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Quantifying Critical Thresholds of Submerged Macrophyte
Coverage to Buffer Climate-Amplified Ammonium Pulses and
Stabilize Clear-water States
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ABSTRACT: Climate change intensifies nutrient pulses through
extreme rainfall and agricultural runoff, yet the buffering capacity
of submerged macrophytes against such disturbances remains
unquantified. Through a large-scale enclosure experiment simulat- . P .NH'N . o m.ﬁ i | .
ing ammonium pulses (1.24 mg/L NH,—N), we tested how | ° /‘% : ' <
submerged macrophytes coverage (SMC, 0—100%) modulates A'g“ i Algag "v .

water quality, ecosystem resilience, and regime shifts (from clear to |

turbid). The system’s buffering capacity and resilience stability
increased significantly with SMC, whereas its recovery stability
decreased. High SMC (>50%) accelerated NH,—N removal (96 h e o T SR

vs 168 h in controls), suppressed phytoplankton blooms (Chl-a > D>
increase: 102.5% vs 237.4%), and sustained clear water.

Conversely, low and medium SMC (<50%) did not prevent transitions to algal-dominated states. Furthermore, NH,—N stress
was inversely correlated with SMC, and persistently high NH,—N at low SMC increased macrophyte degradation risk. Structural
equation modeling revealed that macrophytes-mediated nutrient competition and light stabilization underpinned these effects.
Additionally, we identify a critical SMC threshold (39—51%) to mitigate pulse impacts—a finding urgently needed to guide lake
restoration in a changing climate. This work bridges the gap between pulse ecology and adaptive management, offering actionable
strategies for SDG 6 (Clean Water) and 13 (Climate Action).
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1. INTRODUCTION

As global warming intensifies, the frequency of rare heavy

ton’s quick response to nutrients can rapidly boost primary
productivity,"” thereby swiftly altering the trophic structure

precipitation events will increase nonlinearly, with 10 and S0
year events likely doubling and tripling in frequency at 4 °C
warmmg,l exacerbatlng nutrient pulses via runoff and sewer
overflows.”” These pulses threaten freshwater resilience, yet
aquatic studies lag behind terrestrial systems in quantifying
biotic buffers. The period since the Industrial Revolution has
witnessed a noticeable rise in the use of chemical fertilizers,
urbanization, industrial emissions, deforestation, and land
development. These human activities, characterized by
ineflicient resource utilization, are major factors contributing
to the intensification of resource pulses,"”” and have had
detrimental impacts on the ecosystem. Resource surges can
cause widespread ecosystem impacts such as habitat
destruction, water and air pollution, and biodiversity loss.
However, current research predominantly focuses on terrestrial
ecosystems when examining the effects of resource pulses,””"’
with relatlveI?r less emphasis Flaced on their impact on aquatic
ecosystems. ~ Nowlin et al. ~ indicated that, due to shorter
generation times and faster growth rates of aquatic biota,
aquatic ecosystems respond more rapidly and sensitively to
resource pulses than terrestrial ones. For example, phytoplank-
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and biotic community composition of aquatic ecosystems and
affecting their overall function and stability.'>'* Moreover, the
impacts of pulse versus press perturbations on aquatic systems
diverge sharply: press perturbations—such as chronic nutrient
enrichment—may gradually erode the system’s tolerance or
latent resilience without causing significant visible changes, as
internal feedbacks sustain the current state; only when these
feedbacks are sufficiently weakened can even minor further
perturbations trigger an abrupt shift to an alternative stable
state.'” In contrast, pulse perturbations may immediately
exceed the adaptive capacity of species and ecosystems,'*'°
potentially pushing ecosystems past tipping points more
abruptly.’” As one study indicates, both press and pulse
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phosphorus inputs can increase algal density, but biotic and
abiotic indicators tend to be less stable in systems experiencing
phosphorus pulse inputs than in those experiencing press
inputs.16 Therefore, it is essential to broaden research
endeavors to gain deeper insights into the consequences of
resource pulses on aquatic ecosystems and formulate
comprehensive strategies for mitigating their negative impacts.

The influx of resources generated by human activities can be
introduced into aquatic ecosystems as a result of precipitation
or flooding driven by climate change, which frequently acts as
triggers for resource pulses in aquatic ecosystems. Nitrogen
and phosphorus, key nutrients for aquatic primary producers,
deserve attention for their potential to stimulate algal blooms
through pulse inputs.'” In shallow lakes, phosphorus is
commonly regarded as the limiting nutrient,'® while nitrogen’s
role remains debated.'”*® Yet, nitrogen’s role might be
particularly high in shallow lakes”"** due to high denitrification
rates and sequestration of nutrients in biomass.”” A study
shows that from 2005 to 2018, only 9% of annual external
nitrogen input was retained in Lake Taihu, with denitrification
removing 54% of the external nitrogen load and nitrogen
leaving the lake faster than phosphorus, thereby creating
persistent nitrogen limitation.”” Nitrate and ammonium, being
directly utilizable by algae and submerged plants, play a crucial
role in nitrogen cycling and serve as a vital intermediate
product within the material and energy cycle of aquatic
oe,cosystems.“_26 Ammonium, however, has ambiguous
effects.'’ A sufficient supply of ammonia promotes plant
growth by supplyin§ essential nutrients, but its excess can
cause algal blooms,”" eutrophication,”” and toxicity to aquatic
organisms,”* " threatening aquatic ecosystem stability and
sustainable development. In addition, high ammonium loading
can promote sediment phosphorus release,”" further intensify-
ing the nutrient stress on the lake ecosystem and the risk of
regime shifts. These findings highlight the particular concern
for nitrogen pulses. In severe cases, the abundance of ammonia
nitrogen can even cause failure in ecological restoration
projects. For instance, during the 2013—2023 water environ-
ment treatment of the GuXiang River, issues like rain-sewage
mixing often caused high ammonium nitrogen concentrations
and widespread aquatic plant deaths. After ten years of
restoration, the water quality was still classified as poor Class
V.** Moreover, many studies have shown that excessive
ammonium nitrogen can cause death or decline of submerged
plants,”>**** and during ecological restoration, the newly
transplanted and unstable plant communities may be more
vulnerable to the toxic stress of strong ammonium nitrogen
pulses, leading to restoration failures. Therefore, it is vital to
take measures aimed at reducing the level of influx of ammonia
nitrogen into aquatic ecosystems. Managing phosphorus inputs
is equally important, since simultaneous control of both
nutrients is often necessary to prevent phytoplankton over-
growth, particularly in systems with nitrogen-fixing cyanobac-
teria. If reducing external sources is not feasible, enhancing the
aquatic ecosystem’s resilience by improving its ability to
withstand sudden nutrient spikes is essential.

