投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:刘世明,朱雪竹,张民.铜绿微囊藻(Microcystis aeruginosa)和蛋白核小球藻(Chlorella pyrenoidosa)生长及光合活性对温度和光照交互作用的响应.湖泊科学,2014,26(5):773-779. DOI:10.18307/2014.0516
LIU Shiming,ZHU Xuezhu,ZHANG Min.Growth and photosynthetic capacity of Microcystis aeruginosa and Chlorella pyrenoidosa in response to the interactions of temperature and light. J. Lake Sci.2014,26(5):773-779. DOI:10.18307/2014.0516
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3126次   下载 1087 本文二维码信息
码上扫一扫!
分享到: 微信 更多
铜绿微囊藻(Microcystis aeruginosa)和蛋白核小球藻(Chlorella pyrenoidosa)生长及光合活性对温度和光照交互作用的响应
刘世明1, 朱雪竹1, 张民2
1.南京农业大学资源与环境科学学院, 南京 210095;2.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008
摘要:
通过室内纯培养,分别设定不同温度梯度(14、16、18℃)和光照梯度(100、250、360μmol/(m2·s)),以模拟全球气候变化条件下,温带湖泊春季温度升高与光照减弱交互作用对铜绿微囊藻和蛋白核小球藻生长和光合活性的影响.通过流式细胞计数测定其生长曲线,观测其变化趋势,并利用叶绿素荧光仪PHYTO-PAM测定藻类光合活性.结果表明,当温度为18℃,光强为100μmol/(m2·s)时,铜绿微囊藻生长速率最大,细胞密度达到2.99×106cells/ml.在该温度和光照强度下,其光合活性也远高于其他实验组,其Fv/Fm值达到最大值0.39.蛋白核小球藻在温度为16和18℃时,其生长速率差异不大,但明显高于在温度为14℃时的生长速率,其光合活性处于波动状态.与蛋白核小球藻相比,温度升高和光照减弱对铜绿微囊藻生长和光合活性的促进作用更为明显,而且随着温度的升高,铜绿微囊藻生长对低光的偏好更为显著.因此,全球变暖所导致的高温低光环境可能有利于确立铜绿微囊藻在湖泊中的优势地位.
关键词:  铜绿微囊藻  蛋白核小球藻  升温  光减弱  光合活性
DOI:10.18307/2014.0516
分类号:
基金项目:国家自然科学基金项目(31200353);江苏省自然科学基金项目(BK2011877);中国科学院南京地理与湖泊研究所"一三五"战略发展规划项目(NIGLAS2012135010)联合资助
Growth and photosynthetic capacity of Microcystis aeruginosa and Chlorella pyrenoidosa in response to the interactions of temperature and light
LIU Shiming1, ZHU Xuezhu1, ZHANG Min2
1.College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China;2.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
Abstract:
To simulate the effect of the interactions of elevated temperature and weakened light in spring on the growth and photosynthetic capacity of Microcystis aeruginosa and Chlorella pyrenoidosa, an experiment was performed with these two strains at different temperatures (14, 16 and 18℃) and light intensities (100, 250 and 360 μmol/(m2·s). Growth curves were obtained by the results of cell counting with flow cytometry to reflect their growth trends. Photosynthetic capacity was measured by Phyto-PAM fluorometry. The results showed that the growth rate of M. aeruginosa reached its peak at the cell density of 2.99×106 cells/ml when the temperature was at 18℃ and light intensity was 100 μmol/(m2·s). At the same time, its photosynthetic capacity was much higher than other groups, and Fv/Fm values reached 0.39. While the growth rates of C. pyrenoidosa at the temperatures of 16 and 18℃ were similar, they were significantly higher than the growth rate at 14℃, and the photosynthetic capacity kept fluctuating throughout the experiment. Our results indicated that elevated temperature and weakened light promoted the growth and photosynthetic capacity of M. aeruginosa. Moreover, M. aeruginosa is much more likely to prefer low light intensity at high temperature than low temperature. All these might contribute to the development of M. aeruginosa dominance in spring in a general trend of the global warming.
Key words:  Microcystis aeruginosa  Chlorella pyrenoidosa  elevated temperature  weakened light  photosynthetic capacity
分享按钮