, 2020, 38(10): 53-60. [秦敬岚, 尹心安, 刘洪蕊等. 湖泊水位变化对挺水植物影响分析: 以洪泽湖为例. 环境工程, 2020, 38(10): 53-60. DOI:10.13205/j.hjgc.202010009]
[95]
Xu WW, Hu WP, Deng JC et al. Impacts of water depth and substrate type on Vallisneria natans at wave-exposed and sheltered sites in a eutrophic large lake. Ecological Engineering, 2016, 97: 344-354. DOI:10.1016/j.ecoleng.2016.10.029
[96]
Yuan SB, Zhang XK, Liu XQ et al. Ecological water level management strategy for aquatic vegetation in the mid-lower Yangtze shallow lakes. Acta Hydrobiologica Sinica, 2019, 43(S1): 104-109. [袁赛波, 张晓可, 刘学勤等. 长江中下游湖泊水生植被的生态水位管理策略. 水生生物学报, 2019, 43(S1): 104-109. DOI:10.7541/2019.173]
[97]
Zhang XK, Liu XQ, Wang HZ. Developing water level regulation strategies for macrophytes restoration of a large river-disconnected lake, China. Ecological Engineering, 2014, 68: 25-31. DOI:10.1016/j.ecoleng.2014.03.087
[98]
Xu FL, Tao S, Xu ZR. The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese Lake: Possibilities and effects. Hydrobiologia, 1999, 405: 169-178. DOI:10.1023/A:1003867309767
[99]
Kong XZ, Jørgensen SE, He W et al. Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China. Ecological Modelling, 2013, 266: 73-85. DOI:10.1016/j.ecolmodel.2013.07.001
[100]
He Y, Li YT, Li R et al. Exploring possibility to regain polluted-lake water quality by means of bioremediation and water diversion. Journal of Safety and Environment, 2005, 5(1): 56-60. [何用, 李义天, 李荣等. 改善湖泊水环境的调水与生物修复结合途径探索. 安全与环境学报, 2005, 5(1): 56-60.]
[101]
Li FF, Chu SY, Cui LZ et al. Research advances on the influence mechanisms of submerged plants growth and decomposition on nitrogen and phosphorus in eutrophic water. Ecological Science, 2018, 37(4): 225-230. [李菲菲, 褚淑祎, 崔灵周等. 沉水植物生长和腐解对富营养化水体氮磷的影响机制研究进展. 生态科学, 2018, 37(4): 225-230.]
[102]
Han Y, Li XM, Zhu YS. Environmental pollution and plant function. Beijing: Chemical Industry Press, 2005. [韩阳, 李雪梅, 朱延姝. 环境污染与植物功能. 北京: 化学工业出版社, 2005.]
[103]
Xia X. Mechanism and application of ecologically restoring eutrophic water with submerged plants. Shanxi Agricultural Economy, 2021(11): 119-120. [夏雪. 沉水植物生态修复富营养化水体的机理和应用. 山西农经, 2021(11): 119-120.]
[104]
Guo YQ, Xue JH, Wu YB et al. Research progress on purification effects and restoration technologies of submerged macrophytes on eutrophic water. Journal of Plant Resources and Environment, 2020, 29(3): 58-68. [郭雅倩, 薛建辉, 吴永波等. 沉水植物对富营养化水体的净化作用及修复技术研究进展. 植物资源与环境学报, 2020, 29(3): 58-68.]
[105]
Zhang ZH, Wu XF, Li W. Functions of submerged macrophytes in in situ ecological restoration of eutrophic waters. Journal of Central South University of Forestry & Technology, 2018, 38(3): 115-121. [张之浩, 吴晓芙, 李威. 沉水植物在富营养化水体原位生态修复中的功能. 中南林业科技大学学报, 2018, 38(3): 115-121.]
