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A B S T R A C T

Reservoirs play a crucial role as sources of methane (CH₄) emissions, with emission rates and quantities varying 
widely depending on reservoir size due to factors such as surface area, water depth, usage, operational methods, 
and spatial distribution. Gaining insights into emission characteristics across different reservoir sizes can aid in 
designing and managing reservoirs to mitigate CH₄ emissions effectively. In this study, machine learning models 
were applied to estimate both diffusive and ebullitive CH₄ emissions across 97,435 reservoirs in China, spanning 
five categories of storage capacity. This comprehensive assessment covers nearly all reservoirs within the 
country, revealing total CH₄ emissions of approximately 5,414 Gg. Reservoirs > 0.01 km3 are responsible for 
about 90 % of these emissions, primarily due to high diffusive flux rates and extensive surface areas. Elevated 
CH₄ diffusion in reservoirs > 0.01 km3 is largely influenced by their thermal stratification and capacity for 
organic matter accumulation. Furthermore, these reservoirs are particularly vulnerable to climate warming, 
which could accelerate CH₄ emission rates more rapidly in larger reservoirs than in smaller ones (below 0.01 
km³). Consequently, prioritising CH₄ management in reservoirs > 0.01 km3 is imperative. Nevertheless, the high 
ebullitive flux of CH₄ in reservoirs < 0.01 km3, linked to their shallow depth, highlighting the potential for 
significant CH₄ ebullition from smaller aquatic systems. Given large and small-ranged reservoirs’ distinct spatial 
distribution patterns, targeted management strategies are recommended: project-level management for large 
reservoirs and basin-level approaches for smaller reservoirs.

1. Introduction

In the past two decades, extensive studies have unequivocally iden-
tified that reservoirs are substantial sources of greenhouse gas (GHG) 
emissions (Barros et al., 2011; Harrison et al., 2021). Research during 
this period has endeavoured not only to quantify GHG fluxes from res-
ervoirs but also to investigate the critical factors that drive these emis-
sions. Such factors include eutrophication, temperature, water level, 
sedimentation, duration since impoundment, wind speed, and stream 
flow, each playing a crucial role in the production and release of carbon 
dioxide (CO2) and methane (CH4) (Deemer et al., 2016).

The varying storage capacities of reservoirs give rise to differences in 
surface area, water depth, organic matter decomposition rates, usage, 
operational practices, and distribution patterns. These differences sub-
sequently lead to the formation of distinct emissions profiles. Several 
studies have investigated CO2 and CH₄ emissions in reservoir areas, 

reporting a decrease in emissions as the reservoir area increases 
(Grinham et al., 2018; Holgerson and Raymond, 2016; DelSontro et al., 
2018). However, these studies predominantly classify reservoirs based 
on surface area, without adequately considering how variations in 
storage capacity influence emission patterns. Understanding the impact 
of storage capacity variations on emission profiles is crucial for opti-
mising reservoir design to reduce GHG emissions while meeting water 
storage needs. Additionally, this knowledge supports the development 
of more focused and effective policies to mitigate the environmental 
impacts of reservoir emissions.

CH4 is a significant carbon source from reservoirs, responsible for 
approximately 44 % of anthropogenic CH4 emissions from freshwater 
systems (Saunois et al., 2024). Its release occurs mainly via three 
pathways: diffusion, ebullition, and degassing (Wang et al., 2024). CH4 
diffusion follows the general gas diffusing mechanism, where CH4 is 
emitted through the water surface due to concentration gradients. In the 
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case of CH4 ebullition, CH4 production typically takes place within 
anoxic sediments (Lessmann et al., 2023), Due to the low porosity of 
deeper sediments, CH4 does not easily dissolve in water but tends to 
accumulate in bubbles that are saturated with methane (Sobek et al., 
2012). In shallow waters, where hydrostatic pressure is insufficient to 
contain these bubbles, they ascend through the water column, break at 
the surface, and release CH4 into the atmosphere (Bastviken et al., 
2004). In deeper water columns, however, CH4 bubbles can dissolve 
gradually, with some emitted through diffusion, while the remainder is 
oxidised into CO2. Additionally, CH4 may accumulate in the bottom 
water layer (epilimnion), especially in anoxic conditions. When water 
from the epilimnion is released for hydropower, CH4 is discharged into 
the atmosphere via turbines and flood control spillways, a process 
known as CH4 degassing (Jager et al., 2022).