Submerged macrophytes, serving as the primary producers
in aquatic ecosystems, have a vital function in preserving the
well-being of aquatic environments. According to regime shift
theory, shallow lakes may exist in two distinct states under the
same environmental conditions: a clear-water state dominated
by submerged macrophytes and a turbid-water state dominated

by phytoplankton.” These states can switch under external

disturbances, with submerged macrophytes being crucial for
establishing and maintaining the clear-water state.’*”** An
essential role of submerged macrophytes lies in their capacity
to uptake nitrogen and phosphorus via their roots and leaves,
effectively regulating nutrient levels in the water column.”~*
Additionally, they can inhibit algal proliferation by competing
for nutrients and carbon sources, creating shade, and
producing allelochemicals.**~*® Furthermore, submerged
macrophytes provide shelter and refuge for zooplankton,
contributing to enhanced control of phytoplankton by
grazers.”” The extensive growth of submerged macrophytes
also aids in stabilizing sediment by reducing suspended particle
accumulation®® while restricting nutrient release from sedi-
ment.*”*"** In summary, submerged macrophytes play a
critical and irreplaceable role in maintaining the ecological
balance of shallow aquatic ecosystems. Their preservation is
essential for the overall health of the system. Consequently, it
is anticipated that the coverage or biomass of submerged
macrophytes will be closely linked to the ecosystem’s ability to
mitigate ammonia pulses.

Previous studies have documented submerged macrophyte
responses to NH,—N stress,”” such that intermittent NH,—N
surges may enhance trait connectivity in plant trait networks,
particularly those linked to biomass allocation, thereby
improving plant adaptability.'' However, their capacity to
buffer acute pulses—a hallmark of climate-driven disturban-
ces—remains unquantified. Moreover, no study has yet
determined the coverage thresholds necessary to prevent
regime shifts. Even though some studies have determined the
optimal submerged macrophytes coverage (SMC) for water
quality improvement, such as 20% as suggested by Dai et al.
and 50% by Zhang et al,”"*” significant differences remain
between them. Moreover, nutrient pulses may further increase
the uncertainty in the coverage thresholds. This gap impedes
adaptive mana§ement in shallow lakes facing intensified
nutrient pulses.”’ Ruggiero et al.>> and Sendergaard et al.>*
have reported an inverse link between coverage of submerged
macrophytes and nutrient levels in the water column. But
further investigation is needed to gain a comprehensive
understanding of the role played by submerged macrophytes
in mitigating external ammonia fluctuations. Therefore, in this
study, we conducted a large-scale macrocosm control experi-
ment to explore how changes in the coverage of submerged
macrophytes influence the ecosystem’s ability to buffer against
external ammonia pulses and maintain ecological resilience.
We hypothesize that (1) the system’s buffering capacity and
resilience to NH,—N pulses positively correlate with the
coverage of submerged macrophytes; (2) threshold effects
exist, where a coverage of >50% prevents regime shifts; (3)
macrophytes-mediated nutrient competition with phytoplank-
ton underpins stability.

2. MATERIALS AND METHODS

2.1. Experimental Design. The experiment was con-
ducted at the aquatic plant cultivation base of Erhai Lake in
Dali city (25.951022°N, 100.147358°E), China. The research
period stretched from September 23, 2020, to September 30,
2020. Initially, a large pond, with a depth of 1.4 m and a
surface area of 2241 m? was partitioned into 12 similar-sized
enclosures using light-transmitting PVC boards (height: 1.2 m,
inserted 20 cm into the mud). The mean area of the enclosures
was 148.6 + 1.7 m* (mean + SE). One enclosure was excluded
from this study due to uncontrollable factors, making it
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Figure 1. Drawing showing experimental design.