[106]
Jin SQ, Zhou JB, Bao WH et al. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes. Environmental Science, 2017, 38(1): 156-161. [金树权, 周金波, 包薇红等. 5种沉水植物的氮、磷吸收和水质净化能力比较. 环境科学, 2017, 38(1): 156-161. DOI:10.13227/j.hjkx.201606135]
[107]
Wang Q, Han Y, Shi NN et al. Application of submerged plant community reconstruction technology in water ecological restoration of Dianchi Chaohai Lake. In: 2020 Annual Meeting of Chinese Society for Environmental Science. Nanjing, Jiangsu, China: 2020: 1677-1684. [王琦, 韩煜, 史娜娜等. 沉水植物群落重构技术在滇池草海水生态修复中的应用. 见: 2020中国环境科学学会科学技术年会. 中国江苏南京, 2020: 1677-1684. ]
[108]
Luo X, Ma JC. Discussion on the coverage design of submerged vegetation in shallow lakes. Journal of Yangtze River Scientific Research Institute, 2021, 38(3): 20-24, 38. [罗希, 马俊超. 关于浅水湖泊沉水植物覆盖度设计依据的探讨. 长江科学院院报, 2021, 38(3): 20-24, 38. DOI:10.11988/ckyyb.20200039]
[109]
Zhang WZ, Shen H, Zhang J et al. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere, 2020, 239: 124702. DOI:10.1016/j.chemosphere.2019.124702
[110]
Zhang WZ, Wang L, Chen L et al. Proliferation of filamentous green algae along with submerged macrophytes planting, and the role of microbe. Ecological Engineering, 2019, 139: 105570. DOI:10.1016/j.ecoleng.2019.07.040
[111]
Liu Z, Qian X, Gao HL et al. Effect of submerged plant community allocation on water transfer in Gonghu ecological restoration area of Taihu Lake. Jiangsu Agricultural Sciences, 2016, 44(5): 480-483. [刘喆, 钱新, 高海龙等. 沉水植物群落配置对太湖贡湖生态修复区的调水效果. 江苏农业科学, 2016, 44(5): 480-483.]
[112]
Kim Y, Kim WJ. Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Research, 2000, 34(13): 3285-3294. DOI:10.1016/S0043-1354(00)00068-3
[113]
Qin HJ, Zhang ZY, Liu HQ et al. Growth characteristics and water purification of two free-floating macrophytes. China Environmental Science, 2016, 36(8): 2470-2479. [秦红杰, 张志勇, 刘海琴等. 两种漂浮植物的生长特性及其水质净化作用. 中国环境科学, 2016, 36(8): 2470-2479.]
[114]
Hu CW, Sun ZD, Li JL et al. Application of water hyacinth in restoration of heavily polluted urban rivers. Chinese Journal of Environmental Engineering, 2007, 1(12): 51-56. [胡长伟, 孙占东, 李建龙等. 凤眼莲在城市重污染河道修复中的应用. 环境工程学报, 2007, 1(12): 51-56.]
[115]
Liu MH, Wen XZ, Zhang ZY et al. Purification effect of biological floating island and floating plants on an open contaminated pond. Acta Hydrobiologica Sinica, 2017, 41(6): 1318-1326. [刘旻慧, 闻学政, 张志勇等. 生物浮岛与漂浮植物对开放池塘水质净化效果. 水生生物学报, 2017, 41(6): 1318-1326. DOI:10.7541/2017.163]
[116]
Liu SZ, Lin DJ, Tang SJ et al. Purification of eutrophic wastewater by Cyperus alternifolius, Coleus blumei and Jasminum sambac planted in a floating phytoremediation system. Chinese Journal of Applied Ecology, 2004, 15(7): 1261-1265. [刘士哲, 林东教, 唐淑军等. 利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究. 应用生态学报, 2004, 15(7): 1261-1265. DOI:10.13287/j.1001-9332.2004.0267]
[117]
Huang TL, Dai DC, Wang Z et al. Water quality purification of urban lakes and rivers with floating phytoremediation system. Progress in Geography, 2006, 25(6): 62-67. [黄廷林, 戴栋超, 王震等. 漂浮植物修复技术净化城市河湖水体试验研究. 地理科学进展, 2006, 25(6): 62-67.]
[118]
Hu ZF, Li DS, Guan DT. Water quality retrieval and algae inhibition from eutrophic freshwaters with iron-rich substrate based ecological floating beds treatment. Science of the Total Environment, 2020, 712: 135584. DOI:10.1016/j.scitotenv.2019.135584
[119]
Guo YM, Liu YG, Zeng GM et al. A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation. Journal of Environmental Sciences, 2014, 26(5): 1090-1098. DOI:10.1016/S1001-0742(13)60500-8
[120]
Wang Z, Zhang ZY, Zhang JQ et al. The fauna structure of benthic macro-invertebrates for environmental restoration in a eutrophic lake using water hyacinths. China Environmental Science, 2012, 32(1): 142-149. [王智, 张志勇, 张君倩等. 水葫芦修复富营养化湖泊水体区域内外底栖动物群落特征. 中国环境科学, 2012, 32(1): 142-149.]