By 2022, China accounted for nearly half of the world’s dams, 
encompassing 95,926 reservoirs, including 814 large (>0.1 km³), 4192 
medium (0.01–0.1 km³), and 90,290 small (<0.01 km³) reservoirs 
(Ministry of Water Resources, 2022). Gaining insight into carbon 
emissions from China’s reservoirs is crucial to the global effort to shape 
effective climate change mitigation strategies. Therefore, this study fo-
cuses on analysing carbon emissions from Chinese reservoirs to explore 
viable carbon reduction strategies based on this extensive case study.

Increasingly, machine learning models are being used to estimate 
carbon emissions from inland water bodies. These models are powerful 
tools, capable of identifying linear and non-linear relationships within 
datasets and detecting complex patterns without necessitating a detailed 
understanding of variable interactions (Zhong et al., 2021). For instance, 
various Artificial Neural Network (ANN) algorithms have been suc-
cessfully used to predict CO₂ emissions from reservoirs, outperforming 
traditional multiple linear regression models (Chen et al., 2018). 
Rocher-Ros et al. (2023) also employed a Random Forest (RF) machine 
learning model to estimate global CH₄ levels from rivers and streams, 
achieving R² values between 0.45 and 0.68. However, limited data on 
CH₄ emissions from reservoirs has restricted the development of ma-
chine learning applications in this area as such models typically rely on 
relatively large datasets for training and validation.

This study aims to use a newly compiled dataset on CH₄ emissions to 
apply machine learning models for estimating CH₄ emissions from 
documented reservoirs across China. The specific objectives are as 
follows: 

1. Examine variations in CH₄ emissions across reservoirs of different 
sizes and purposes.

2. Calculate cumulative CH₄ emissions from reservoirs of varying 
scales, identifying the primary contributors to national emissions.

3. Analyze the variation of key variables across different reservoir sizes 
and propose potential carbon reduction strategies, providing insights 
for optimizing reservoir management practices to mitigate green-
house gas emissions.

2. Methods

2.1. Literature review data collection

The database for CH₄ diffusive and ebullition emissions was con-
structed primarily from the G-res Dataset (Prairie et al., 2021) and 
compilations by Li et al. (2018) and Zheng et al. (2022), which included 
sampling data up to 2015. We expanded this dataset by incorporating 
more recent measurements from 2015 to 2024 (see Supplementary 
Data). Data were systematically sourced from Scopus, and Google 
Scholar, focusing on studies with keywords like ’carbon’, ’emissions’, 
and ’reservoirs’ in the title. After an initial selection, titles, abstracts, 
and full texts were manually reviewed to retain only studies relevant to 
CH₄ emissions from reservoirs. Ultimately, this curation resulted in 528 
diffusive CH₄ emissions records from 284 reservoirs and 106 ebullitive 
CH₄ emissions records from 70 reservoirs.

2.2. Predicting variables for CH₄ emissions

To predict CH₄ diffusive and ebullition emissions, spatially explicit 
datasets were used, including reservoir area (km²) and volume (million 
m³) from the Chinese Reservoir Database (CRD) (Song et al., 2022a). 
Climate-relevant data such as temperature (◦C), precipitation 
(kg/m²/month), wind speed (m/s), potential evapotranspiration (PET) 
(kg/m²/month), vapour pressure deficit (VPD) (Pa), humidity (%), and 
net primary productivity (NPP) (gC/m²/yr) were extracted from the 
Climatologies High Resolution for the Earth’s Land Surface Areas 
(CHELSA) dataset version 2.1, providing monthly averages from 1981 to 
2010 at spatial resolutions of 0.25◦–1◦ (Karger et al., 2017; Brun et al., 
2022). We also included average monthly discharge (m³/s) from 1976 to 
2005 (Bosmans et al., 2022) and global horizontal irradiance (GHI) 
(kWh/m²/month) (NASA, 2008). The specific monthly values corre-
sponding to CH₄ observations were assigned, while average values were 
used for multi-month or yearly observations. The potential relationship 
between the input variables and CH₄ emissions is illustrated in Table 1.

Table 1 
The potential relationship may exist between the input variables and CH₄ 
emissions.

Variables Relationships with CH4 emissions

Reservoir area (km²) The size of reservoirs determines the availability 
of organic carbon and sediment deposition 
zones, which influence methanogenesis (
Grinham et al., 2018).

Volume (million m³) Reservoir volume affects the distribution of 
anaerobic zones, organic matter deposition, and 
methane production potential (Wang et al., 
2024).

Temperature (◦C) The higher the temperature, the lower the 
solubility of CH4 and the faster the production of 
CH4 (Keller and Stallard, 1994; West et al., 
2016).