unsuitable. Subsequently, a random number generator was
used to determine plant coverage for each enclosure. Yet, to
guarantee uniformity, we carried out many random generations
of coverage, screened for, and selected the relatively uniform
designs among them, so as to improve the representativeness
and generalizability of the experimental results. This process
yielded coverages of 0, 0, 23, 25, 41, 50, 50, 70, 70, 78, and
100% for the respective enclosures. According to the difference
in coverage, each enclosure was divided into four coverage
levels, as shown in Figure 1. We selected Vallisneria spinulosa, a
representative submerged macrophyte in the middle and lower
reaches of the Yangtze River,” as the experimental material.
Known for its strong adaptability to diverse aguatic environ-
ments (from oligotrophic to eutrophic waters) and its ability
to inhibit algae via allelopathic substances (phenolic acids),”” it
is widely used in water purification and ecological restora-
tion.>> However, its population may decline if ammonium
nitrogen concentration exceeds 0.56 mg/L.*> Uniform V.
spinulosa seedlings from the nursery were selected and planted
based on the predetermined coverage in each enclosure.
Furthermore, to guarantee the applicability of this research to
the Erhai Lake ecological restoration project, we have
conducted a cross-reference of the biomass (3.7 + 0.1 kg/
m*) of communities dominated by V. spinulosa at the
corresponding water depth within the concurrent time frame.
PVC boards (height: 30 cm, inserted 15 cm into the sediment)
were set up at the boundary between the vegetated and
unvegetated areas to prevent changes in coverage. Thereafter,
water from Erhai Lake was added until all PVC boards were
immersed by more than 30 cm and left for 1 week to guarantee
complete and uniform water exchange within each enclosure.
Following this, an external ammonia pulse was introduced, and

the water level was reduced to 10 cm below the PVC boards,
marking the establishment of each enclosure as an independent
system and the official start of the experiment.

2.2. Ammonium Pulse Simulation and Sampling. To
investigate how submerged macrophytes with various coverage
impacts the ability of aquatic ecosystems to mitigate ammonia
influx and maintain ecological resilience, ammonium sulfate
was introduced into enclosure systems to simulate external
ammonia pulses. Before the simulation, water quality
parameters were measured at 10 randomly chosen sites across
the pond to assess the consistency of the conditions across all
enclosures. After confirming the consistency of water quality in
each enclosure, ammonium sulfate was added to simulate an
NH,—N pulse. Given that extreme precipitation can cause
waterbody NH,—N concentrations to surge several-fold,'”**
with potentially even greater increases in agricultural areas,”
and considering that the surface water-quality standard
(GB3838—2002) in China specifies Class III water (with an
NH,—N concentration below 1.0 mg/L) as good quality while
Class IV water (with NH,—N between 1.0 and 1.5 mg/L)
signifies poor quality,’” we opted to spike the NH,—N
concentration to 1.24 mg/L (approximately the midpoint of
Class IV water) in this study to simulate a strong NH,—N
pulse. Such concentrations occur in nature. For instance, the
annual NH,—N concentration of water in the Wuxi Port was
1.09-1.72 mg/L from 2010 to 2015.°° The average
concentrations of other water quality parameters before and
after the ammonium pulse are detailed in Table S1. Finally, the
water level of the entire pond was lowered to ensure that the
PVC boards of all enclosures remained above the water,
effectively isolating them from each other. The water depth
was kept at 70 cm until the conclusion of the experiment.
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Throughout the study, water samples were gathered at
various time intervals: 0 (on the same day as the ammonium
pulse), 1,2, 3, 4, S, 6, and 7 days. Detailed methods for water
sample collection and the determination of related water
quality parameters are provided in the Supporting Information.

2.3. Calculation of Submerged Macrophytes and
Aquatic Ecosystem Indicators. Before and after the
experiment, we assessed the changes in wet biomass per unit
area of plants in each enclosure by quadrant sampling,
collecting plants from a 0.2 m? area.”’ Two quadrants were
randomly established in the plant area of each enclosure, and
the average of the results represented the wet biomass per unit
area of the corresponding enclosure’s plants.'” During the
experimental phase, the relative growth rate (RGR) of
submerged macrophytes in each enclosure system was
calculated using the equation:

RGR = (FB — IB)/t

where FB represents the final plant biomass per unit area, IB
denotes the initial plant biomass per unit area, and ¢ signifies
the duration of the experiment in days.

To assess the buffering capacity of systems with varying
SMC, we determined buffering capacity as the discrepancies in
total nitrogen (TN), total dissolved nitrogen (TDN), total
phosphorus (TP), total dissolved phosphorus (TDP), nitrate
nitrogen (NO;—N), ammonium nitrogen (NH,—N), ortho-
phosphate (PO,—P), dissolved organic phosphorus (DOP),
chlorophyll a (Chl-a), total suspended solids (TSS), turbidity,
and light extinction coefficient (K) between enclosures with
different SMCs and enclosures lacking plants."> We calculated
the buffering capacity (BC) using the following formula:

BC = (Xcontrol - XSMC)/d

where X represents TN, TDN, NH,—N, TP, TDP, Chl-g, TSS,
turbidity or K, X, refers to the mean value of all replicates
in treatments without plants, Xgy,c denotes the mean value of
all replicates in treatments with different coverages, and d
represents the days.