[121]
Wang WH, Wang Y, Sun LQ et al. Research and application status of ecological floating bed in eutrophic landscape water restoration. Science of the Total Environment, 2020, 704: 135434. DOI:10.1016/j.scitotenv.2019.135434
[122]
Cai YJ, Liang JS, Zhang PY et al. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in Northern China. Chemosphere, 2021, 285: 131534. DOI:10.1016/j.chemosphere.2021.131534
[123]
Yang C, Kim DK, Bowman J et al. Predicting the likelihood of a desirable ecological regime shift: A case study in Cootes Paradise marsh, Lake Ontario, Ontario, Canada. Ecological Indicators, 2020, 112: 105794. DOI:10.1016/j.ecolind.2019.105794
[124]
Im S, Lee BE, Lee HG et al. Perennial emergent macrophytes as the main determinant of Hydrochara affinis inhabitation. Journal of Asia-Pacific Entomology, 2019, 22(4): 1070-1081. DOI:10.1016/j.aspen.2019.08.008
[125]
Yu JH, Wang LH, Kang DJ et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J Lake Sci, 2021, 33(5): 1467-1477. [余居华, 王乐豪, 康得军等. 湖滨带芦苇恢复过程中沉积物氮赋存形态及含量变化: 以巢湖为例. 湖泊科学, 2021, 33(5): 1467-1477. DOI:10.18307/2021.0514]
[126]
Li EH, Li W, Wang XL et al. Experiment of emergent macrophytes growing in contaminated sludge: Implication for sediment purification and lake restoration. Ecological Engineering, 2010, 36(4): 427-434. DOI:10.1016/j.ecoleng.2009.11.009
[127]
Fujibayashi M, Takakai F, Masuda S et al. Effects of restoration of emergent macrophytes on the benthic environment of the littoral zone of a eutrophic lake. Ecological Engineering, 2020, 155: 105960. DOI:10.1016/j.ecoleng.2020.105960
[128]
Cao Q, Li M, Yang H et al. Dynamic changes of the retention capacity for phosphorus by emergent macrophytes in the Yeyahu Wetland. Acta Scientiae Circumstantiae, 2012, 32(8): 1874-1881. [曹琪, 李敏, 杨航等. 野鸭湖湿地挺水植物磷素截留量动态变化分析. 环境科学学报, 2012, 32(8): 1874-1881. DOI:10.13671/j.hjkxxb.2012.08.002]
[129]
Lai WL, Hu JF, Chen ZH. Eco-physiological characteristics and decontamination efficiency of four emergent macrophytes. Journal of Tropical and Subtropical Botany, 2010, 18(4): 421-427. [赖闻玲, 胡菊芳, 陈章和. 四种挺水植物生理生态特性和污水净化效果研究. 热带亚热带植物学报, 2010, 18(4): 421-427.]
[130]
Liang SX, Zhang ZR, Wang YX et al. Purification of typical emergent aquatic plant on eutrophicated water in Lake Baiyangdian. Science Technology and Engineering, 2013, 13(11): 3048-3052. [梁淑轩, 张振冉, 王云晓等. 白洋淀典型挺水植物净化水质效果. 科学技术与工程, 2013, 13(11): 3048-3052.]
[131]
Yuan J, Dong LX, Yang J et al. Study on purification effect of nitrogen and phosphorus in eutrophic river water by six emerged plants. Environmental Science and Management, 2017, 42(4): 75-78, 83. [袁杰, 董立新, 杨洁等. 六种挺水植物对富营养化河水氮磷净化效果研究. 环境科学与管理, 2017, 42(4): 75-78, 83.]
[132]
Nie L, He MM, Dai SP. Eco-physiological characteristics and environmental effects of ten wetland emerged plant species on purifying the rivulet sewage in Guangzhou. Hubei Agricultural Sciences, 2011, 50(9): 1776-1780. [聂磊, 贺漫媚, 代色平. 十种湿地挺水植物净化广州河涌污水的生理生态效应分析. 湖北农业科学, 2011, 50(9): 1776-1780.]
[133]
Tang YX, Zheng JM, Lou LP et al. Comparisons of NH4+, NO3- and H2PO4- uptake kinetics in three different macrophytes in waterlogged condition. Chinese Journal of Eco-Agriculture, 2011, 19(3): 614-618. [唐艺璇, 郑洁敏, 楼莉萍等. 3种挺水植物吸收水体NH4+、NO3-、H2PO4-的动力学特征比较. 中国生态农业学报, 2011, 19(3): 614-618. DOI:10.3724/SP.J,1011.2011.00614]
[134]
Chu R, Chen NL, Wang XJ et al. The nitrogen removal effect of emergent plant in constructed wetland. Environmental Pollution & Control, 2017, 39(8): 884-889, 894. [褚润, 陈年来, 王小娟等. 人工湿地挺水植物脱氮效果研究. 环境污染与防治, 2017, 39(8): 884-889, 894.]
