湖泊科学   2022, Vol. 34 Issue (6): 1788-1801.  DOI: 10.18307/2022.0600
0

综述

引用本文 [复制中英文]

蔡露, Katopodis Christos, 金瑶, 黄应平, 韩德举, 胡望斌, 陈小娟, 陶江平, 侯轶群, 中国鲤科鱼类游泳能力综合分析和应用. 湖泊科学, 2022, 34(6): 1788-1801. DOI: 10.18307/2022.0600
[复制中文]
Cai Lu, Katopodis Christos, Jin Yao, Huang Yingping, Han Deju, Hu Wangbin, Chen Xiaojuan, Tao Jiangping, Hou Yiqun. Comprehensive analysis and application of Chinese Cyprinidae swimming ability. Journal of Lake Sciences, 2022, 34(6): 1788-1801. DOI: 10.18307/2022.0600
[复制英文]

基金项目

国家自然科学基金项目(51609155)、水利部水工程生态效应与生态修复重点实验室开放课题基金项目(KL-MWR-201903,KL-MWR-201902)和湖北省自然科学基金项目(2020CFB153)联合资助

通信作者

侯轶群, E-mail: greenhan16@163.com

文章历史

2022-02-25 收稿
2022-07-27 收修改稿

码上扫一扫

中国鲤科鱼类游泳能力综合分析和应用
蔡露1,2 , Katopodis Christos3 , 金瑶1 , 黄应平2 , 韩德举1 , 胡望斌1 , 陈小娟1 , 陶江平1 , 侯轶群1     
(1: 水利部中国科学院水工程生态研究所, 水利部水工程生态效应与生态修复重点实验室, 武汉 430079)
(2: 三峡大学水利与环境学院, 三峡库区生态环境教育部工程研究中心, 宜昌 443002)
(3: Katopodis Ecohydraulics Ltd., Winnipeg R3T 3W7, Canada)
摘要:该研究利用学术论文数据库筛选出中国鲤科鱼类游泳能力相关论文115篇,并用Origin软件进行了数据统计分析,旨在归纳和分析中国鲤科鱼类游泳能力并建立估算方法,可为正处于规划阶段和可行性研究阶段的过鱼设施流速设计提供依据.结果表明:(1)鱼类游泳速度与鱼体长度具有显著的非线性相关关系,据此建立了一系列幂函数经验公式,可为游泳能力和过鱼设施研究及设计提供依据.(2)依据所得到的经验公式和协方差分析可知,喜流水型鲤科鱼类的游泳能力>广适型>喜静水型.根据该研究得到的经验公式并结合行业规范和文献资料,对正处于规划阶段和可行性研究阶段过鱼设施流速设计的建议如下:西南地区以裂腹鱼成鱼为主要过鱼对象的过鱼设施进鱼口吸引流速范围为0.61~0.76 m/s,通道内最高流速阈值为1.28 m/s;长江中下游以四大家鱼成鱼为主要过鱼对象的进鱼口吸引流速范围为0.76~0.93 m/s,通道内最高流速阈值为1.49 m/s,以四大家鱼幼鱼为主要过鱼对象的进鱼口吸引流速范围为0.42~0.62 m/s,通道内最高流速阈值可为0.82 m/s.
关键词鲤科    过鱼设施    鱼道    游泳能力    游泳速度    流速    鱼长度    
Comprehensive analysis and application of Chinese Cyprinidae swimming ability
Cai Lu1,2 , Katopodis Christos3 , Jin Yao1 , Huang Yingping2 , Han Deju1 , Hu Wangbin1 , Chen Xiaojuan1 , Tao Jiangping1 , Hou Yiqun1     
(1: Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, P. R. China)
(2: Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, P. R. China)
(3: Katopodis Ecohydraulics Ltd., Winnipeg R3T 3W7, Canada)
Abstract: In order to provide an estimation method and basis for the fish swimming ability and for the flow velocity design of fish passing facilities in the planning stage and feasibility stage, by searching the papers related to the swimming ability of Chinese Cyprinidae from the internationally recognized academic paper network database, we selected 115 and then compared them with the critical swimming speed, burst speed and total length as describing indexes by using software Origin 9.0. Results indicated: (1) The relationship between fish swimming speed and fish length is allometric rather than isometric. It is recommended that the power function can be used to fit the correlation between fish swimming speed and total length. (2) Based on the empirical formula and the covariance analysis, swimming ability of rheophilic Cyprinidae > swimming ability of semi-rheophilic Cyprinidae > swimming ability of limnophilic Cyprinidae. According to the Design code for fish passage facilities in hydropower projects in China, Guideline for fishway in water conservancy in China and literature references about fish passage facility design, as well as the empirical formula in this study, the flows for fish passing facilities in the planning and feasibility stages in southwest China and the middle and lower reaches of the Yangtze River were recommended as follows. In the southwest China, the attraction flow velocity range of the fish passing facility entrance with adult Schizothoracinae fishes as the target species is 0.61-0.76 m/s, and the maximum velocity of the passage and pool is 1.28 m/s. In the middle and lower reaches of the Yangtze River, the attraction flow velocity range of the fish passing facility entrance with adult four major Chinese carps as the target species is 0.76-0.93 m/s, and the maximum velocity of the passage and pool is 1.49 m/s. The attraction flow velocity range of the fish passing facility entrance with juvenile four major Chinese carps as the target species is 0.42-0.62 m/s, and the maximum velocity of the passage and pool is 0.82 m/s.
Keywords: Cyprinidae    fish passage facility    fishway    swimming ability    swimming speed    flow velocity    fish length    

虽然水利水电工程具有防洪、发电、航运等重要功能,工程造成的河流破碎化却对鱼类生存和繁衍产生了深远影响[1-3]. 随着西南水电开发、三峡大坝以及全国其他水利水电工程逐步建成,我国鱼类保护问题迫在眉睫. 修建过鱼设施可以缓解工程阻隔带来的负面作用[4-6].

鲤科(Cyprinidae)鱼类是鲤形目中分布最广、种类最多的一个类群. 中国有鲃亚科(Barbinae)、鲌亚科(Culterinae)、鲤亚科(Cyprininae)、鱼丹亚科(Danioninae)、鮈亚科(Gobioninae)、鳅鮀亚科(Goblobotinae)、鲢亚科(Hypophthalmichthyinae)、野鲮亚科(Labeoninae)、雅罗鱼亚科(Leuciscinae)、鳑鲏亚科(Rhodeinae)、裂腹鱼亚科(Schizothoracinae)、鲴亚科(Xenocyprininae)共12个亚科. 目前国外已建过鱼设施大部分是以鲑科(Salmonidae)鱼类为主要过鱼对象[3],而中国过鱼设施的主要过鱼对象大部分是鲤科鱼类[4]. 通过聚焦研究鲤科鱼类可解决我国大量过鱼设施对鱼类基础数据的共性需求.

我国过鱼设施相关的设计标准已对鱼类游泳能力数据提出明确要求[7-8]. 鱼类游泳能力是过鱼设施流速设计的关键基础数据,其中鱼类的临界游泳速度和爆发游泳速度是最重要和最常用的参考指标,临界游泳速度反映了鱼类在较长时间内持续运动的游泳能力,其测试方法是Brett提出的递增流速法,爆发游泳速度反映了鱼类在较短时间内快速运动的游泳能力,其测试方法包括递增流速测试法、尾部触碰测试法、鱼类自主游动观测法等[9-11]. 鱼的长度是影响鱼类游泳能力重要的因子[6, 9, 12]. 虽然我国众多学者分别各自测试了一定量的鱼类游泳能力数据[13-14],但未见有论文对现有成果进行全面、深入、定量地分析. 本研究的目的是通过分析我国鲤科鱼类游泳能力,为正处于规划阶段和可行性研究阶段的过鱼设施流速设计提供估算方法和依据.

1 材料与方法

分别以“鱼,游泳行为”“鱼,游泳能力”“鱼,游泳速度”“鱼,游泳特性”“fish, swimming performance”“fish, swimming ability”“fish, critical swimming speed”“fish, prolonged speed”“fish, swim, burst”和“fish, swim, sprint”等关键词组合在国内外公认的学术论文数据库中查找相关论文. 数据库包括:中国知网、Google scholar、ISI web of science、Elsevier Science Direct、Springer、Taylor & Francis和Wiley等. 筛选出包含中国鲤科鱼类游泳能力数据的论文. 本研究数据包含鱼类4446尾、69种、43属、12亚科、1科(鲤科)、文献115篇(其中中文论文80篇[13-92],英文论文35篇[93-127]).