In order to quantitatively evaluate the state of the lake
ecosystem in the alternative stable state theory, we defined the
ratio of the dry weight of submersed macrophytes to the dry
weight of plankton algae as the conversion index (CI) based on
the research of Bachmann et al.”> and Lv et al."> We calculated
the CI using the following formula:

DW,

CI = maCYOPhYtES/ vaplankton algae

where DW,,.ciophytes Tepresents the dry weight of submerged
macrophytes, DWjiion aigae  Tepresents the dry weight of
plankton algae. DW_j,non aigee Was calculated by multiplying
Chl-a values by 70, a factor that has been used in other
studies.”> The dry weight of the plants was determined by
drying the collected plant samples to a constant weight,
yielding the dry biomass per unit area. The total dry weight for
each enclosure’s plants was then calculated by multiplying this
value by the corresponding plant area of the enclosure. The
mean total dry weight of the plants before and after the
experiment represented the DW, . ophyer The conversion
index divides all states of shallow lakes into three types,
which are clear-water state, transition state, and turbid-water
state. Clear-water states dominated by macrophytes were those

where the conversion index was 100 or greater, transition states
were those where the conversion indices were >1 and <100,
and turbid-water states dominated by phytoplankton were
those where the conversion index was 1 or less.

Based on the research of Xu et al,®* we calculated the
resilience and recovery stability of various water quality
parameters using the following formula:

resilience stability = —ln(Xpost_Pulse/ Xpulse)

recovery stability = In(X /X

post-pulse pre—pulse)

where Xiepuser Xpuser a0d Xpospuise Tepresents the values of
water quality parameters in pre-pulse, pulse, and post-pulse,
respectively (Figure S1). Xpost-pulse Tefers to the mean values of
water quality parameters from days 1 to 7 post-ammonium
addition, and X, refers to these parameters measured
immediately following ammonium addition, corresponding to
the data on day 0. More positive values of resilience stability
indicate a faster recovery from perturbations and thus greater
resilience (0 = no resilience). More positive values of recovery
stability indicate a larger deviation from the predisturbance
state after recovery from a perturbation and thus lower
recovery capacity.

2.4. Statistical Analysis. In order to investigate the
influence of submerged macrophytes coverage on water quality
parameters, we utilized Mantel tests to measure the correlation
patterns between water quality parameters and SMC,*" based
on significant Pearson correlation coefficients (P < 0.05). To
compare water quality parameters across different coverage
systems, we divided all enclosures into four coverage gradients
based on SMC levels: control treatment (SMC = 0%), low
coverage treatment (0% < SMC < 30%), medium coverage
treatment (30% < SMC < 50%), and high coverage treatment
(50% < SMC < 100%). We then applied repeated measures
analysis of variance (rANOVA) to determine differences in
water quality parameters among the various coverage gradients.

The RGR was employed to evaluate the effect of ammonium
stress on the submerged plant growth. The biomass per unit
area was assessed prior to and after the experiment for the
purpose of the RGR calculation. Subsequently, a linear
regression analysis was performed to explore the correlation
between the RGR and SMC.

The buffer capacity is an essential measure for evaluating the
buffering ability of the system. We performed an assessment of
the buffer capacity for each enclosure over a 7 day period after
the pulse. Later, we used linear regression to explore the
correlation between buffer capacity and coverage, thus
obtaining an understanding of the fluctuating buffer
capabilities of the system.

The magnitude of changes in some important parameters of
a system when disturbed reflects its stability. Systems with high
stability exhibit smaller changes in state when they are faced
with disturbances. Therefore, we performed an assessment of
the stability of water quality parameters for each enclosure over
a 7 day period after the pulse. Then, we used linear regression
to explore the correlation between the stability and coverage.

Structural equation modeling (SEM) was utilized to examine
the direct and indirect effects of low, medium, and high SMC
on water quality after the pulse event. The assessment included
the computation of R’ path coefficients, and model fit
parameters using Amos 25.0 software created by Amos
Development Corporation, Chicago, USA.
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Figure 2. Temporal variations in water physicochemical parameters across
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experimental treatments. Ridgeline plots illustrate the distribution of

these parameters across treatments during the experiment. The red dashed line in subfigure d represents the ammonium nitrogen toxicity threshold
for the decline of Vallisneria natans.”® Shading represents standard errors. Different lowercase letters in the legend indicate significant differences.

3. RESULTS

3.1. Effects of SMC on Water Physicochemical
Parameters after Ammonium Pulse. As a whole, SMC
strongly modulated water quality responses to NH,—N pulse
(Figure S2). During the experiment, SMC was significantly
correlated with TN, TDN, TP, TDP, NH,—N, DOP, Chl-g,
TSS, turbidity, and the extinction coefficient. Chl-a, TSS,
turbidity, and the extinction coefficient were significantly
positively correlated with the phosphorus nutrients (TP, TDP,
and DOP). Yet, Chl-a and NO;—N were significantly
negatively correlated with NH,—N during the experiment
(Figure S2).

Before the experiment, water quality parameters did not
differ significantly among treatments. However, during the
experiment, significant differences in these parameters emerged
among different SMC treatments (Figure 2). During the
experiment, the mean concentrations of TN, TDN, and NH,—
N in each treatment followed the order: high-coverage <
medium-coverage < low-coverage < control (Figure 2a,b,d).
Higher SMC (>50%) accelerated NH,—N removal, restoring
pre-pulse concentrations in approximately 96 h—2.3 times
faster than controls (168 h; Figure 2d). High SMC increased
TN by 41.7% post-pulse, contrasting sharply with controls
(103.9% increase), while medium and low SMC showed
intermediate effects (57.0 and 66.1% increase). TDN followed
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similar trends, with no significant differences between medium
and high SMC, but both showed significant decreases
compared with control and low SMC, which did not differ
significantly from each other. NO;—N showed a different
pattern, with its accumulation peaking in low SMC treatments,
being 1.4, 1.6, and 1.5 times higher than in medium SMC, high
SMC, and controls, respectively (P < 0.0S; Figure 2c),
reflecting nitrification dominance. Additionally, the ridgeline
plot showed that all nitrogen components peaked in low SMC
treatments, reflecting the instability of low SMC (Figure 2a—
d).