[135]
Bao XM, Fan CX, Shi GR. Effects of different sediment materials on photosynthetic characters of three emergent plant species. J Lake Sci, 2011, 23(4): 541-548. [包先明, 范成新, 史刚荣. 不同底质改良处理对三种挺水植物光合特性的影响. 湖泊科学, 2011, 23(4): 541-548. DOI:10.18307/2011.0408]
[136]
Triest L, Stiers I, van Onsem S. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology, 2016, 50(3): 461-483. DOI:10.1007/s10452-015-9548-x
[137]
Carpenter SR, Kitchell JF, Hodgson JR. Cascading trophic interactions and lake productivity fish predation and herbivory can regulate lake ecosystems. BioScience, 1985, 35(10): 634-639. DOI:10.2307/1309989
[138]
Søndergaard M, Liboriussen L, Pedersen AR et al. Lake restoration by fish removal: Short- and long-term effects in 36 Danish lakes. Ecosystems, 2008, 11(8): 1291-1305. DOI:10.1007/s10021-008-9193-5
[139]
Liu Z, Hu J, Zhong P et al. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 2018, 146: 88-97. DOI:10.1016/j.watres.2018.09.007
[140]
Cai XW, Li W, Fan HR et al. Roles of fish assemblage regulation on ecological restoration in a shallow lake: A case study from the Kuilei Lake, China. Journal of Fishery Sciences of China, 2021, 28(6): 737-742. [蔡杏伟, 李为, 樊厚瑞等. 鱼类群落调控在浅水湖泊生态修复中的作用: 以傀儡湖为例. 中国水产科学, 2021, 28(6): 737-742. DOI:10.12264/JFSC2021-0012]
[141]
Zhang M, Zhang HC, Song DY et al. The control effects of Daphnia magna population on the phytoplankton in eutrophic water body. Ecological Science, 2015, 34(2): 76-81. [张曼, 张河长, 宋东蓥等. 富营养水体大型溞的种群数量对浮游植物的控制效应. 生态科学, 2015, 34(2): 76-81.]
[142]
Liu JK, Xie P. Direct control of Microcystis bloom through the use of planktivorous carp-closure experiments and lake fishery practice. Ecological Science, 2003, 22(3): 193-198. [刘建康, 谢平. 用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践. 生态科学, 2003, 22(3): 193-198.]
[143]
Zhao ZG, Dong SL, Wang F et al. Effect of algae density on breathing and feeding of filter-feeding silver carp (Hypophthalmichthys molitrix Val.). Aquaculture, 2014, 433: 133-136. DOI:10.1016/j.aquaculture.2014.05.043
[144]
Zhang JM, Gao J, Yang C et al. Phytoplankton community structure of Lake Wushan stocked densely with planktivorous filter-feeding bighead and silver carp, middle and lower reaches of the Yangtze River. J Lake Sci, 2020, 32(6): 1771-1783. [张佳敏, 高健, 杨诚等. 以鲢、鳙养殖为主的长江中下游武山湖浮游植物群落结构特征. 湖泊科学, 2020, 32(6): 1771-1783. DOI:10.18307/2020.0617]
[145]
Yi CL, Guo LG, Ni LY et al. Silver carp exhibited an enhanced ability of biomanipulation to control cyanobacteria bloom compared to bighead carp in hypereutrophic Lake Taihu mesocosms. Ecological Engineering, 2016, 89: 7-13. DOI:10.1016/j.ecoleng.2016.01.022
[146]
Hu ZJ, Zhang JW, Zhang Z et al. Effect of silver carp(Hypophthalmichthys molitrix) stocking density on phytoplankton community structure in ponds along Qiandao Lake. Journal of Hydroecology, 2021, 42(6): 57-63. [胡忠军, 张婧雯, 张真等. 不同鲢密度对千岛湖沿岸池塘浮游植物群落结构的影响. 水生态学杂志, 2021, 42(6): 57-63. DOI:10.15928/j.1674-3075.201905050110]
[147]
Yang JJ, Guo LG, Yin CJ et al. Preliminary evaluation of ecological effects of silver and bighead carps to control cyanobacterial blooms in the early eutrophication lake. J Lake Sci, 2019, 31(2): 386-396. [杨姣姣, 过龙根, 尹成杰等. 富营养化初期湖泊放养鲢、鳙控藻生态效果的初步评估. 湖泊科学, 2019, 31(2): 386-396. DOI:10.18307/2019.0208]
[148]
Jin CH, Lu KH, Wang YC. Study on control of blue-green blooms in Moon Lake by using ameliorated alum plasma and filter-feeding animals. Journal of Ningbo University: Natural Science and Engineering Edition, 2004, 17(2): 147-151. [金春华, 陆开宏, 王扬才. 改性明矾浆和滤食性动物控制月湖的蓝藻水华. 宁波大学学报: 理工版, 2004, 17(2): 147-151.]
