投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:邱银国,段洪涛,万能胜,高芮,黄佳聪,薛坤,彭兆亮,肖鹏峰.巢湖蓝藻水华监测预警与模拟分析平台设计与实践.湖泊科学,2022,34(1):38-48. DOI:10.18307/2022.0102
Qiu Yinguo,Duan Hongtao,Wan Nengsheng,Gao Rui,Huang Jiacong,Xue Kun,Peng Zhaoliang,Xiao Pengfeng.Design and practice of a platform for monitoring, early-warning and simulation of algal blooms in Lake Chaohu. J. Lake Sci.2022,34(1):38-48. DOI:10.18307/2022.0102
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1287次   下载 843 本文二维码信息
码上扫一扫!
分享到: 微信 更多
巢湖蓝藻水华监测预警与模拟分析平台设计与实践
邱银国1, 段洪涛1, 万能胜2, 高芮2, 黄佳聪1, 薛坤1, 彭兆亮1, 肖鹏峰3
1.中国科学院南京地理与湖泊研究所, 南京 210008;2.安徽省巢湖管理局湖泊生态环境研究院, 合肥 230000;3.南京大学地理与海洋科学学院, 南京 210023
摘要:
近20年来,巢湖蓝藻水华频繁暴发,对流域内居民生活和社会生产产生了严重影响.由于缺乏蓝藻水华全方位监测、高精度模拟和智能化分析手段,传统方法难以实现"现状掌握、异常识别、原因追溯、未来模拟"的目标,无法满足巢湖蓝藻水华科学防控与应急处置的要求,蓝藻水华引起的突发事件随时可能发生.本文针对巢湖蓝藻水华的全面监测和应急决策问题,整合了卫星遥感、无人机监测、视频监控、浮标监测和人工巡测手段,构建了巢湖水质和水华全方位监测网络;结合巢湖水动力-水质-藻类耦合模拟模型,研制了蓝藻水华预测预警和蓝藻水华暴发应急处置模块,实现了蓝藻水华短期(未来2日逐时)和长期(未来7日逐日)模拟,并实现了未来5日蓝藻水华沿岸堆积模拟.最终,通过集成巢湖水质和水华监测、预测预警、应急处置等模块,研发了巢湖蓝藻水华监测预警与模拟分析平台,实现了全湖水质和水华现状迅速掌握、超标信息自动识别与高精度预测预警、沿岸重点区域水华堆积风险评估等功能,为巢湖蓝藻水华的科学防控和应急处置提供了科学依据和数据支撑.
关键词:  蓝藻水华  立体监测  预测预警  决策支撑  巢湖
DOI:10.18307/2022.0102
分类号:
基金项目:国家水体污染控制与治理科技重大专项(2017ZX07603-001)、国家自然科学基金项目(42101433)和江苏省自然科学基金项目(BK20201100)联合资助.
Design and practice of a platform for monitoring, early-warning and simulation of algal blooms in Lake Chaohu
Qiu Yinguo1, Duan Hongtao1, Wan Nengsheng2, Gao Rui2, Huang Jiacong1, Xue Kun1, Peng Zhaoliang1, Xiao Pengfeng3
1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China;2.Institute of Lake Ecology and Environment, Anhui Provincial Lake Chaohu Administration, Hefei 230000, P. R. China;3.School of Geography and Ocean Science, Nanjing University, Nanjing 210023, P. R. China
Abstract:
Algal blooms occur frequently in Lake Chaohu in recent 20 years, producing a serious impact on the resident life and social production in Lake Chaohu watershed. Due to the lack of effective means in terms of comprehensive monitoring, high-precision simulation, and intelligent analysis, it is quite difficult for traditional methods to achieve the goal of status mastering, anomalies identifying, causes tracing, and trend simulating of water quality and algal blooms. Accordingly, the requirements of scientific prevention and emergency disposal of algal blooms in Lake Chaohu cannot be satisfied currently, and emergencies caused by algal blooms may occur at any time. Aiming at the requirements of comprehensive monitoring and emergency decision-making of algal blooms, a comprehensive monitoring network of water quality and algal blooms has been established in Lake Chaohu, by integrating several monitoring means, i.e., satellite remote sensing, UAV (unmanned aerial vehicle) monitoring, video monitoring, buoy and field monitoring. And modules of prediction, early-warning and emergency response of algal blooms are developed by combining the coupled hydrodynamic-water quality-algal blooms model. And both short-term (hourly in the next 2 days) and long-term (daily in the next 7 days) simulations of algal blooms are realized, as well as the simulation of algal blooms accumulation along the coast in the next 5 days. Finally, a platform for monitoring, early-warning and simulation of algal blooms in Lake Chaohu has been developed by integrating several function modules, e.g., monitoring of water quality and algal blooms, prediction and early-warning, emergency response, etc. By running this platform, the present situation, exceding standard limits information, and high-precision simulation and prediction of water quality and algae bloom in the whole lake can be grasped quickly and automatically, and risk assessment of algae bloom accumulation in key areas along the coast can also be realized. It shows that the implemented platform can provide scientific basis and data support for scientific prevention and emergency disposal of algal blooms in Lake Chaohu.
Key words:  Algal blooms  stereo monitoring  prediction and early warning  decision support  Lake Chaohu
分享按钮