在鱼类研究领域内,鱼类身体的长度的表达方式通常有全长Lt(自吻端至尾鳍末端的长度)、叉长Ft(自吻端至尾叉的长度)和体长Lb(也常称作标准长Ls,自吻端至椎骨末端的长度)3种类型,但并不是所有文献都报道了上述3种长度. 对于上述115篇文献来说,大部分鱼类的全长是可获得的(由原文直接提取原始数据或联系作者获取原始数据),剩余部分鱼类的全长可根据全球鱼类著名网站Fishbase中的“体长-全长相关关系”或“叉长-全长相关关系”进行数据转换而得到. 因此本研究选取全长(自变量)作为鱼类长度的表达方式并进行游泳能力数据分析,游泳能力的具体分析指标(因变量)为临界游泳速度和爆发游泳速度,数据统计分析使用SPSS 22.0软件,数据绘图使用Origin 9.0软件. 考虑到将鲤科鱼类分类学层次以属或者种来划分,会因划分类别过多导致细分类别的样本量较少,难以形成有效分析. 因此本研究按亚科来划分鲤科鱼类. 依据Fishbase中有关鱼类栖息地的描述以及鱼类栖息地、繁殖和摄食习性研究人员的野外研究经验来判断不同鱼种对水流环境偏好,将本文涉及的鱼种分为3类:喜流水型鱼类、广适型鱼类、喜静水型鱼类,然后分析三类鱼的游泳能力是否存在显著差异. 由于该三类鱼的全长不同,且全长亦对游泳能力产生影响,因此本研究采用协方差分析检验三类鱼的游泳是否存在显著差异,显著水平设置为0.001.

速度大小的单位通常以m/s来表达,本文相关指标有鱼类的绝对临界游泳速度Ucrit-a(单位为m/s)和绝对爆发游泳速度Uburst-a(单位为m/s). 但由于不同鱼的长度不同,为了从一定程度上排除鱼体长度对速度值的影响,在研究鱼类游泳能力时通常也会用相对速度(单位为鱼长度/s,本文相关指标有鱼类的相对临界游泳速度Ucrit-r(单位为TL/s)和相对爆发游泳速度Uburst-r(单位为TL/s))来表达研究结果和发现[11, 14]. 在本研究调研的115篇文献范围内共有31篇文献拟合了鱼类游泳速度与长度之间的相关关系,其中21篇文献使用了线性拟合(或称直线函数拟合)[36, 40, 45, 48, 51, 56, 58, 63-64, 67, 73-74, 78-79, 85, 88-90, 112, 115, 125],10篇文献使用了非线性拟合(包含幂函数[108, 110, 123]、多项式函数[36, 41, 59, 116]、数据取ln或lg对数之后的线性函数[82, 121, 127]). 除了本文研究的中国鲤科鱼类之外,其他鱼种(例如鲑科、鲟科(Acipenseridae)、狗鱼科(Esocidae)等)游泳速度与体长的相关关系均使用这几种拟合方法[6, 12, 128].

将本文收集的数据分别使用直线函数和幂函数拟合,通过比较拟合后R2值的大小得出优选的拟合函数. 结果表明,非线性函数拟合效果明显优于线性函数拟合效果(参照图 1中的数据拟合,幂函数拟合的R2值相比直线函数拟合的R2值可提升0.057~0.214,提升幅度17 % ~46 %). 因此,本研究选取幂函数来模拟鱼类游泳速度与全长的相关关系.

图 1 鲤科鱼类游泳速度U与全长Lt的相关关系(绝对临界游泳速度Ucrit-a, 相对临界游泳速度Ucrit-r, 绝对爆发游泳速度Uburst-a, 相对爆发游泳速度Uburst-r, 图中虚线是根据拟合曲线(实线)推求的95 % 预测区间) Fig.1 Relationship between swimming speed U and total length Lt of Cyprinidae (absolute critical swimming speed Ucrit-a, relative critical swimming speed Ucrit-r, absolute burst speed Uburst-a, relative burst speed Uburst-r, dash lines are 95 % prediction band derived from the fitted curve)
2 结果

本研究得到的鲤科鱼类的绝对临界游泳速度(Ucrit-a, m/s)与全长(Lt, m)相关关系为Ucrit-a=1.485 Lt0.379, 0.041≤Lt≤0.916;绝对爆发游泳速度(Uburst-a, m/s)与全长(Lt, m)相关关系为Uburst-a=1.955 Lt0.316, 0.052≤Lt≤0.815. 得到的所有经验方程(具体详见图 1中的相关说明)可为鱼类研究学者和过鱼设施工程设计人员提供鲤科鱼类游泳能力估算方法,亦可为其他鱼种研究提供借鉴. 对于本研究得到的结果,有如下4点需要注意和说明:(1)本研究主要为正处于规划阶段和可行性研究阶段的过鱼设施流速设计提供估算方法和依据,而水利水电工程过鱼设施专项设计阶段所需的鱼类数据仍应以目标过鱼对象野外现场的实际测试结果为主. (2)部分数据点分布于经验方程的预测区间之外,这可能是由于实验设备差异、实验环境差异、人员操作不稳定等方面造成,也可能是由于鱼类个体差异造成. (3)本研究总结的经验方程,使用时需符合鱼全长定义域范围,具体可见图注说明. (4)本研究中鱼全长以小于0.4 m的个体居多,因此当实际应用过程中的鱼全长更大时,由本研究经验方程计算得到的数据结果存在一定的不确定性.

以鱼类全长作为横坐标,游泳速度作为纵坐标,分析三类水流环境偏好的鲤科鱼类游泳能力(图 2),由图可知:不论以鱼类绝对游泳速度(m/s)还是相对游泳速度(TL/s)作为参照来看,总体来说喜流水型鱼类的游泳速度的拟合曲线均在图中相对较高的位置,广适型鱼类游泳速度的拟合曲线均在图中中间位置,喜静水型鱼类的游泳速度的拟合曲线均在图中相对较低的位置,三类水流环境偏好的鲤科鱼类游泳能力的幂函数经验公式可见图 2. 协方差分析显示:水流环境偏好是影响鱼类绝对临界游泳速度(m/s)和绝对爆发游泳速度(m/s)的重要因子(P < 0.001),对于上述两项鱼类游泳能力指标,喜流水型鱼类的和广适型鱼类之间均有显著差异(P < 0.001),喜流水型鱼类的和喜静水型鱼类均有显著差异(P < 0.001),广适型鱼类和喜静水型鱼类均无显著差异(P=0.013和P=0.443). 即喜流水型鱼类的游泳能力>广适型>喜静水型,但广适型鱼类的游泳能力与喜静水型之间的差异不显著.

图 2 三类水流环境偏好的鲤科鱼类游泳速度U与全长Lt的相关关系(绝对临界游泳速度Ucrit-a, 相对临界游泳速度Ucrit-r, 绝对爆发游泳速度Uburst-a, 相对爆发游泳速度Uburst-r) Fig.2 Relationship between swimming speed U and total length Lt of Cyprinidae (Three species types that prefer different flow environment, absolute critical swimming speed Ucrit-a, relative critical swimming speed Ucrit-r, absolute burst speed Uburst-a, relative burst speed Uburst-r)
3 讨论 3.1 三类水流环境偏好的鲤科鱼类游泳能力差异和过鱼设施流速设计

大江大河的上游江段水体中的鱼类主要以喜流水型鱼类为主,如西南地区过鱼设施常见的过鱼对象裂腹鱼[112, 118, 120];江河的中下游江段和通江湖泊水体中的鱼类以广适型和喜静水型鱼类为主,如“四大家鱼”(广适型)和棒花鱼Abbottina rivularis(喜静水型). 在拟合函数有效Lt范围内,以Lt每变化0.001为间隔,根据3类水流偏好的鲤科鱼类游泳速度拟合曲线分别计算所有长度规格的三类鱼的临界游泳速度和爆发游泳速度,然后对相同长度规格鱼的游泳速度做减法,并对减法得到的所有数值取平均值,最终计算可得:喜流水型鱼类的绝对临界游泳速度比广适型鱼类高0.10 m/s,喜流水型鱼类的绝对临界游泳速度比喜静水型鱼类高0.15 m/s;喜流水型鱼类的绝对爆发游泳速度比广适型鱼类高0.21 m/s,喜流水型鱼类的绝对爆发游泳速度比喜静水型鱼类高0.28 m/s. 根据我国《水利水电工程鱼道设计导则》和《水电工程过鱼设施设计规范》[7-8]的建议:鱼道进口区域水流速度小于鱼类感应流速时,应采取补水等措施. 但上述两个文件未曾对补水量和流速进行具体的量化分析. 有文献[129]调研并总结了一些鱼类的趋流行为,并认为过鱼设施进鱼口的吸引流速宜约为0.7倍临界游泳速度(m/s). 《水利水电工程鱼道设计导则》和《水电工程过鱼设施设计规范》建议鱼道流速不应超过鱼类最大游泳速度. 因此经过计算并建议,以过喜流水型鱼类为主的过鱼设施的进鱼口吸引流速可以比以过广适型鱼类为主的高0.10 m/s,以过喜流水型鱼类为主的过鱼设施的进鱼口吸引流速可以比以过喜静水型鱼类为主的高0.15 m/s;以过喜流水型鱼类为主的过鱼设施的最高流速阈值可以比以过广适型鱼类为主的高0.21 m/s,以过喜流水型鱼类为主的过鱼设施的最高流速阈值可以比以过喜静水型鱼类为主的高0.28 m/s. 此外,前文协方差分析结果显示,广适型鱼类游泳能力与喜静水型之间的差异不显著,因此该两类鱼的过鱼设施流速设计在规划阶段和可行性研究阶段可考虑设置为近似值.