[149]
Jin CH, Lu KH, Wang YC et al. Control strategies and their effects of cyanobacteria in three drinking water reservoirs in Zhejiang Province. Reservoir Fisheries, 2005, 26(3): 50-55. [金春华, 陆开宏, 王扬才等. 浙江省3座饮用水水库的蓝藻控制对策及效果. 水利渔业, 2005, 26(3): 50-55.]
[150]
Zeng QF, Gu XH, Mao ZG et al. Ecological effect of the excretion from silver carp and bighead carp in algal bloom control: A review. Chinese Journal of Ecology, 2010, 29(9): 1806-1811. [曾庆飞, 谷孝鸿, 毛志刚等. 鲢鳙控藻排泄物生态效应研究进展. 生态学杂志, 2010, 29(9): 1806-1811. DOI:10.13292/j.1000-4890.2010.0304]
[151]
Liu M, Xu MX, Xu DL et al. Status quo and progress in research and application on nonclassical biomanipulation of silver carp and bighead carp. Journal of Hydroecology, 2010, 31(3): 99-103. [刘敏, 徐敏娴, 许迪亮等. 鲢、鳙非经典生物操纵作用的研究进展与应用现状. 水生态学杂志, 2010, 31(3): 99-103. DOI:10.15928/j.1674-3075.2010.03.004]
[152]
Liu QG, Zhang Z. Controlling the nuisance algae by silver and bighead carps in eutrophic lakes: Disputes and consensus. J Lake Sci, 2016, 28(3): 463-475. [刘其根, 张真. 富营养化湖泊中的鲢、鳙控藻问题: 争议与共识. 湖泊科学, 2016, 28(3): 463-475. DOI:10.18307/2016.0301]
[153]
Wang YP, Gu XH, Zeng QF et al. Contrasting response of a plankton community to two filter-feeding fish and their feces: An in situ enclosure experiment. Aquaculture, 2016, 465: 330-340. DOI:10.1016/j.aquaculture.2016.08.014
[154]
Ma H, Cui FY, Liu ZQ et al. Effect of filter-feeding fish silver carp on phytoplankton species and size distribution in surface water: A field study in water works. Journal of Environmental Sciences, 2010, 22(2): 161-167. DOI:10.1016/S1001-0742(09)60088-7
[155]
Fei ZL, Wu J, Zhao Q et al. Effect of filtration and digestion of Hyriopsis cumingii to algae. Freshwater Fisheries, 2006, 36(5): 24-27. [费志良, 吴军, 赵钦等. 三角帆蚌对藻类滤食及消化的研究. 淡水渔业, 2006, 36(5): 24-27.]
[156]
Pan JL, Xu ZK, Tang JQ et al. Study on the effects of large mollusks on alge control and water quality at Meiliang Gulf in Taihou Lake. Transactions of Oceanology and Limnology, 2007(2): 69-79. [潘建林, 徐在宽, 唐建清等. 湖泊大型贝类控藻与净化水质的研究. 海洋湖沼通报, 2007(2): 69-79.]
[157]
Fei ZL, Pan JL, Xu ZL et al. Study of the elimination of suspented substances and chlorophyll in water by Hytiopsis cumingii (LEA). Transactions of Oceanology and Limnology, 2005(2): 40-45. [费志良, 潘建林, 徐在宽等. 三角帆蚌对水体悬浮物和叶绿素a消除量的研究. 海洋湖沼通报, 2005(2): 40-45.]
[158]
Zhao MZ, Fei ZL, Hao C et al. Short-term purification of water by different mollusks. Fisheries Science, 2006, 25(3): 133-135. [赵沐子, 费志良, 郝忱等. 不同贝类对水质净化效果的比较. 水产科学, 2006, 25(3): 133-135.]
[159]
Chen Q, Chao JY, Zhang YM et al. Study on remediation in eutrophic waterbody by zoobenthos and emergent plants. Technology of Water Treatment, 2011, 37(8): 61-63, 71. [陈倩, 晁建颖, 张毅敏等. 底栖动物与挺水植物协同修复富营养化水体的研究. 水处理技术, 2011, 37(8): 61-63, 71.]