Phosphorus dynamics diverged from the nitrogen patterns.
Compared to pre-pulse levels, TP decreased by 35.1 and 7.6%
in the high and medium SMC, respectively, but increased by
1.4 and 26.4% in the low SMC and control, respectively
(Figure 2e). During the experiment, TP was highest in the high
SMC treatment and significantly higher in the medium SMC

treatment than in the control, with no significant differences
among other treatments (Figure 2e). TDP in the control
treatment was significantly higher than that in other treat-
ments, while there was no significant difference among the
other treatments (Figure 2f). PO,—P levels remained low (<$
ug/L) across all treatments, with no significant differences
among them (Figure 2g). The trends and differences in DOP
among treatments were consistent with those of TDP. (Figure
2h).

Chl-a responses highlighted SMC-driven phytoplankton
suppression: controls surged by 237.4% versus 102.5% in
high SMC (P < 0.05; Figure 2i). Medium and low SMC
treatments exhibited intermediate increases (180.2 and
180.7%). Physical parameters further underscored SMC
benefits—high coverage reduced TSS (47.5%), turbidity
(48.1%), and light extinction (K; 23.7%) versus initial levels
(Figure 2j—1), while medium SMC achieved moderate
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improvements (23.2% reductions in TSS; 29.5% reductions in
turbidity; 11.7% reductions in K). In contrast, low SMC and
the control treatment showed reductions of less than 9% in
TSS and turbidity, and both led to an average increase of at
least 5% in K (Figure 2j—1). Overall, TSS, turbidity, and K
values were significantly lower in the high SMC treatment than
in other treatments. The medium SMC treatment had
significantly lower values than the low SMC and control
treatments, which did not differ significantly from each other
(Figure 2j—1).

3.2. Impact of Ammonium Stress on Submerged
Macrophyte Growth. Ammonium stress significantly re-
duced submerged macrophyte biomass, but higher SMC
mitigated these effects. Over 7 days, low SMC (<30%)
systems exhibited the steepest biomass decline (27.4 g/m?*/
day), while medium (30—50%) and high SMC (>50%)
showed progressively smaller losses (14.3 and 0.3 g/m?*/day,
respectively; Figure 3b). Notably, the relative growth rate
(RGR) of macrophytes with low/medium SMC was
significantly lower compared to those with high SMC, and
the RGR of submerged macrophytes with low SMC was
significantly lower than that with medium SMC (Figure 3b).
RGR was strongly correlated with SMC (R* = 0.88, P < 0.001;
Figure 3a), indicating that denser stands diluted ammonium
toxicity per unit biomass. This "dilution effect” was quantified
via negative correlations between ammonium load per unit
area and RGR (R* = —0.84, P < 0.001; Figure 3c). This

underscores SMC as a key lever for enhancing the macrophyte
resilience in pulse-disturbed ecosystems.

3.3. Buffering Capacity of Submerged Macrophytes.
SMC exhibited dose-dependent enhancements in buffering
capacity across the most water quality parameters (P < 0.0S;
Figure 4a—i). For instance, compared to the control treatment,
the highest SMC enclosure (D4) buffered an additional 0.51
mg of NH,—N/L/day, while Bl (plant coverage = 23%)
buffered only an additional 0.05 mg of NH,—N/L/day (Figure
4c). Despite having only 4 to S times the plant coverage of BI,
D4 had about 10 times the NH,—N buffering capacity. The
results showed that the enclosure system’s buffering capacity
for TN, TDN, NH,—N, TP, Chl-g, TSS, turbidity, and K was
significantly positively correlated with SMC (Figure 4).
Notably, B1 (the lowest coverage) exhibited negative buffering
for TSS, turbidity, and K, with values exceeding those of
enclosures without plants by 12—18% (Figure 4g—i).

The conversion index (CI) revealed stark contrasts in
ecosystem stability: high SMC (>50%) maintained clear-water
states (CI > 100) throughout the experiment, despite NH,—N-
induced CI declines (366 to 210; Figure Sa). However,
medium and low SMC systems gradually transition to an algal-
dominated state (CI < 100) after the pulse (Figure Sa). In high
SMC systems, the relative CI was significantly higher than
those in low and medium SMC systems, with no significant
difference between low and medium SMC systems (Figure
Sb). The parallel set diagram illustrated the distribution and
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Figure 6. Effects of submerged macrophytes coverage on the resilience stability of various water quality parameters. Green shading represents 95%

point-wise confidence bands.

trends of nutrients, Chl-a, and the conversion index in each
enclosure. It revealed that the threshold of SMC for
maintaining the clear-water state was between approximately
40 and 50% (Figure Sc). Logistic regression revealed a
significant positive correlation between the conversion
coefficient and the SMC (Figure 5d). Notably, the intersection
of the boundary distinguishing clear-water from nonclear-water
states (CI = 100) with the fitted line identified 45% SMC as
the critical threshold (Figure Sd). Moreover, the 95%
confidence interval further defined the threshold range as
39—-51% (Figure Sd).