3.2 西南地区和长江中下游等重要地区过鱼设施的重要过鱼对象的游泳能力和流速设计

《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提出:“建设雅鲁藏布江下游水电基地. 建设金沙江和雅砻江流域等清洁能源基地”. 因此西南地区典型短距离洄游鱼类裂腹鱼过坝能力研究显得尤为重要. 目前西南地区雅砻江、金沙江、澜沧江等流域已建设了大量水电站,更多的水电站正在规划和建设之中,这些水电站已经配建或正在设计过鱼设施,其中需要的过鱼种类最多的就是裂腹鱼类. 西南水电站对裂腹鱼造成的影响主要是成鱼过坝繁殖洄游的问题. 《中华人民共和国长江保护法》第五十四条要求:“……组织实施长江干流和重要支流的河湖水系连通修复方案……逐步改善长江流域河湖连通状况”. 因此,应加快研究长江中下游(原)通江湖泊的生物连通性修复问题. 四大家鱼(青鱼Mylopharyngodon piceus、草鱼Ctenopharyngodon idella、鲢Hypophthalmichthys molitrix、鳙Aristichthys nobilis)作为长江中下游广布种和经济种,其成鱼由湖入江产卵(繁殖洄游)和幼鱼由江入湖育肥(索饵洄游)已长期被(原)通江湖泊的水闸阻隔,近年来一直处于争议的鄱阳湖建闸问题也包含四大家鱼过闸相关问题. 目前野外资源中[130-132]:喜流水型鱼类裂腹鱼亚科鱼类成鱼(性成熟个体)的常见规格约0.2~0.4 m,广适型鱼类四大家鱼成鱼(性成熟个体)的常见规格约0.5~0.9 m,四大家鱼幼鱼入湖育肥的常见规格约0.1~0.3 m. 该数据也符合我国目前已建和已设计的过鱼设施的裂腹鱼和四大家鱼目标过坝规格范围. 依据我国需求的目标过鱼规格和本文所得喜流水型及广适型拟合曲线(图 2),鱼类游泳能力预测结果如表 1.

表 1 基于鱼类游泳能力拟合方程的典型鱼种预测结果 Tab. 1 Typical species swimming ability prediction results based on big data fitting equation

依据表 1结果,并根据我国《水利水电工程鱼道设计导则》、《水电工程过鱼设施设计规范》和联合国粮食及农业组织FAO[7-8, 129]的过鱼设施流速设计方法,本研究对中国西南地区和长江中下游正处于规划阶段和可行性研究阶段的过鱼设施的流速设计建议如表 2所示.

表 2 西南地区和长江中下游过鱼设施流速设计建议值 Tab. 2 Recommended velocity design values for fish passing facilities in southwest China and the middle and lower reaches of the Yangtze River

除了西南地区和长江中下游以外,黄河流域和珠江流域等重要流域也都修建了大量水利水电工程,并且未来还有大量的过鱼设施建设需求. 对于黄河流域来说,其上游的鲤科鱼类亦以喜流水型的裂腹鱼亚科为主,因此其过鱼设施流速设计可参考表 2中的西南地区过鱼设施流速设计值;黄河下游则以广适型的四大家鱼和喜静水型的鲤为主,因此其过鱼设施流速设计可参考表 2中的长江中下游过鱼设施流速设计值或者适当低于该值. 对于珠江流域来说,其主要的鲤科鱼类以喜流水型的鲃亚科、广适型的鲌亚科以及四大家鱼为主,因此其过鱼设施流速可设计为小于西南地区过鱼设施流速且大于长江中下游过鱼设施流速.

4 总结

通过聚焦研究鲤科鱼类可解决我国大量过鱼设施对鱼类基础数据的共性需求,本研究以4446尾鱼的数据验证了鱼类游泳速度与鱼体长度具有显著的非线性相关关系,并据此建立了中国鲤科鱼类游泳能力估算方法(一系列幂函数经验公式). 虽然本研究整理了我国鲤科鱼类中共12个亚科鱼类的数据,并对喜流水型鱼类、广适型鱼类和喜静水型鱼类分别进行了归纳和统计分析,也对西南地区流域、长江流域、黄河流域等地区过鱼设施提供了流速设计建议值,但有3方面还需要注意:(1)不同流域水利水电工程过鱼设施的过鱼对象有所差别,本研究旨在解决最基础的共性问题-鲤科鱼类的数据需求问题,在实际过鱼设施设计中还应考虑其他主要目标过鱼种类的游泳能力. (2)本研究主要是为正处于规划阶段和可行性研究阶段的过鱼设施流速设计提供估算方法和依据,而水利水电工程过鱼设施专项设计阶段所需的鱼类数据仍应主要以目标过鱼对象野外现场的实际测试结果为主. 此外,出于对文献数据进行统计分析的目的,本文流速设计建议值均精确到小数点后两位. 但在实际工程应用问题中,由于环境条件和鱼类个体存在一定差异,初步的流速设计结果无需过于强调数字精度. (3)目前我国已建过鱼设施约200座,然而过鱼设施运行效果的评估案例数量远少于建设数量[133],且评估主要以鱼类实际过坝数量为主要评价指标,而鲜见对鱼类游泳能力、过鱼设施流速和鱼类过坝数量进行综合分析,鱼类游泳能力理论试验数据和野外过鱼设施流速有多大程度是匹配的却不得而知,因此建议未来研究应重点关注该问题,通过对已建过鱼设施进行监测来实现对过鱼设施流速设计和鱼类游泳能力试验数据等方面进行回顾性评价和优化设计.