[160]
Yao Y, Jin XC, Jiang X et al. Study on effects of light on phosphorus release and phosphorus form change in lake sediments. Research of Environmental Sciences, 2004, 17(S1): 30-33. [姚扬, 金相灿, 姜霞等. 光照对湖泊沉积物磷释放及磷形态变化的影响研究. 环境科学研究, 2004, 17(S1): 30-33. DOI:10.13198/j.res.2004.s1.32.yaoy.007]
[161]
Gu J, Han YQ, He H et al. Effects of freshwater bivalve Corbicula fluminea on the growth of submerged macrophytes Vallisneria natans. Chinese Journal of Ecology, 2021, 40(5): 1512-1520. [谷娇, 韩燕青, 何虎等. 淡水贝类河蚬对沉水植物苦草生长的影响. 生态学杂志, 2021, 40(5): 1512-1520. DOI:10.13292/j.1000-4890.202105.011]
[162]
Shen RJ, Gu XH, Chen HH et al. Combining bivalve (Corbicula fluminea) and filter-feeding fish (Aristichthys nobilis) enhances the bioremediation effect of algae: An outdoor mesocosm study. Science of the Total Environment, 2020, 727: 138692. DOI:10.1016/j.scitotenv.2020.138692
[163]
Belykh OI, Tikhonova IV, Kuzmin AV et al. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 2016, 121: 36-40. DOI:10.1016/j.toxicon.2016.08.015
[164]
Savela H, Spoof L, Perälä N et al. Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae, 2015, 46: 1-10. DOI:10.1016/j.hal.2015.04.005
[165]
Gu J, He H, Jin H et al. Synergistic negative effects of small-sized benthivorous fish and nitrogen loading on the growth of submerged macrophytes—Relevance for shallow lake restoration. Science of the Total Environment, 2018, 610/611: 1572-1580. DOI:10.1016/j.scitotenv.2017.06.119
[166]
Wang SB, Qu YF, Xu ZR. Algal bloom control in eutrophic lakes and reservoirs based on biomanipulation. Water Resources Protection, 2016, 32(5): 1-4, 23. [王寿兵, 屈云芳, 徐紫然. 基于生物操纵的富营养化湖库蓝藻控制实践. 水资源保护, 2016, 32(5): 1-4, 23.]
[167]
Silva C, Yáñez E, Martín-Díaz ML et al. Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture—application of GIS and shellfish dynamic models in the Rio San Pedro, SW Spain. Marine Pollution Bulletin, 2012, 64(4): 751-765. DOI:10.1016/j.marpolbul.2012.01.019
[168]
Shen RJ. Study on the synergistic mechanism and effect of algae control by filter-feeding aquatic organism[Dissertation]. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2020. [沈睿杰. 滤食性水生动物协同控藻机制及效果研究[学位论文]. 南京: 中国科学院南京地理与湖泊研究所, 2020. ]
[169]
Visser PM, Ibelings BW, Bormans M et al. Artificial mixing to control cyanobacterial blooms: A review. Aquatic Ecology, 2016, 50(3): 423-441. DOI:10.1007/s10452-015-9537-0
[170]
Wang YY, He Q, Tang H et al. Two-year moving aeration controls cyanobacterial blooms in an extremely eutrophic shallow pond: Variation in phytoplankton community and Microcystis colony size. Journal of Water Process Engineering, 2021, 42: 102192. DOI:10.1016/j.jwpe.2021.102192
[171]
Lürling M, Waajen G, Senerpont Domis LN. Evaluation of several end-of-pipe measures proposed to control cyanobacteria. Aquatic Ecology, 2016, 50(3): 499-519. DOI:10.1007/s10452-015-9563-y
[172]
Barbiero RP, Ashby SL, Kennedy RH. The effects of artificial circulation on a small northeastern impoundment. Journal of the American Water Resources Association, 1996, 32(3): 575-584. DOI:10.1111/j.1752-1688.1996.tb04055.x
[173]
Cao B, Liu C. Precise "healing" of water bodies in small watersheds of County towns. World Environment, 2021(2): 73-76. [曹斌, 柳晨. 县城小流域水体的精准"治愈术". 世界环境, 2021(2): 73-76.]
[174]
Zhu XD. The research and application of the oxygen demand calculation model of polluted water. Technology of Water Treatment, 2021, 47(4): 78-80, 85. [朱小冬. 黑臭水体需氧量计算模型研究及应用. 水处理技术, 2021, 47(4): 78-80, 85.]
[175]
Rajasekhar P, Fan LH, Nguyen T et al. A review of the use of sonication to control cyanobacterial blooms. Water Research, 2012, 46(14): 4319-4329. DOI:10.1016/j.watres.2012.05.054
[176]
Joyce E, Phull SS, Lorimer JP et al. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 2003, 10(6): 315-318. DOI:10.1016/S1350-4177(03)00101-9
[177]
Chen HL, Li Y, Chu ZS et al. Present situation and research progress of ultrasonic algae control technology. Journal of Environmental Engineering Technology, 2020, 10(1): 72-78. [陈贺林, 李芸, 储昭升等. 超声波控藻技术现状及研究进展. 环境工程技术学报, 2020, 10(1): 72-78.]