Precipitation (kg/m²/month) Increased precipitation disturbs the water 
surface, promoting gas exchange and potentially 
flushing organic material into reservoirs, 
fuelling emissions (Deemer et al., 2016; Li et al., 
2022).

Wind speed (m/s) Higher wind speeds disturb the water surface, 
increasing turbulence and facilitating methane 
release into the atmosphere (Keller and Stallard, 
1994).

Potential Evapotranspiration 
(kg/m²/month)

Higher evapotranspiration rates may increase 
water loss, which may concentrate nutrients and 
organic matter, which may increase CH₄ 
concentration gradients and accelerate diffusion 
(Lee et al., 2018).

Vapour Pressure Deficit (Pa) High VPD is often linked to warmer 
temperatures that enhance methanogenesis. 
Associated with drought-induced vegetation 
mortality, which contributes organic matter to 
reservoirs (Xu et al., 2023).

Humidity (%) High humidity often co-occurs with accelerated 
decomposition of organic carbon (Waksman and 
Gerretsen, 1931) which may promote CH4 

production.
Net Primary Productivity (gC/ 

m²/yr)
Higher NPP supplies organic matter to 
sediments, enhancing methanogenesis. Oxygen 
production from photosynthesis may also 
regulate methane oxidation (Jager et al., 2022).

Discharge (m³/s) Decreased discharge promotes sediment 
deposition, creating more drawdown areas that 
serve as hotspots of CH4 ebullition (Harrison 
et al., 2017).

Global Horizontal Irradiance 
(kWh/m²/month)

Solar radiation heats the water surface, 
stimulating microbial activity and CH₄ 
production. It can also influence reservoir 
stratification (Harrison et al., 2021).
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2.3. Machine learning modelling

2.3.1. Data processing
The CH₄ emissions comprising 528 observations about CH₄ diffusion 

and 106 observations related to ebullition, were uniformly split into a 90 
% training set and a 10 % testing set. To standardise feature scales and 
prevent any single variable from disproportionately influencing the 
model, we applied the Min-Max Scaler to the training dataset, scaling 
data between 0 and 1 using the minimum and maximum values of the 
observations. Subsequently, the resulting scaler from the training set 
was applied to the testing set. Given the logarithmic distribution of CH₄ 
emissions, a Log₁₀ transformation was used on each observation. The 
cross-validation technique was employed on the training set to assist in 
the hyperparameter tuning of the models. This was achieved through the 
implementation of a five-fold setup, which served to mitigate the issue of 
overfitting. Each fold serves as a validation set once across five rounds, 
with the average R² for each iteration providing an accurate estimate of 
model performance.

2.3.2. Hyperparameter tunning
To predict CH₄ diffusive and ebullitive emissions, five machine 

learning models were evaluated: Backpropagation Neural Networks 
(BPNNs), General Regression Neural Networks (GRNNs), K-Nearest 
Neighbors Regressor (KNN), Support Vector Regression (SVR), and 
Random Forest (RF) (Mitchell, 1997), all implemented using Scikit-learn 
(version 1.2.2) (Pedregosa et al., 2011). Model structures were opti-
mised through hyperparameter tuning (detailed in Supplementary Ma-
terial) to maximise predictive accuracy (Pedregosa et al., 2011).

2.3.3. Exhaustive feature selection
The datasets contained irrelevant or redundant features that did not 

significantly contribute to target variable prediction. These features can 
potentially introduce noise and degrade model performance. Further-
more, different models may perform variably depending on feature 
combinations. While linear regression often uses Pearson correlation to 
remove features with low correlation to target variables, this approach 
may overlook non-linear relationships between features and dependent 
variables. To address this limitation, an exhaustive wrapper feature se-
lection method was employed, which is regarded as a brute force tech-
nique for feature selection.

Drawing on conclusions from prior training, this method generates 
all possible subsets, constructs a learning model for each, and chooses 
the one that yields the optimal performance. This study identified a total 
of 11 features, which are reservoir area, volume, temperature, precipi-
tation, PET, VPD, NPP, humidity, wind speed, discharge, and GHI. The 
11 features can generate a total of 2047 subset feature combinations. 
Each subset was tested to identify the optimal subset features for five 
machine learning algorithms with their best hyperparameter configu-
rations based on the full feature set. The subset that had the highest R² 
was selected.