5 参考文献

[1]
Barbarossa V, Schmitt RJP, Huijbregts MAJ et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7): 3648-3655. DOI:10.1073/pnas.1912776117
[2]
Chen KQ, Tao J, Chang ZN et al. Difficulties and prospects of fishways in China: An overview of the construction status and operation practice since 2000. Ecological Engineering, 2014, 70: 82-91. DOI:10.1016/j.ecoleng.2014.04.012
[3]
Katopodis C, Williams JG. The development of fish passage research in a historical context. Ecological Engineering, 2012, 48: 8-18. DOI:10.1016/j.ecoleng.2011.07.004
[4]
Shi XT, Kynard B, Liu DF et al. Development of fish passage in China. Fisheries, 2015, 40(4): 161-169. DOI:10.1080/03632415.2015.1017634
[5]
Castro-Santos T, Shi X, Haro A. Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 74(5): 790-800.
[6]
Katopodis C, Cai L, Johnson D. Sturgeon survival: The role of swimming performance and fish passage research. Fisheries Research, 2019, 212: 162-171. DOI:10.1016/j.fishres.2018.12.027
[7]
Ministry of Water Resources of the People's Republic of China. Guideline for fishway in water conservancy and hydropower project. SL 609-2013. Beijing: China Water Power Press, 2013. [中华人民共和国水利部. 水利水电工程鱼道设计导则. 北京: 中国水利水电出版社, 2013.]
[8]
National Energy Bureau of the People's Republic of China. Design code for fish passage facilities in hydropower projects. NB/T 35054-2015. Beijing: China Water Power Press, 2015. [国家能源局. 水电工程过鱼设施设计规范. 北京: 中国电力出版社, 2015.]
[9]
Peake SF, Beamish FW, McKinley RS et al. Relating swimming performance of lake sturgeon, Acipenser fulvescens, to fishway design. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 54(6): 1361-1366. DOI:10.1139/cjfas-54-6-1361
[10]
Brett JR. The respiratory metabolism and swimming performance of young Sockeye salmon. Journal of the Fisheries Board of Canada, 1964, 21(5): 1183-1226. DOI:10.1139/f64-103
[11]
Rodgers EM, Heaslip BM, Cramp RL et al. Substrate roughening improves swimming performance in two small-bodied riverine fishes: Implications for culvert remediation and design. Conservation Physiology, 2017, 5(1): cox034. DOI:10.1093/conphys/cox034
[12]
Cano-Barbacil C, Radinger J, Argudo M et al. Key factors explaining critical swimming speed in freshwater fish: A review and statistical analysis for Iberian species. Scientific Reports, 2020, 10: 18947. DOI:10.1038/s41598-020-75974-x
[13]
Zhao XK, Han ZE. Experiments on the current overcoming ability of some freshwater fishes. Journal of Fisheries of China, 1980, 4(1): 31-37. [赵希坤, 韩桢锷. 鱼类克服流速能力的试验. 水产学报, 1980, 4(1): 31-37.]
[14]
Wang M, Luo S. The swimming performance of Cyprinidae in China: A review. Jiangxi Fishery Sciences and Technology, 2020(4): 32-36. [王猛, 罗思. 我国鲤科鱼类游泳能力综述. 江西水产科技, 2020(4): 32-36. DOI:10.3969/j.issn.1006-3188.2020.04.013]
[15]
Li DL, Fu CC, Hu W et al. Rapid growth resulted in a decrease in critical swimming speed of transgenic carp with the"Whole fish" growth hormone gene. Chinese Science Bulletin, 2007, 52(8): 923-926. [李德亮, 傅萃长, 胡炜等. 快速生长导致转"全鱼" 生长激素基因鲤鱼临界游泳速度的降低. 科学通报, 2007, 52(8): 923-926. DOI:10.3321/j.issn:0023-074X.2007.08.012]
[16]
Fu SJ, Li XM, Zhao WW et al. The locomotive and metabolic strategies of goldfish under different dissolved oxygen level. Journal of Chongqing Normal University: Natural Science, 2010, 27(3): 14-18, 26. [付世建, 李秀明, 赵文文等. 不同溶氧水平下锦鲫的运动和代谢适应对策. 重庆师范大学学报: 自然科学版, 2010, 27(3): 14-18, 26.]
[17]
Xian XM, Cao ZD, Fu SJ. The comparison of critical swimming speed and endurance at high speed of four species of juvenile fish. Journal of Chongqing Normal University: Natural Science, 2010, 27(4): 16-20. [鲜雪梅, 曹振东, 付世建. 4种幼鱼临界游泳速度和运动耐受时间的比较. 重庆师范大学学报: 自然科学版, 2010, 27(4): 16-20. DOI:10.3969/J.ISSN.1672-6693.2010.04.005]
[18]
Chen YP, Cao ZD, Fu SJ. Social status of juvenile Carassius auratus and its relationship with standard metabolic rate, critical swimming speed and blood glucose concentration. Acta Ecologica Sinica, 2010, 30(7): 1940-1945. [陈永鹏, 曹振东, 付世建. 锦鲫幼鱼的社群等级地位及其与标准代谢率、血糖和临界游泳能力的关系. 生态学报, 2010, 30(7): 1940-1945.]
[19]
Zhao WW, Cao ZD, Xiao YJ et al. The swimming capacity and energy expenditure of juvenile crucian carp Carassius auratus at low temperature. Journal of Chongqing Normal University: Natural Science, 2011, 28(1): 13-17. [赵文文, 曹振东, 肖月吉等. 低温条件下鲫鱼幼鱼的游泳能力及其能量消耗. 重庆师范大学学报: 自然科学版, 2011, 28(1): 13-17. DOI:10.3969/J.ISSN.1672-6693.2011.01.003]
[20]
Qiao YG, Huang HL, Huang MF et al. The preliminary study on swimming speed of different freshwater fishes. Hunan Agricultural Sciences, 2012(15): 116-119. [乔云贵, 黄洪亮, 黄妙芬等. 不同淡水鱼类游泳速度的初步研究. 湖南农业科学, 2012(15): 116-119. DOI:10.3969/j.issn.1006-060X.2012.15.038]
[21]
Yang H, Cao ZD, Fu SJ. Swimming performance and energy metabolism of male and female crucian carps(Carassius auratus) during their Ⅲ reproduction phase. Chinese Journal of Ecology, 2012, 31(10): 2606-2612. [杨晗, 曹振东, 付世建. 繁殖Ⅲ期不同性别鲫鱼(Carassius auratus)的运动能力及能量代谢的比较. 生态学杂志, 2012, 31(10): 2606-2612. DOI:10.13292/j.1000-4890.2012.0392]
[22]
Yan GJ. Interspecific comparison in morphology and swimming performance within Cyprinidae[Dissertation]. Chongqing: Chongqing Normal University, 2012. [闫冠杰. 鲤科鱼类形态及游泳能力的种间比较[学位论文]. 重庆: 重庆师范大学, 2012. ]
[23]
Yuan X, Tu ZY, Han JC et al. Effects of flow rate on swimming behavior and energy consumption of Schizothorax chongi. Acta Hydrobiologica Sinica, 2012, 36(2): 270-275. [袁喜, 涂志英, 韩京成等. 流速对细鳞裂腹鱼游泳行为及能量消耗影响的研究. 水生生物学报, 2012, 36(2): 270-275.]
[24]
Tu ZY, Yuan X, Wang CF et al. Swimming capability and activity metabolism of subadult Schizothorax macropogon. Acta Hydrobiologica Sinica, 2012, 36(4): 682-688. [涂志英, 袁喜, 王从锋等. 亚成体巨须裂腹鱼游泳能力及活动代谢研究. 水生生物学报, 2012, 36(4): 682-688.]
[25]
Cai L, Tu ZY, Yuan X et al. Swimming capability and swimming behaviour of juvenile aristichthys nobilis. Resources and Environment in the Yangtze Basin, 2012, 21(S2): 89-95. [蔡露, 涂志英, 袁喜等. 鳙幼鱼游泳能力和游泳行为的研究与评价. 长江流域资源与环境, 2012, 21(S2): 89-95.]
[26]
Yan DJ, Yan GJ, Cao ZD et al. The effect of exercise training on the swimming performance and metabolic rate in juvenile common carp(Cyprinus carpio). Journal of Chongqing Normal University: Natural Science, 2012, 29(5): 16-19. [闫东娟, 闫冠杰, 曹振东等. 运动锻炼对鲤鱼幼鱼游泳能力及代谢的影响. 重庆师范大学学报: 自然科学版, 2012, 29(5): 16-19.]
[27]
Xia W. Effects exercise training on swimming performance and metabolic regime in juvenile common carp (Cyprinus carpio)[Dissertation]. Chongqing: Chongqing Normal University, 2012. [夏伟. 运动训练对鲤鱼(Cyprinus carpio)幼鱼游泳能力的影响及其代谢机制探讨[学位论文]. 重庆: 重庆师范大学, 2012. ]
[28]