3.4. Influence of Submerged Macrophyte Coverage
on System Stability. SMC exerted contrasting effects on two
stability dimensions: resilience (resistance to perturbation) and
recovery (return to predisturbance states). Resilience increased
with SMC, while recovery stability decreased (Figures 6 and
7). TN resilience in high SMC was significantly higher than in
others (1.5 higher than medium SMC, 2.2X higher than low
SMC, and 3.1X higher than controls). TDN resilience followed
a similar pattern, with high SMC treatments showing 1.4, 2.2,
and 2.0X higher resilience than medium, low SMC, and
controls, respectively (Figure 6 and Figure S3). Conversely,
NO;—N resilience was negative across all treatments, with low
SMC showing significantly lower resilience than other
treatments (Figure S3). NH,—N resilience in high SMC was

significantly higher than that in low SMC and controls, with
increases of 25.3, 110.6, and 179.7% in low, medium, and high
SMC treatments, respectively, compared to controls (Figure 6
and Figure S3). High SMC treatments showed significantly
higher resilience for TP (1.2, 1.9, and 78.3X higher than
medium SMC, low SMC, and controls, respectively; Figure 6
and Figure S3), but no significant differences were observed for
TDP, PO,—P, and DOP resilience among treatments. After the
NH,—N pulse, Chl-a concentrations increased across all
treatments (Figure 2), resulting in negative resilience values.
Despite this, a high SMC had at least 27.6% higher Chl-a
resilience than other treatments (Figure 6 and Figure S3).
Similarly, high SMC exhibited higher resilience for TSS,
turbidity, and K (Figure S3).

TN recovery stability was highest in the controls, decreasing
by 13.1, 28.8, and 49.0% in low, medium, and high SMC,
respectively (Figure 7 and Figure S4). TDN recovery stability
in high SMC decreased significantly by 27.1% vs medium
SMC, 42.3% vs low SMC, and 39.8% vs controls, with no
significant differences among medium, low SMC, and controls
(Figure 7 and Figure S4). NO;—N recovery stability was
highest in low SMC, with no significant differences among
other treatments. NH,—N recovery stability followed a similar
pattern to that of TN, decreasing by 6.0, 27.8, and 42.2% in
low, medium, and high SMC, respectively. TP recovery
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Figure 7. Effects of submerged macrophytes coverage on the recovery stability of various water quality parameters. Green shading represents 95%

point-wise confidence bands.

stability decreased significantly in all SMC treatments
compared to controls (536.4, 720.8, and 1778.5% in low,
medium, and high SMC, respectively). TDP recovery stability
differed significantly only between high and low SMC
treatments, while no significant differences were observed for
PO,—P and DOP. In addition, Chl-a recovery stability
decreased significantly by 29.3% in high SMC compared to
controls, with nonsignificant decreases of 15.9 and 23.3% in
low and medium SMC, respectively (Figure 7 and Figure S4).

3.5. Differences in NH,—N Pulse Responses among
Various Cover Systems. Structural equation modeling
(SEM) elucidated divergent NH,—N pulse responses across
SMC gradients, revealing three interconnected mechanisms
(SRMR < 0.08, CFI > 0.90; Figure 8). First, SMC universally
suppressed phytoplankton biomass (path coefficient = —0.56
to —0.81, P < 0.01), yet phytoplankton proliferation elevated
light extinction coefficients (path coefficient = 0.54—0.83, P <
0.001). Second, NH,—N removal exhibited coverage depend-
ency: low SMC (<30%) showed an insignificant removal (path
coefficient = 0.06; P > 0.05), while medium (30—50%) and
high SMC (>50%) achieved 0.27 and 0.29 mg/L/day removal,
respectively (path coefficient = 0.64—0.70; P < 0.001).
Crucially, enhanced NH,—N removal under medium/low
SMC promoted phytoplankton growth (path coefficient =
0.61/0.51, P < 0.05), whereas high SMC decoupled this
relationship (P > 0.05). Third, SMC differentially modulated
light regimes—Ilow coverage systems increased extinction
coefficients (path coefficient = 049, P < 0.05), likely via
macrophyte decay under NH,—N stress, while medium/high
coverage stabilized light through particulate reduction (path
coefficient = —0.31/—0.43, P < 0.05). These pathways
highlight SMC thresholds governing trade-offs between
nutrient removal and ecosystem stability.

(a) SRMR = 0.061, CFI=0.951

- Low coverage

0063 0.485*
-0.555%+
507+ 0.831%%% . -
{Removal rate of NH,-N ]&) Chl-a H Extinction coefficient }
R2=10.004 R2=10.529 R2=10.504
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Figure 8. Structural equation model (SEM) showing the effects of
submerged macrophytes on NH,—N removal rate, Chl-a, and
extinction coefficient, as well as their interactions, under low coverage
(a), medium coverage (b), and high coverage (c). Numbers adjacent
to the arrows are standardized path coefficients (*P < 0.05,**P <
0.01,***P < 0.001). Significant positive and negative effects and
insignificant interactions among variables are depicted in red and blue

solid and dashed arrows, respectively. The proportion of variance
explained (R*) is shown below each response variable in the model.

4. DISCUSSION

SMC is a linchépin for maintaining ecological stability in
shallow lakes,**° particularly as climate change amplifies the
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frequency and intensity of nutrient pulses."” Our study
quantifies a critical threshold of 39—51% SMC to buffer
NH,—N pulses and prevent regime shifts—a finding that
bridges theoretical ecology and practical lake management.

