投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

文章摘要
陈丙法,冯慕华,尚丽霞,柯凡,吴晓东,李勇.秋季聚积蓝藻打捞对蓝藻生长及水质影响的原位实验.湖泊科学,2016,28(2):253-262. DOI:10.18307/2016.0203
CHEN Bingfa,FENG Muhua,SHANG Lixia,KE Fan,WU Xiaodong,LI Yong.Effects on cyanobacterial growth and water quality after harvesting accumulated cyanobacteria in autumn: an in-situ experiment in Lake Chaohu. J. Lake Sci.2016,28(2):253-262. DOI:10.18307/2016.0203
秋季聚积蓝藻打捞对蓝藻生长及水质影响的原位实验
Effects on cyanobacterial growth and water quality after harvesting accumulated cyanobacteria in autumn: an in-situ experiment in Lake Chaohu
投稿时间:2015-05-15  修订日期:2015-08-26
DOI:10.18307/2016.0203
中文关键词: 巢湖  蓝藻聚积  打捞  营养盐  藻源有机物
Keywords: Lake Chaohu  accumulative cyanobacteria  harvest  nutrients  algogenic organic matter
基金项目:国家水体污染控制与治理科技重大专项(2012ZX07103-005)、中国科学院南京地理与湖泊研究所学科交叉与前沿项目(NIGLAS2012135013)和江苏高校水处理技术与材料协同创新中心项目联合资助.
作者单位E-mail
陈丙法 苏州科技学院环境科学与工程学院, 苏州 215009  
冯慕华 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008 mhfeng@niglas.ac.cn. 
尚丽霞 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;中国科学院大学, 北京 100049  
柯凡 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008  
吴晓东 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;中国科学院大学, 北京 100049  
李勇 苏州科技学院环境科学与工程学院, 苏州 215009  
摘要点击次数: 2882
全文下载次数: 1724
中文摘要:
      在巢湖西北半湖近岸设置3组小型围隔模拟秋季湖岸带蓝藻聚积,并用单片鳃式过滤器原位打捞蓝藻,研究秋季打捞对蓝藻生长的影响及其对营养盐、藻源性有机物的控制效应. 初始围隔水体叶绿素a浓度为309.5±3.7 μg/L,总氮和总磷浓度分别为3.32±0.14和0.30±0.04 mg/L. 蓝藻衰亡分解释放的藻源性有机物为水体溶解性有机物的主要来源,荧光有机物以类蛋白物质为主. 经过打捞,浮游植物生物量削减了41.7%,解除了蓝藻生长"密度制约",24 h细胞分裂频率及原位生长速率均增大,说明打捞在短期内增强蓝藻细胞生长活力,减缓藻源性有机物的释放. 与秋季蓝藻衰亡趋势一致,实验周期内围隔中叶绿素a浓度逐渐降低,秋季打捞不会造成蓝藻水华再次暴发. 打捞通过削减蓝藻生物量,使水体初级生产力、氮、磷、高锰酸盐指数得到显著控制;而且打捞还可以控制藻源性有机物的释放,使藻源性大分子有机物更易降解为小分子有机物. 因此,在秋季对湖岸带聚积蓝藻进行物理打捞,不仅可以控制蓝藻生物量,还可以有效控制营养盐和有机物的释放,降低生态风险.
Abstract:
      An in-situ enclosure experiment was conducted to study the effect of harvesting of algae on cyanobacteria growth and water quality in the northwestern Lake Chaohu in autumn. The gill type filter was used to harvest cyanobacteria in two enclosures and no treatment was conducted in control enclosure. The growth rates of cyanobacteria and the concentrations of nutrients and organic matters were investigated after harvesting compared with that in the control. The initial concentrations of chlorophyll-a, total nitrogen and total phosphorus reached 309.5±3.7 μg/L, 3.32±0.14 mg/L and 0.30±0.04 mg/L, respectively. Algogenic organic matter became a major source of dissolved organic matter in the enclosures, and fluorescent dissolved organic matter was dominated by proteinoid materials. Harvesting reduced the cyanobacterial biomass by 41.7%, which relieved the "density dependence of growth" of cyanobacteria, and then resulted in an increase in diel frequency of dividing cells and the in-situ growth rates of cyaobacteria. Algogenic organic matters were reduced due to harvesting increased the viability of cyanobacterial cells in a short term. What's more, cyanobacteria tended to decline in autumn and chlorophyll-a concentration dropped gradually in the enclosures, which testified that harvesting in autumn would not cause a second outbreak of algal bloom. Primary productivity, nitrogen and phosphorus nutrients, Potassium permanganate index were controlled significantly in the harvesting enclosures due to the reduction of cyanobacterial biomass. Furthermore, the release of algogenic organic matters was controlled and macromolecular organic compound was degraded easily to low-molecular-weight organics. Therefore, harvesting the accumulated cyanobacteria shoreside in autumn could control the amount of algae, nitrogen and phosphorus nutrients as well as the release of algogenic organic matters, which could reduce the ecological risk in lakes.
查看全文   查看/发表评论  下载PDF阅读器
分享按钮