Pang X, Yuan XZ, Cao ZD et al. Analysis of power curve model on swimming locomotion in qingbo(Spinibarbus sinensis). Journal of Chongqing Normal University: Natural Science, 2012, 29(6): 26-29. [庞旭, 袁兴中, 曹振东等. 中华倒刺鲃幼鱼游泳运动功率曲线模型分析. 重庆师范大学学报: 自然科学版, 2012, 29(6): 26-29.]
[29]
Fu JJ, Li J, An RD et al. Study of creating vertical slot fishway flow field based on swimming ability of Schizothorax prenanti. Journal of Sichuan University: Engineering Science Edition, 2013, 45(3): 12-17. [傅菁菁, 李嘉, 安瑞冬等. 基于齐口裂腹鱼游泳能力的竖缝式鱼道流态塑造研究. 四川大学学报: 工程科学版, 2013, 45(3): 12-17. DOI:10.15961/j.jsuese.2013.03.002]
[30]
Zhang Y, Xia JG, Cao ZD et al. Effects of acute copper exposure on the swimming performances of juvenile Spinibarbus sinensis. Chinese Journal of Ecology, 2013, 32(9): 2451-2456. [张怡, 夏继刚, 曹振东等. 急性铜暴露对中华倒刺鲃幼鱼游泳能力的影响. 生态学杂志, 2013, 32(9): 2451-2456. DOI:10.13292/j.1000-4890.2013.0339]
[31]
Cai L, Liu GY, Taupier R et al. The recovery of swimming performance of juvenile Schizothorax prenanti after fatigue. Acta Hydrobiologica Sinica, 2013, 37(6): 993-998. [蔡露, 刘国勇, Rachel Taupier等. 齐口裂腹鱼幼鱼疲劳后游泳特性恢复状况研究. 水生生物学报, 2013, 37(6): 993-998.]
[32]
Yang H, Cao ZD, Fu SJ. Effect of caudal amputation on swimming capacity, energy expenditure and behavior of juvenile Parabramis pekinensis. Acta Hydrobiologica Sinica, 2013, 37(1): 157-163. [杨晗, 曹振东, 付世建. 尾鳍缺失对鳊鱼幼鱼游泳能力、能量效率与行为的影响. 水生生物学报, 2013, 37(1): 157-163.]
[33]
Zhao WW, Cao ZD, Fu SJ. The effects of dissolved oxygen level on the swimming performances of juvenile Parabramis pekinensis and Spinibarbus sinensis. Acta Hydrobiologica Sinica, 2013, 37(2): 314-320. [赵文文, 曹振东, 付世建. 溶氧水平对鳊鱼、中华倒刺鲃幼鱼游泳能力的影响. 水生生物学报, 2013, 37(2): 314-320.]
[34]
Yang Y, Cao ZD, Fu SJ. Effects of water temperature on the critical swimming speed and metabolic scope of juvenile Parabramis pekinensis. Chinese Journal of Ecology, 2013, 32(5): 1260-1264. [杨阳, 曹振东, 付世建. 温度对鳊幼鱼临界游泳速度和代谢范围的影响. 生态学杂志, 2013, 32(5): 1260-1264. DOI:10.13292/j.1000-4890.2013.0218]
[35]
Fang M, Cai L, Gao Y et al. Effect of temperature on swimming capability and oxygen consumption of juvenile Hypophthalmichthys molitrix. Journal of Hydroecology, 2013, 34(3): 49-53. [房敏, 蔡露, 高勇等. 温度对鲢幼鱼游泳能力及耗氧率的影响. 水生态学杂志, 2013, 34(3): 49-53. DOI:10.15928/j.1674-3075.2013.03.010]
[36]
Ye C, Wang K, Huang FJ et al. Swimming capability of Schizothorax oconnori. Freshwater Fisheries, 2013, 43(3): 33-37. [叶超, 王珂, 黄福江等. 异齿裂腹鱼游泳能力初探. 淡水渔业, 2013, 43(3): 33-37. DOI:10.3969/j.issn.1000-6907.2013.03.006]
[37]
Peng HLY, Cao ZD, Fu SJ. Effect of starvation on swimming performance of juvenile crucian carp. Chinese Journal of Ecology, 2014, 33(10): 2756-2760. [彭韩柳依, 曹振东, 付世建. 饥饿对鲫鱼幼鱼游泳能力的影响. 生态学杂志, 2014, 33(10): 2756-2760. DOI:10.13292/j.1000-4890.2014.0241]
[38]
Fang M. Swimming capability of several cyprinid and assessment of vertical slot fishways base on simulation[Dissertation]. Yichang: China Three Gorges University, 2014. [房敏. 几种鲤科鱼游泳能力研究及竖缝式鱼道模拟与评价[学位论文]. 宜昌: 三峡大学, 2014. ]
[39]
Zhang AJ, Cao ZD, Fu SJ. Comparison of hypoxia tolerance and locomotor performance in two cyprinids with incompletely overlapped habitat. Acta Ecologica Sinica, 2014, 34(20): 5860-5867. [张安杰, 曹振东, 付世建. 生境不完全重叠的两种鲤科鱼类耐低氧及运动能力比较. 生态学报, 2014, 34(20): 5860-5867.]
[40]
Xiong F, Wang CF, Liu DF et al. Comparative study of swimming capability of typical fish from Songhua River Basin. Journal of China Three Gorges University: Natural Sciences, 2014, 36(4): 14-18. [熊锋, 王从锋, 刘德富等. 松花江流域典型鱼类的游泳能力比较实验研究. 三峡大学学报: 自然科学版, 2014, 36(4): 14-18.]
[41]
Xiong F, Wang CF, Liu DF et al. Comparative study of burst swimming speed of black carp, grass carp, silver carp and bighead carp from Songhua River. Ecological Science, 2014, 33(2): 339-343. [熊锋, 王从锋, 刘德富等. 松花江流域青鱼、草鱼、鲢及鳙突进游速比较研究. 生态科学, 2014, 33(2): 339-343.]
[42]
Yuan X, Li LP, Tu ZY et al. The effect of temperature on fatigue induced changes in the physiology and swimming ability of juvenile Aristichthys nobilis (Bighead carp). Acta Hydrobiologica Sinica, 2014, 38(3): 505-509. [袁喜, 李丽萍, 涂志英等. 温度对鳙幼鱼疲劳引起的生理变化和游泳能力的影响研究. 水生生物学报, 2014, 38(3): 505-509.]
[43]
Fang M, Cai L, Gao Y et al. Effect of activity cost on swimming capability of grass carp(Ctenopharyngodon idellus). Resources and Environment in the Yangtze Basin, 2014, 23(6): 816-820. [房敏, 蔡露, 高勇等. 运动消耗对草鱼幼鱼游泳能力的影响. 长江流域资源与环境, 2014, 23(6): 816-820.]
[44]
Zhang SL, Hou YQ, Wang LT et al. Swimming performance and swimming behavior of Schizothorax dolichonema Herzenstein. Freshwater Fisheries, 2014, 44(5): 32-37. [张沙龙, 侯轶群, 王龙涛等. 长丝裂腹鱼的游泳能力和游泳行为研究. 淡水渔业, 2014, 44(5): 32-37.]
[45]
Gong L, Wu YH, Bai YBLG et al. Experimental study on swimming capability and swimming behavior of juvenile grass carp. Journal of China Institute of Water Resources and Hydropower Research, 2015, 13(3): 211-216. [龚丽, 吴一红, 白音包力皋等. 草鱼幼鱼游泳能力及游泳行为试验研究. 中国水利水电科学研究院学报, 2015, 13(3): 211-216.]
[46]
Wang JW. The effects of hypoxia on critical swimming and constant accelerate swimming performance and biochemical mechanism in juvenile Parabramis pekinensis[Dissertation]. Chongqing: Chongqing Normal University, 2015. [王健伟. 低氧对鳊鱼幼鱼临界游泳速度和匀加速游泳能力的影响及其生化机制[学位论文]. 重庆: 重庆师范大学, 2015. ]
[47]
Gan MY, Yuan X, Jiang Q et al. Effects of acute temperature declining on swimming performance of juvenile black carp. Journal of China Three Gorges University: Natural Sciences, 2015, 37(3): 35-39. [甘明阳, 袁喜, 蒋清等. 急性降温对青鱼幼鱼游泳能力的影响. 三峡大学学报: 自然科学版, 2015, 37(3): 35-39.]
[48]
Duan XB, Yu LX, Luo HW et al. Critical swimming speed comparison of four species of fish at two acclimation temperature. Chinese Journal of Zoology, 2015, 50(4): 529-536. [段辛斌, 俞立雄, 罗宏伟等. 两种温度条件下四种鱼类临界游泳速度的比较. 动物学杂志, 2015, 50(4): 529-536. DOI:10.13859/j.cjz.201504004]
[49]
Cui YL, Xia JG, Fu SJ. The interaction between feeding and locomotive metabolism in goldfish(Carassius auratus). Chinese Journal of Zoology, 2015, 50(6): 913-921. [崔玉良, 夏继刚, 付世建. 锦鲫的摄食代谢与运动代谢及其相互影响. 动物学杂志, 2015, 50(6): 913-921. DOI:10.13859/j.cjz.201506010]
[50]
Liu HS, Cao ZD, Fu SJ. Effects of flow stimulation on the swimming performance and metabolism in juvenile Zacco platypus. Journal of Chongqing Normal University: Natural Science, 2015, 32(1): 35-40. [刘海生, 曹振东, 付世建. 水流刺激对宽鳍鱲幼鱼的游泳和代谢的影响. 重庆师范大学学报: 自然科学版, 2015, 32(1): 35-40.]
[51]
Wang LL, Wang CF, Kou FL et al. Study of critical swimming speed of four species of fish from Beipanjiang River. Journal of China Three Gorges University: Natural Sciences, 2016, 38(1): 15-19. [汪玲珑, 王从锋, 寇方露等. 北盘江四种鱼类临界游泳速度研究. 三峡大学学报: 自然科学版, 2016, 38(1): 15-19.]