[178]
Tan X, Sun YT, Duan ZP et al. Influence of ultrasonic intensity on sinking of Microcystis colonies and their floating process under different light and temperature conditions. J Lake Sci, 2017, 29(5): 1168-1176. [谭啸, 孙玉童, 段志鹏等. 不同超声强度下微囊藻群体沉降及其上浮过程对光照和温度的响应. 湖泊科学, 2017, 29(5): 1168-1176. DOI:10.18307/2017.0514]
[179]
Tan X, Gu HH, Duan ZP et al. Effects of ultrasound on the released amount of nitrogen and phosphorus and changes of water quality during blooms control. China Environmental Science, 2018, 38(4): 1371-1376. [谭啸, 顾惠卉, 段志鹏等. 超声波控藻对氮磷释放及水质变化的影响. 中国环境科学, 2018, 38(4): 1371-1376.]
[180]
Frenkel V, Kimmel E, Iger Y. Ultrasound-induced cavitation damage to external epithelia of fish skin. Ultrasound in Medicine & Biology, 1999, 25(8): 1295-1303. DOI:10.1016/S0301-5629(99)00069-1
[181]
Holm ER, Stamper DM, Brizzolara RA et al. Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Marine Pollution Bulletin, 2008, 56(6): 1201-1208. DOI:10.1016/j.marpolbul.2008.02.007
[182]
Lürling M, Mucci M. Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia, 2020, 847(21): 4447-4467. DOI:10.1007/s10750-020-04297-9
[183]
van der Veer B, van Nieuwenhuyze RF, Donze M. Accumulation of blue-green algal scums in small harbours and its prevention. SIL Proceedings, 1922-2010, 1993, 25(1): 610-613. DOI:10.1080/03680770.1992.11900203
[184]
Li DH, Wang ZC, Qin HJ et al. An integrated technology of bloom-barrier and bloom-trap for cyanobacterial bloom control. Resources and Environment in the Yangtze Basin, 2012, 21(S2): 45-50. [李敦海, 汪志聪, 秦红杰等. 蓝藻水华的拦截和陷阱捕获综合控藻技术研究. 长江流域资源与环境, 2012, 21(S2): 45-50.]
[185]
Lürling M, Oosterhout F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia, 2013, 710(1): 253-263. DOI:10.1007/s10750-012-1141-x
[186]
Zhang YQ, Bi XJ, Yan HM et al. The barricading wave and algae technology in Gonghu Bay ecological restoration area of Taihu Lake. Journal of Anhui Agricultural Sciences, 2016, 44(2): 142-145, 149. [张艳晴, 毕雪娟, 闫晖敏等. 太湖地区贡湖湾生态修复区围隔系统消浪挡藻技术研究. 安徽农业科学, 2016, 44(2): 142-145, 149.]
[187]
Zhao ZY. Preliminary analysis on the causes and effects of algae removal in rivers, lakes and seas in China. Environmental Protection, 2000, 28(8): 29-30. [赵章元. 我国江河湖海除藻的治标与治本浅析. 环境保护, 2000, 28(8): 29-30.]
[188]
Wang SK, Stiles AR, Guo C et al. Harvesting microalgae by magnetic separation: A review. Algal Research, 2015, 9: 178-185. DOI:10.1016/j.algal.2015.03.005
[189]
Fu DB. Application of on-line algae separation magnetic trap vessel in the prevention and control of algae pollution in Chaohu Lake. General Machinery, 2019(7): 55-56, 59. [傅代兵. 藻水在线分离磁捕船在巢湖蓝藻污染防控中的应用. 通用机械, 2019(7): 55-56, 59.]
[190]
Fan F, Shi XL, Zhang M et al. Comparison of algal harvest and hydrogen peroxide treatment in mitigating cyanobacterial blooms via an in situ mesocosm experiment. Science of the Total Environment, 2019, 694: 133721. DOI:10.1016/j.scitotenv.2019.133721
[191]
Zhang YS, Kong FX, Yu Y et al. The characteristics and buoyancy regulations of cyanobacterial gas vesicles. Acta Ecologica Sinica, 2010, 30(18): 5077-5090. [张永生, 孔繁翔, 于洋等. 蓝藻伪空胞的特性及浮力调节机制. 生态学报, 2010, 30(18): 5077-5090.]