In this study, high SMC systems achieved rapid NH,—N
removal (0.29 mg/L/day), completing recovery within about 4
days—1.73 times faster than the controls (which did not
recover to the initial state even after 7 days)—while
suppressing phytoplankton blooms (Chl-a increase: 102.5%
vs 237.4% in controls). These outcomes arise from three
synergistic mechanisms. First, high coverage (biomass) shows
a superior NH,—N removal capacit?r. After an NH,—N pulse,
plants directly absorb NH,—N,*"*”® and nitrate (NO;—N)
levels rise, indicating enhanced nitrification. However, the
abundant submerged macrophytes promote rhizosphere
denitrification, accelerating nitrogen cycling and improving
nitrogen removal.”” Second, high biomass dilutes NH,—N
toxicity, reducing exposure durations above the 0.56 mg/L
threshold for V. natans mortality®® from 4 days (the controls)
to less than 2 days. Third, high SMC stabilizes light regimes by
reducing suspended solids (TSS: —39.7%) and turbidity
(—56.9%), which suppresses phytoplankton through nutrient
competition and enhanced zooplankton grazing.***’° These
mechanisms form a self-reinforcing loop where nutrient
removal and light availability sustain macrophyte domi-
nance—a feedback absent in low-coverage systems. Therefore,
lakes with abundant submerged macrophytes typically have
low nutrient levels, low algae density, and high trans-
parency,”””" while those with insufficient submerged macro-
phytes are often characterized by high nutrient levels, high
algal density, and low transparency.””"

Furthermore, low SMC (<30%) systems exhibited para-
doxical degradation, with NH,—N concentrations exceeding
toxicity thresholds (0.56 mg/L)* for more than 3 days after
the pulse (Figure 2d). This triggered a stress cascade:
prolonged NH,—N exposure induced macrophyte decay
(274 %/mz/ day biomass loss—nearly 90X higher than high
SMC),”*”* releasing nutrients and elevating suspended solids
(TSS + 18% vs controls).”””"® Concurrently, sediment
resuspension from reduced root stabilization increased
turbidity,54 favoring phytoplankton that thrived on residual
NH,—N.”*”? Structural equation modeling quantified these
dynamics, revealing that low SMC amplified phytoplankton
responses to NH,—N (path coefficient = 0.51, P < 0.05), while
high SMC decoupled this relationship (path coefficient = 0.26,
P > 0.05). Remarkably, sometimes low-coverage systems even
surpassed controls in TN, NH,—N, TSS, and turbidity—a
counterintuitive finding challenging the assumption that
minimal SMC is preferable to none. This aligns with
observations in eutrophic lakes where partial macrophyte loss
may accelerate eutrophication through similar feedbacks.””>**’
Therefore, understanding feedback loops’ role in ecosystem
stability and instability is crucial for lake management;®’
otherwise, improvement efforts may fail.**

Nevertheless, it should be emphasized that in some aspects,
low SMC still outperforms the no-plant condition. For
instance, low SMC still resulted in some phytoplankton
bloom suppression and nutrient removal relative to the control
(Figures 2 and 8). We posit that whether low SMC is better
than the no-plant condition hinges on the plants’ ability to
adapt to such pulse events and maintain stability. If the plants
fail to adapt, as evidenced by their remarkable negative growth
trend under low SMC in this study (Figure 3), and considering

that such pulse events may become more frequent in the
future,” the degradation of plants under low SMC would be
further ag§ravated.13 Such degradation could trigger secondary
pollution, 3 leading to the paradoxical conclusion that low
SMC might be worse than the no-plant condition. Conversely,
if the plants can adapt, then a low SMC will be superior to the
no-plant condition. As depicted in Figure 8a, under NH,—N
pulses, compared to the control treatment, low SMC could
both suppress algal growth, which was beneficial to the system,
and worsen the underwater light conditions, thereby being
unfavorable to the system.

Another notable phenomenon was that following the NH,—
N pulse, the NO;—N levels rose in all treatments. Notably, the
low-coverage treatment showed the highest NO;—N levels
during the experiment, while the medium-coverage, high-
coverage, and control treatments had similar average
concentrations. This might be attributed to the combined
effects of several mechanisms: First, nitrification was stimulated
by high NH,—N concentrations from the pulse but declines as
NH,—N levels drop. Second, submerged macrophytes can
directly absorb NH,—N and NO;—N, with preferential
absorption of ammonium nitrogen.®”** Third, these plants
enhance nitrification by increasing water-column dissolved
oxygen and offering more attachment sites for nitrifying
bacteria with their complex structures.” In the low-coverage
treatment, weaker NH,—N and NO;—N uptake meant high
NH,—N levels persisted (Figure 2d), prolonging nitrification
stimulation, hence the high NO;—N levels (Figure 2c). Along
with the structural support that plants provide for nitrifying
bacteria to boost nitrification,® the limited nutrient absorption
due to insufficient vegetation and plants’ preference for NH,—
N uptake caused the low-coverage treatment to have higher
NO;—N levels than the control. However, the medium- and
high-coverage treatments had stronger nutrient-absorption
abilities. They rapidly reduced NH,—N concentrations (Figure
2d), lessening high NH,—N-driven nitrification stimulation
and thereby stabilizing NO;—N levels faster (Figure 2c).
Despite also promoting nitrification through their structures,
their strong nutrient-absorption capacity may offset this effect,
leading to no significant difference in the NO;—N levels
between these treatments and the control.