[52]
Wu QY, Cao ZD, Fu SJ. Flow velocity selection and its relationship to locomotive energetic metabolism in Chinese bream(Parabramis pekinensis) and pale chub(Zacco platypus). Acta Ecologica Sinica, 2016, 36(13): 4187-4194. [吴青怡, 曹振东, 付世建. 鳊鱼和宽鳍鱲幼鱼流速选择与运动能量代谢特征的关联. 生态学报, 2016, 36(13): 4187-4194.]
[53]
Zhang SL, Zhang JB, Qiao Y et al. Experimental study on aerobic swimming performance and behavior of Schizothorax wangchiachii Fang. Journal of Hydroecology, 2016, 37(5): 56-62. [张沙龙, 张家波, 乔晔等. 短须裂腹鱼有氧游泳能力及其行为的实验研究. 水生态学杂志, 2016, 37(5): 56-62. DOI:10.15928/j.1674-3075.2016.05.008]
[54]
Jiang Q, Huang YP, Yuan X et al. Effects of fatigue and temperature on the swimming performance and metabolic rate of juvenile silver carp (Hypophthalmichthys molitrix). Journal of Hydroecology, 2016, 37(6): 89-94. [蒋清, 黄应平, 袁喜等. 不同温度下重复疲劳运动对鲢幼鱼游泳能力及代谢率的影响. 水生态学杂志, 2016, 37(6): 89-94. DOI:10.15928/j.1674-3075.2016.06.013]
[55]
Huang YP, Mandal P, Jing JJ et al. Swimming behavior of juvenile silver carp(Hypophthalmichthys molitrix) exposed to cadmium. Freshwater Fisheries, 2016, 46(6): 33-38. [黄应平, Prashant Mandal, 靖锦杰等. 镉暴露对鲢幼鱼游泳行为影响的研究. 淡水渔业, 2016, 46(6): 33-38.]
[56]
Li HF. Swimming ability carp and the application in the design of the fishway[Dissertation]. Nanning: Guangxi University, 2016. [李会锋. 鲤科鱼游泳能力及其在鱼道设计中的应用[学位论文]. 南宁: 广西大学, 2016. ]
[57]
Zhang X, Zeng LQ, Fu SJ et al. Intraspecific differences in standard metabolic rate and its correlations with locomotion and feeding metabolism in juvenile common carp(Cyprinus carpio). Chinese Journal of Zoology, 2016, 51(3): 384-394. [张曦, 曾令清, 付世建等. 鲤幼鱼标准代谢率的个体差异与运动性能和摄食代谢的关系. 动物学杂志, 2016, 51(3): 384-394. DOI:10.13859/j.cjz.201603006]
[58]
Li HF, Cai DS, Yang PS. Swimming ability and behavior of different sized silver carp. Journal of Hydroecology, 2016, 37(3): 88-92. [李会锋, 蔡德所, 杨培思. 鲢幼鱼游泳能力及游泳行为的试验研究. 水生态学杂志, 2016, 37(3): 88-92. DOI:10.15928/j.1674-3075.2016.03.013]
[59]
Liu HJ, Wang CF, Zhu LK et al. Comparative study of critical swimming speeds for juvenile silver and bighead carp. Journal of Hydroecology, 2016, 37(4): 63-69. [刘慧杰, 王从锋, 朱良康等. 鲢鳙幼鱼临界游泳速度的比较研究. 水生态学杂志, 2016, 37(4): 63-69. DOI:10.15928/j.1674-3075.2016.04.010]
[60]
Yuan X, Huang YP, Jing JJ et al. Effect of copper exposure on metabolism behavior of juvenile grass carp(Ctenopharyngodon idella). Journal of Agro-Environment Science, 2016, 35(2): 261-265. [袁喜, 黄应平, 靖锦杰等. 铜暴露对草鱼幼鱼代谢行为的影响. 农业环境科学学报, 2016, 35(2): 261-265.]
[61]
Tu ZY, Li LP, Yuan X et al. Endurance swimming capability and activity metabolism of Coreius guichenoti juvenile. Freshwater Fisheries, 2016, 46(1): 33-38. [涂志英, 李丽萍, 袁喜等. 圆口铜鱼幼鱼可持续游泳能力及活动代谢研究. 淡水渔业, 2016, 46(1): 33-38.]
[62]
Liu HJ, Wang CF, Liu DF et al. Study on swimming performance of juvenile bighead carp at different actuating state. South China Fisheries Science, 2017, 13(2): 85-92. [刘慧杰, 王从锋, 刘德富等. 不同运动状态下鳙幼鱼的游泳特性研究. 南方水产科学, 2017, 13(2): 85-92.]
[63]
Jin ZJ, Chen XL, Wang CF et al. Swimming performance of Opsariichthys bidens related to fishway design. Chinese Journal of Ecology, 2017, 36(9): 2678-2684. [金志军, 陈小龙, 王从锋等. 应用于鱼道设计的马口鱼(Opsariichthys bidens)游泳能力. 生态学杂志, 2017, 36(9): 2678-2684. DOI:10.13292/j.1000-4890.201709.024]
[64]
Cao P, Mu XP, Bai YBLG et al. Study on swimming behavior of juvenile grass carp for the fish channel hydraulic design. Journal of Hydraulic Engineering, 2017, 48(12): 1456-1464. [曹平, 穆祥鹏, 白音包力皋等. 与鱼道水力设计相关的草鱼幼鱼游泳行为特性研究. 水利学报, 2017, 48(12): 1456-1464.]
[65]
Zeng LQ, Fu C, Fu SJ. Individual variation and phenotypic correlations in swimming performance of juvenile crucian carp. Acta Hydrobiologica Sinica, 2018, 42(3): 561-570. [曾令清, 付成, 付世建. 鲫幼鱼游泳运动能力的个体变异与表型关联. 水生生物学报, 2018, 42(3): 561-570.]
[66]
Xu M, Yuan X, Jing JJ et al. Swimming behavior and metabolism responses of juvenile grass carp under the exposure of water-borne lead (Pb2+). Chinese Journal of Ecology, 2018, 37(5): 1426-1431. [徐勐, 袁喜, 靖锦杰等. 水体铅暴露下草鱼幼鱼游泳行为和代谢响应. 生态学杂志, 2018, 37(5): 1426-1431. DOI:10.13292/j.1000-4890.201805.004]
[67]
Li ZM, Chen MX, Jin ZJ et al. Swimming ability of Schizothorax irregularis ddy in Yarkand River. Chinese Journal of Ecology, 2018, 37(6): 1897-1902. [李志敏, 陈明曦, 金志军等. 叶尔羌河厚唇裂腹鱼的游泳能力. 生态学杂志, 2018, 37(6): 1897-1902. DOI:10.13292/j.1000-4890.201806.005]
[68]
Jin ZJ, Ma WZ, Zhang YN et al. Assessing the swimming ability and performance of Schizothorax oconnori to cross velocity barriers in fishway. Journal of Hydraulic Engineering, 2018, 49(4): 512-522. [金志军, 马卫忠, 张袁宁等. 异齿裂腹鱼通过鱼道内流速障碍能力及行为. 水利学报, 2018, 49(4): 512-522.]
[69]
Xia JG, Li XM, Fu SJ. Effects of PFOS on burst swimming performance and metabolic recovery in juvenileSpinibarbus sinensis. Acta Hydrobiologica Sinica, 2019, 43(2): 356-361. [夏继刚, 李秀明, 付世建. PFOS对中华倒刺鲃幼鱼爆发游泳及运动后代谢恢复的影响. 水生生物学报, 2019, 43(2): 356-361.]
[70]
Li HQ, Zhang GS, Li JY et al. Effects of surgically implanted ultrasonic pinger on swimming of crucian carp Carassius auratus Linnaeus and incision healing. Journal of Dalian Ocean University, 2019, 34(6): 817-821. [李泓泉, 张国胜, 李敬尧等. 手术植入超声波信标对鲫鱼的影响. 大连海洋大学学报, 2019, 34(6): 817-821.]
[71]
Lu Y, Li MH, Gan WX et al. Effect of exercise training and detraining on swimming performance of juvenile Percocypris pingi. Sichuan Journal of Zoology, 2019, 38(4): 361-367. [鲁艳, 李茂华, 甘维熊等. 运动训练和停训对鲈鲤幼鱼游泳能力的影响. 四川动物, 2019, 38(4): 361-367.]
[72]
Ding SB, Shi JY, Huang B et al. Swimming capability of six typical fish species from the lower Dadu River. Journal of Hydroecology, 2020, 41(1): 46-52. [丁少波, 施家月, 黄滨等. 大渡河下游典型鱼类的游泳能力测试. 水生态学杂志, 2020, 41(1): 46-52. DOI:10.15928/j.1674-3075.2020.01.007]
[73]
Lei QS. Study on swimming ability test and preliminary design of fishway for Schizothoracid and Cobitidae[Dissertation]. Yichang: China Three Gorges University. 2020. [雷青松. 典型裂腹鱼和鳅类游泳能力测试研究及鱼道初步设计[学位论文]. 宜昌: 三峡大学. 2020. ]
[74]
Wang YM, Li ZM, Tu ZY et al. Fishway design based on the swimming ability of two Schizothorax species in the Yalung River, China. Chinese Journal of Applied Ecology, 2020, 31(8): 2785-2792. [王永猛, 李志敏, 涂志英等. 基于雅砻江两种裂腹鱼游泳能力的鱼道设计. 应用生态学报, 2020, 31(8): 2785-2792. DOI:10.13287/j.1001-9332.202008.040]
[75]
Liu XY, Xu M, Yuan X et al. Research on non-fatigue impingement and gait transition behavior of juvenile silver carp (Hypophthalmichthys molitrix). Journal of Hydroecology, 2020, 41(4): 96-101. [刘谢驿, 徐勐, 袁喜等. 鲢幼鱼非疲劳贴网及姿态转换行为研究. 水生态学杂志, 2020, 41(4): 96-101. DOI:10.15928/j.1674-3075.2020.04.013]
[76]