[192]
Cong HB, Gao ZJ, Sun XX. Sedimentation and removal of cyanobacteria in Taihu Lake under external pressure. China Water & Wastewater, 2014, 30(1): 43-47. [丛海兵, 高郑娟, 孙秀秀. 压力作用后太湖蓝藻沉淀性能及其去除研究. 中国给水排水, 2014, 30(1): 43-47. DOI:10.19853/j.zgjsps.1000-4602.2014.01.013]
[193]
Chu ZS, Yang B, Jin XC et al. Critical collapse pressure of gas vesicles in six strains of cyanobacteria. Environmental Science, 2007, 28(12): 2695-2699. [储昭升, 杨波, 金相灿等. 6株蓝藻伪空胞的临界破裂压力研究. 环境科学, 2007, 28(12): 2695-2699. DOI:10.13227/j.hjkx.2007.12.012]
[194]
Pan Y, Chen XQ, Zhang ZH et al. Growth control mechanism of cyanobacteria in Taihu Lake under pressure. Environmental Science & Technology, 2020, 43(7): 8-13. [潘阳, 陈旭清, 张铮惠等. 压力作用后的蓝藻在太湖中的生长控制机理. 环境科学与技术, 2020, 43(7): 8-13. DOI:10.19672/j.cnki.1003-6504.2020.07.002]
[195]
Yang CP, Huo Y, Liu J et al. Effects of pressure on Microcystis and its ecological risk. Journal of Hydroecology, 2020, 41(6): 65-73. [杨翠平, 霍岩, 刘津等. 加压对微囊藻的影响及其生态风险探讨. 水生态学杂志, 2020, 41(6): 65-73. DOI:10.15928/j.1674-3075.2020.06.008]
[196]
Guo NN, Qi YK, Meng SL et al. Research progress of eutrophic lake restoration technology. Chinese Agricultural Science Bulletin, 2019, 35(36): 72-79. [郭楠楠, 齐延凯, 孟顺龙等. 富营养化湖泊修复技术研究进展. 中国农学通报, 2019, 35(36): 72-79.]
[197]
Matthijs HCP, Jan c ˇ ula D, Visser PM et al. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology, 2016, 50(3): 443-460. DOI:10.1007/s10452-016-9577-0
[198]
Yang Z, Buley RP, Fernandez-Figueroa EG et al. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution: Barking, Essex: 1987, 2018, 240: 590-598. DOI:10.1016/j.envpol.2018.05.012
[199]
Chang CW, Huo XC, Lin TF. Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation. Water Research, 2018, 141: 217-226. DOI:10.1016/j.watres.2018.05.023
[200]
Matthijs HCP, Visser PM, Reeze B et al. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 2012, 46(5): 1460-1472. DOI:10.1016/j.watres.2011.11.016
[201]
Chen C, Shi XL, Yang Z et al. An integrated method for controlling the offensive odor and suspended matter originating from algae-induced black blooms. Chemosphere, 2019, 221: 526-532. DOI:10.1016/j.chemosphere.2019.01.072
[202]
Chen C, Yang Z, Kong FX et al. Growth, physiochemical and antioxidant responses of overwintering benthic cyanobacteria to hydrogen peroxide. Environmental Pollution, 2016, 219: 649-655. DOI:10.1016/j.envpol.2016.06.043
[203]
Loganathan K, Saththasivam J, Sarp S. Removal of microalgae from seawater using chitosan-alum/ferric chloride dual coagulations. Desalination, 2018, 433: 25-32. DOI:10.1016/j.desal.2018.01.012
[204]
Yu ZM, Song XX, Cao XH et al. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications. Harmful Algae, 2017, 69: 48-64. DOI:10.1016/j.hal.2017.09.004
[205]
Yuan YT, Zhang HG, Pan G. Flocculation of cyanobacterial cells using coal fly ash modified chitosan. Water Research, 2016, 97: 11-18. DOI:10.1016/j.watres.2015.12.003
[206]
Mucci M, Noyma NP, de Magalhães L et al. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Research, 2017, 118: 121-130. DOI:10.1016/j.watres.2017.04.020
[207]
Li H, Pan G. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil. Environmental Science & Technology, 2015, 49(10): 6249-6256. DOI:10.1021/acs.est.5b00840
[208]
Ni JJ, Yu YH, Feng WS et al. Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake, China. Journal of Environmental Sciences, 2010, 22(10): 1500-1507. DOI:10.1016/S1001-0742(09)60270-9
[209]
Chen LT, Zuo J, Tao SY et al. Progress in control of cyanobacteria by microorganism. Journal of Wuhan University: Natural Science Edition, 2019, 65(4): 401-410. [陈莉婷, 左俊, 陶思依等. 利用微生物控制蓝藻研究进展. 武汉大学学报: 理学版, 2019, 65(4): 401-410. DOI:10.14188/j.1671-8836.2019.04.012]
[210]
Chen J, Cong J, Chen GY et al. Control of cyanobacterial bloom with effective microorganisms. Chinese Journal of Environmental Engineering, 2010, 4(1): 101-104. [陈建, 丛君, 陈高云等. 利用有效微生物菌群控制蓝藻水华研究. 环境工程学报, 2010, 4(1): 101-104. DOI:10.1016/j.trd.2004.02.003]