The above discussion confirmed that macrophytes with high
coverage contribute to improved water quality, thereby
mitigating the impact of nutrient pulses.'” Moreover, the
buffering capacity and resilience were further strengthened as
the SMC increased (Figures 4 and 8). These tight relationships
largely dictate the direction of regime shifts in aquatic
ecosystems: high SMC endows aquatic ecosystems with
greater resilience, enabling a swift return to a clear water
state postdisturbance.**®” In contrast, in plant-sparse systems,
resource pulses may facilitate exponential algal population
growth, which can overwhelm top-down control and cause
dramatic ecosystem shifts.”*® Moreover, other impacts of
pulsed-events, such as the high NH,—N induced plant stress
observed in this study, may further exacerbate the system’s
shift toward a phytoplankton-dominated turbid water state.
Underpinning these differences in resilience and buffering
capacity may be chiefly attributed to the stability of plant
communities under disturbance. In nature lakes, plant
communities with high coverage (biomass), typically charac-
terized by complex structures and strong ecological functions,
possess hi¥h species diversity and functional redun-
dancy.”***°" This complexity and redundancy allow the
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plant community to maintain overall functional stability
through interspecific interactions and compensatory effects
when facing environmental changes.”””*

Additionally, it is worth noting that although many studies
have explored the relationship between environmental
variables and SMC,**”**” research on quantifying the coverage
threshold of submerged macrophytes is relatively limited and
yields significantly varied results.’"”>* For instance, Dai et al.>!
identified 20% Ceratophyllum demersum coverage as optimal for
restoring eutrophic water bodies, while Zhang et al.>* found
50% to be best. Both agreed that exceeding the threshold did
not further improve water quality, differing from our study’s
view that higher coverage leads to better water quality. The
differences in experimental scales and climatic conditions could
be the reason for the divergent conclusions. More importantly,
the external disturbance—the NH,—N pulse simulated in this
study—was an important factor not considered in the two
aforementioned studies. Also, the SEM results revealed that
medium SMC (30—50%) significantly promoted NH,—N
removal like high SMC, yet it could not effectively decouple
the relationship between nutrients and algae and maintain a
stable clear-water state as high SMC did (Figure 8). Its
conversion index fluctuated around 100 (the critical value for a
clear-water state). Further analysis identified 45% as the SMC
threshold for effectively mitigating NH,—N pulses, with a 95%
confidence interval of 39%—51% (Figure 5d), consistent with
our prior nutrient-pulse experiments.'” Interestingly, this
parallels findings in terrestrial ecosystems, where Arroyo-
Rodriguez et al. indicated that at least 40% forest cover is
needed to sustain ecosystem services and biodiversity across
appropriately sized landscapes,” and Macchi et al. also
emphasized the importance of maintaining woody cover levels
above about 40%.”° Based on ecological threshold theory,
evaluating an ecosystem’s resource and environmental carrying
capacity enables effective management and safety monitoring,
ensuring early restoration or repair before irreversible changes
happen.”””® The convergence of thresholds at around 40% in
both aquatic and terrestrial systems implies that maintaining
vegetation cover at this level is crucial for ecosystem stability.

However, critical knowledge gaps remain. Although our 7
day experiment elucidated the acute response to a single NH,—
N pulse, the long-term effects of repeated pulses remain
unquantified. Theory suggests that resource pulses may induce
stability or disrupt the stability of food webs, depending on the
pulse amplitude and/or frequency,'””” and may be an
important driving factor for the system to move between
different stable states,***'*° so pulse intensity and frequency
may greatly alter the results. For instance, under weak nutrient
pulses, low-SMC treatments in our study might maintain a
stable clear-water state by promptly reducing nutrients and
curbing algae. But climate change is increasing the frequency of
such pulse events.”” We speculate that if multiple high-
intensity nutrient pulses occur in a short period, the system
may be unable to recover to its initial state before the next
pulse. In other words, the system’s self-purification capacity
would be surpassed. The accumulation of nutrients, partic-
ularly NH,—N, could lead to the progressive dominance of
algae and sustained NH,—N stress, thereby aggravating the risk
of a regime shift. However, it should be pointed out that plant
adaptability'' and the role of microbial communities also need
to be taken into account. Trait-based differences among
macrophyte species (e.g., canopy-forming Myriophyllum
spicatum vs rosette Vallisneria sp.) in pulse resilience, and the

link between submerged macrophytes community composi-
tion/functional diversity and ecosystem stability, deserve in-
depth exploration. Additionally, high-concentration NH,—N
can be highly toxic to aquatic animals,'’" even causing mass
fish mortality. The decomposition of dead fish may trigger a
new resource-pulse event,'* which deserves attention. Address-
ing these gaps will refine restoration protocols and enhance
predictive capacity in a changing climate.

In conclusion, this study redefines SMC not merely as an
ecological asset but also as a quantifiable safeguard against
climate-driven instability. The proliferation of algae and the
intensification of high NH,—N stress may increase the risk of
regime shifts in systems with insufficient SMC against the
backdrop of climate change-induced frequent nutrient pulse
events. By anchoring lake restoration in empirically derived
SMC thresholds (39—51%), we provide a reference for
achieving water security (SDG 6) in an era of escalating
disturbances. This work underscores the urgency of translating
ecological resilience into actionable preservation—a vital step
toward climate-adaptive freshwater stewardship.
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