Ren KY, Shen XJ, Wang MY et al. Wild training of captive Spinibarbus denticulatus juveniles. South China Fisheries Science, 2020, 16(3): 18-24. [任开元, 沈修俊, 王明云等. 人工饲养倒刺鲃幼鱼的野化训练. 南方水产科学, 2020, 16(3): 18-24.]
[77]
Fu X, Fu C, Fu SJ. Comparison of swimming ability among five freshwater fish species. Chinese Journal of Ecology, 2020, 39(5): 1629-1635. [付翔, 付成, 付世建. 五种淡水鱼类幼鱼游泳能力的比较. 生态学杂志, 2020, 39(5): 1629-1635. DOI:10.13292/j.1000-4890.202005.027]
[78]
Lei QS, Tu ZY, Shi XL et al. Swimming ability of Diptychus maculatus Steindachner in the Muzati River for fishway design. Journal of Fisheries of China, 2020, 44(10): 1718-1727. [雷青松, 涂志英, 石迅雷等. 应用于鱼道设计的新疆木扎提河斑重唇鱼的游泳能力测试. 水产学报, 2020, 44(10): 1718-1727.]
[79]
Li H, Guo WT, He P et al. Study on four typical swimming states of Hypophthalmichthys nobilis larvae. Journal of Hydroecology, 2020. [李鸿, 郭文韬, 何鹏等. 鳙幼鱼四种典型游泳状态特性研究. 水生态学杂志, 2020. DOI:10.15928/j.1674-3075.202006260186]
[80]
Chen MX, Kang ZJ. An experimental study on the swimming ability of endemic fishes in the upper reaches of the Yangtze River. Gansu Water Resources and Hydropower Technology, 2020, 56(7): 58-61. [陈明曦, 康昭君. 长江上游特有鱼类的游泳能力实验研究. 甘肃水利水电技术, 2020, 56(7): 58-61. DOI:10.19645/j.issn2095-0144.2020.07.016]
[81]
Wang X, Liao DY, Yu LX et al. Effect of temperature gradient on the critical swimming speed of four major Chinese carps. Progress in Fishery Sciences, 2022, 43(2): 53-61. [王晓, 廖冬芽, 俞立雄等. 温度梯度对四大家鱼临界游泳速度的影响. 渔业科学进展, 2022, 43(2): 53-61. DOI:10.19663/j.issn2095-9869.20201104001]
[82]
Cai L, Hou YQ, Jin Y et al. Response of fish swimming ability to body length and its application in fishway design. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 209-215. [蔡露, 侯轶群, 金瑶等. 鱼游泳能力对体长的响应及其在鱼道设计中的应用. 农业工程学报, 2021, 37(5): 209-215.]
[83]
Song BL, Su QG, Li TB et al. Indicative significance of rheotaxis behaviour of three familiar species of fish from Yuanshui River by hydropower cascade development. Journal of Fisheries of China, 2021, 45(6): 971-981. [宋波澜, 苏仟根, 李添宝等. 沅水3种常见鱼类趋流行为在水电梯级开发中的指示意义. 水产学报, 2021, 45(6): 971-981.]
[84]
Liu XY, Huang YP, Yuan X et al. Swimming ability and behavior of artificially propagated largemouth bronze gudgeon(Coreius guichenoti). Journal of Hydroecology, 2021, 42(2): 94-100. [刘谢驿, 黄应平, 袁喜等. 人工繁殖圆口铜鱼幼鱼游泳能力与游泳行为研究. 水生态学杂志, 2021, 42(2): 94-100. DOI:10.15928/j.1674-3075.201904080080]
[85]
Wang YM, Ke SF, Lin CY et al. Investigation of the swimming ability of typical fish in the Red River(Yuanjiang)basin and its application to the design of fish passage facilities. J Lake Sci, 2021, 33(6): 1820-1831. [王永猛, 柯森繁, 林晨宇等. 红河(元江)流域的典型鱼类游泳能力探究及在过鱼设施流速设计中的应用. 湖泊科学, 2021, 33(6): 1820-1831. DOI:10.18307/2021.0620]
[86]
Pang X, Fu SJ, Cao ZD et al. The effects of fasting andacclimation temperature on the resting metabolism and swimming performance in qingbo(Spinibarbus sinensis). Acta Ecologica Sinica, 2016, 36(7): 1854-1860. [庞旭, 付世建, 曹振东等. 饥饿和温度驯化对中华倒刺鲃静止代谢和游泳能力的影响. 生态学报, 2016, 36(7): 1854-1860.]
[87]
Zhou LY, Li XM, Fu SJ. The effect of predation acclimation on swimming behavior, stress and immune responses of juvenile Myxocyprinus asiaticus and Spinibarbus sinensis. Acta Hydrobiologica Sinica, 2021, 45(5): 1112-1119. [周龙艳, 李秀明, 付世建. 捕食驯化对胭脂鱼和中华倒刺鲃游泳行为、应激和免疫功能的影响. 水生生物学报, 2021, 45(5): 1112-1119.]
[88]
Li XD, Xiao XP, Zhou WG et al. Swimming capacity of Gymnocypris przewalskii and the efficiency of fish passing the fish ladder. Progress in Fishery Sciences, 2022, 43(2): 44-52. [李新丹, 肖新平, 周卫国等. 青海湖裸鲤的游泳能力及鱼梯通过效果. 渔业科学进展, 2022, 43(2): 44-52. DOI:10.19663/j.issn2095-9869.20201207004]
[89]
Li Y, Zhu Z, Hou Y et al. A study on swimming ability of Schizopygopsis malacanthus. Journal of Hydroecology, 2021. [李阳希, 朱正强, 侯轶群等. 大渡河软刺裸裂尻鱼(Schizopygopsis malacanthus)游泳能力研究. 水生态学杂志, 2021. DOI:10.15928/j.1674-3075.202012030335]
[90]
Zhong ZY, Shi XT, Tan JJ et al. Fishway velocity design analysis based on fish swimming ability. Journal of Hydroecology, 2021, 42(6): 92-99. [仲召源, 石小涛, 谭均军等. 基于鱼类游泳能力的鱼道设计流速解析. 水生态学杂志, 2021, 42(6): 92-99. DOI:10.15928/j.1674-3075.201910080249]
[91]
Dong YL. Study on swimming ability test of fishes for design of fish passage facility of Huokou Water Conservancy Project in Luoyuan. Environment and Development, 2021, 33(1): 112-117. [董彦珑. 福建省罗源霍口水库工程过鱼设施设计中鱼类游泳能力试验的研究. 环境与发展, 2021, 33(1): 112-117.]
[92]
Ma WZ, An RD, Li M et al. Habitat hydrodynamic characteristics and behavior forcasting for migratory fish downstream of dams. Journal of Beijing Normal University: Natural Science, 2021, 57(3): 433-440. [马卫忠, 安瑞冬, 李敏讷等. 洄游鱼类坝下集群的水动力学特征与行为预测. 北京师范大学学报: 自然科学版, 2021, 57(3): 433-440.]
[93]
Pang X, Cao ZD, Fu SJ. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 159(3): 253-260. DOI:10.1016/j.cbpa.2011.03.013
[94]
Fu SJ, Peng ZG, Cao ZD et al. Habitat-specific locomotor variation among Chinese hook snout carp (Opsariichthys bidens) along a river. PLoS One, 2012, 7(7): e40791. DOI:10.1371/journal.pone.0040791
[95]
Yan GJ, He XK, Cao ZD et al. The trade-off between steady and unsteady swimming performance in six cyprinids at two temperatures. Journal of Thermal Biology, 2012, 37(6): 424-431. DOI:10.1016/j.jtherbio.2012.04.006
[96]
Yan GJ, He XK, Cao ZD et al. An interspecific comparison between morphology and swimming performance in cyprinids. Journal of Evolutionary Biology, 2013, 26(8): 1802-1815. DOI:10.1111/jeb.12182
[97]
Fu SJ, Cao ZD, Yan GJ et al. Integrating environmental variation, predation pressure, phenotypic plasticity and locomotor performance. Oecologia, 2013, 173(2): 343-354. DOI:10.1007/s00442-013-2626-7
[98]
Fu C, Cao ZD, Fu SJ. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 164(3): 456-465. DOI:10.1016/j.cbpa.2012.12.015
[99]
Pang X, Yuan XZ, Cao ZD et al. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis). Journal of Comparative Physiology B, 2013, 183(1): 99-108. DOI:10.1007/s00360-012-0690-7
[100]
Cai L, Liu GY, Taupier R et al. Effect of temperature on swimming performance of juvenile Schizothorax prenanti. Fish Physiology and Biochemistry, 2014, 40(2): 491-498. DOI:10.1007/s10695-013-9860-0
[101]
Cai L, Fang M, Johnson D et al. Interrelationships between feeding, food deprivation and swimming performance in juvenile grass carp. Aquatic Biology, 2014, 20(1): 69-76.
[102]
Fu SJ, Fu C, Yan GJ et al. Interspecific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats. The Journal of Experimental Biology, 2014, 217(Pt 4): 590-597. DOI:10.1242/jeb.089268
[103]
Peng J, Cao ZD, Fu SJ. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2014, 176: 32-40. DOI:10.1016/j.cbpa.2014.07.005
[104]
Xia JG, Cao ZD, Peng JL et al. The use of spontaneous behavior, swimming performances and metabolic rate to evaluate toxicity of PFOS on topmouth gudgeon Pseudorasbora parva. Acta Ecologica Sinica, 2014, 34(5): 284-289. DOI:10.1016/j.chnaes.2014.07.006
[105]
Pang X, Fu S, Zhang YG. Individual variation in metabolism and swimming performance in juvenile black carp (Mylopharyngodon piceus) and the effects of hypoxia. Marine and Freshwater Behaviour and Physiology, 2015, 48: 431-443. DOI:10.1080/10236244.2015.1090205
[106]
Fu C, Fu SJ, Yuan XZ et al. Predator-driven intra-species variation in locomotion, metabolism and water velocity preference in pale chub (Zacco platypus) along a river. Journal of Experimental Biology, 2015, 218(Pt 2): 255-264. DOI:10.1242/jeb.109561
[107]
Yang Y, Cao ZD, Fu SJ. Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 185: 16-23. DOI:10.1016/j.cbpa.2015.03.009
[108]
Starrs T, Starrs D, Lintermans M et al. Assessing upstream invasion risk in alien freshwater fishes based on intrinsic variations in swimming speed performance. Ecology of Freshwater Fish, 2017, 26(1): 75-86. DOI:10.1111/eff.12256
[109]
Li XM, Pang X, Zheng H et al. Effects of prolonged exercise training and exhaustive chasing training on the swimming performance of an endangered bream Megalobrama pellegrini. Aquatic Biology, 2017, 26: 125-135. DOI:10.3354/AB00681
[110]
Hoover JJ, Zielinski DP, Sorensen PW. Swimming performance of adult bighead carp Hypophthalmichthys nobilis (Richardson, 1845) and silver carp H. molitrix (Valenciennes, 1844). Journal of Applied Ichthyology, 2017, 33(1): 54-62. DOI:10.1111/jai.13199
[111]
Wang YM, An RD, Li Y et al. Swimming performance of rock carp Procypris rabaudi and prenant's schizothoracin Schizothorax prenanti acclimated to total dissolved gas supersaturated water. North American Journal of Fisheries Management, 2017, 37(6): 1183-1190. DOI:10.1080/02755947.2017.1353558
[112]
Cai L, Katopodis C, Johnson D et al. Case study: Targeting species and applying swimming performance data to fish lift design for the Huangdeng Dam on the upper Mekong River. Ecological Engineering, 2018, 122: 32-38. DOI:10.1016/j.ecoleng.2018.07.023
[113]
Li XM, Zhang YG, Li XJ et al. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus) at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses. Biology Open, 2018, 7(2): bio032425. DOI:10.1242/bio.032425
[114]
Cai L, Hou Y, Johnson D et al. Swimming ability and behavior of Mrigal carp Cirrhinus mrigala and application to fishway design. Aquatic Biology, 2018, 27: 127-132.
[115]
Hou Y, Cai L, Wang X et al. Swimming performance of 12 Schizothoracinae species from five rivers. Journal of Fish Biology, 2018, 92(6): 2022-2028. DOI:10.1111/jfb.13632
[116]
Ke SF, Li ZM, Jiang ZW et al. Effect of a vertical half cylinder on swimming of silver carp, Hypophthalmichthys molitrix: Implications for microhabitat restoration and fishway design. River Research and Applications, 2019, 35(4): 436-441. DOI:10.1002/rra.3416
[117]
Ke SF, Tu ZY, Li ZM et al. Effects of acute temperature changes on the swimming abilities and oxygen consumption of Ptychobarbus kaznakovi from the Lancang River. Journal of Applied Ichthyology, 2019, 35(3): 755-761. DOI:10.1111/jai.13861
[118]
Cai L, Zhang P, Johnson D et al. Effects of prolonged and burst swimming on subsequent burst swimming performance of Gymnocypris potanini firmispinatus (Actinopterygii, Cyprinidae). Hydrobiologia, 2019, 843(1): 201-209. DOI:10.1007/s10750-019-04049-4
[119]
Cai L, Hou YQ, Katopodis C et al. Rheotaxis and swimming performance of Perch-barbel (Percocypris pingi, Tchang, 1930) and application to design of fishway entrances. Ecological Engineering, 2019, 132: 102-108. DOI:10.1016/j.ecoleng.2019.04.009
[120]
Li M, Shi XT, Jin ZJ et al. Behaviour and ability of a cyprinid (Schizopygopsis younghusbandi) to cope with accelerating flows when migrating downstream. River Research and Applications, 2021, 37(8): 1168-1179. DOI:10.1002/rra.3686
[121]
Cai L, Chen JH, Johnson D et al. Effect of body length on swimming capability and vertical slot fishway design. Global Ecology and Conservation, 2020, 22: e00990. DOI:10.1016/j.gecco.2020.e00990
[122]
Cai L, Chen J, Johnson D et al. Effect of tail fin loss on swimming capability and tail beat frequency of juvenile black carp Mylopharyngodon piceus. Aquatic Biology, 2020, 29: 71-77. DOI:10.3354/ab00727
[123]
Zhao ZL, Liang RF, Wang YM et al. Study on the swimming ability of endemic fish in the lower reaches of the Yangtze River: A case study. Global Ecology and Conservation, 2020, 22: e01014. DOI:10.1016/j.gecco.2020.e01014
[124]
Ke SF, Tu ZY, Tan JJ et al. Effects of obstacles and flow velocity on locomotory behavior in juvenile, silver carp, Hypophthalmichthys molitrix. River Research and Applications, 2021, 37(1): 91-99. DOI:10.1002/rra.3744
[125]
Tan JJ, Li H, Guo WT et al. Swimming performance of four carps on the Yangtze River for fish passage design. Sustainability, 2021, 13(3): 1575. DOI:10.3390/su13031575
[126]
Ke SF, Tu ZY, Goerig E et al. Swimming behaviour of silver carp (Hypophthalmichthys molitrix) in response to turbulent flow induced by a D-cylinder. Journal of Fish Biology, 2022, 100(2): 486-497. DOI:10.1111/jfb.14958
[127]
Shi X, Ke S, Tu Z et al. Swimming capability of target fish from eight hydropower stations in China relative to fishway design. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79(1): 124-132.
[128]
Hammer C. Fatigue and exercise tests with fish. Comparative Biochemistry and Physiology Part A: Physiology, 1995, 112(1): 1-20. DOI:10.1016/0300-9629(95)00060-K
[129]
Pavlov DS. Structures assisting the migrations of non-salmonid fish: USSR. FAO Fisheries Technical Paper, 1989, 308: 28-29.
[130]
Ding RH. The fishes of Sichuan, China. Chengdu: Sichuan Scientific & Technical Publishers, 1994. [丁瑞华. 四川鱼类志. 成都: 四川科学技术出版社, 1994.]
[131]
Fish Laboratory, Hubei Institute of Aquatic Biology. Yangtze River Fish. Beijing: Science Press, 1976. [湖北省水生生物研究所鱼类研究室. 长江鱼类. 北京: 科学出版社, 1976.]
[132]
Wu ZQ. Fish resources in the Poyang Lake river system. Beijing: Science Press, 2012. [吴志强. 鄱阳湖水系四大家鱼资源. 北京: 科学出版社, 2012.]
[133]
Tao JP, Wen JY, He D et al. Review on monitoring and evaluating of fish passage facilities for upper migration. Resources and Environment in the Yangtze Basin, 2018, 27(10): 2270-2282. [陶江平, 温静雅, 贺达等. 上行过鱼设施过鱼效果监测研究进展. 长江流域资源与环境, 2018, 27(10): 2270-2282.]