2.3.4. Feature importance
The significance of features in the selected model was estimated 

using Shapley values through the SHAP package (version 0.42.1) in 
Python (version 3.11.7). The SHAP library, developed by (Lundberg and 
Lee, 2017), calculates Shapley values to quantify each feature’s contri-
bution by measuring expected changes in the model’s prediction when 
including or excluding the feature across all possible feature subsets 
(Molnar, 2022). Each input variable is assigned an individual Shapley 
value.

The KernelExplainer was used to calculate feature importance, with 
the training set first used to initialise the KernelExplainer to understand 
how the trained model functions and typical feature distributions. SHAP 
values were subsequently computed for the testing set, offering an ac-
curate assessment of each feature’s significance in unseen data. For each 
dataset in the testing set, the mean Shapley value was calculated by 

averaging the SHAP values and ranking features by their mean Shapley 
values to determine their importance in the model.

2.3.5. Upscale study area and modelling dataset
The machine learning model was subsequently applied to upscale 

CH₄ diffusive and ebullitive emissions across reservoirs in China, where 
the total CH₄ flux rate is defined as the sum of the CH₄ diffusive and 
ebullitive emission rates. This analysis included 97,435 reservoirs from 
the CRD database (Song et al., 2022b), with data on reservoir area (km²), 
storage capacity (km³), and geographical locations. China’s water sys-
tems are highly developed, encompassing numerous rivers. The Ministry 
of Water Resources and the National Bureau of Statistics have divided 
China into nine river basins based on the distribution of its major rivers, 
with river basin boundaries obtained from the Resource and Environ-
ment Science and Data Centre (https://www.resdc.cn/). Reservoirs are 
assigned to these river basins according to their geographic locations 
(Fig. 2).

2.4. Scale classification and data collection on reservoir usage

To analyse carbon emissions across reservoirs with varying storage 
capacities, reservoirs were grouped by size according to national clas-
sifications. While size categories differ internationally, this study 
applied the classification standards from the Ministry of Water Re-
sources of China. Based on these guidelines, reservoirs were classified 
into five groups by storage capacity: <0.001 km³, 0.001–0.01 km³, 
0.01–0.1 km³, 0.1–1 km³, and >1 km³. These categories were then 
consolidated into two main groups: reservoirs with a volume <0.01 km³ 
and reservoirs with a volume >0.01 km³.

To further examine emissions relative to reservoir purposes, usage 
data were sourced from the GRanD database and Global Dam Watch 
database (GDW), covering 671 reservoirs (Lehner et al., 2011; Lehner 
et al., 2024). In China, reservoir water flows are allocated with 10 % 
designed for ecological purposes, though only primary usage was 
considered here.

2.5. Data analysis

2.5.1. Statistical analysis
To assess the statistical significance of CH4 emissions with reservoir 

size and usage, we used the scipy.stats and scikit-posthoc packages in 
Python (version 3.7). Levene’s test was applied for homogeneity and the 
Shapiro-Wilks’ test for normality. Given that the continuous variables 
did not meet the assumptions of normal distribution and homogeneity, 
the nonparametric Kruskal-Wallis (KW) test was employed to assess 
statistical significance across multiple data groups. Furthermore, the 
Dunn’s test was employed for post-hoc multi-group comparisons.

2.5.2. Regression analysis
Regression analysis was applied to assess how reservoir size affects 

the dynamics of independent variables using the optimal machine 
learning model. Five representative volumes and areas were defined for 
each storage capacity category: 10 km³ and an area of 100 km² for 
reservoirs > 1 km³, 1 km³ and 10 km² for reservoirs between 1 and 0.1 
km³, 0.1 km³ and 1 km² for size between 0.1 and 0.01 km³, 0.01 km³ and 
0.1 km² for reservoirs between 0.01 and 0.001 km³, and 0.001 km³ and 
0.01 km² for reservoirs < 0.001 km3. A total of 1000 samples were 
generated using the distribution of variables in the CRD dataset, repli-
cating each sample set five times. Each group was assigned consistent 
values for either volume or reservoir area, and these variables were then 
put into the trained model to predict CH₄ flux rates.
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3. Results

3.1. Model comparison

For CH₄ diffusive emissions, the SVR model achieved the highest R2 

of 0.66, with an RMSE of 0.425 (log₁₀ mg CH₄/m²/h) (Fig. 1). The 
optimal variable set for SVR includes volume, temperature, VPD, NPP, 
and GHI. Regarding CH₄ ebullitive emissions, both the BPNN and RF 
models demonstrate superior performance compared to the remaining 
three models, reaching an R2 of 0.79 and 0.78, and both have RMSE of 
0.33 (log₁₀ mg CH₄/m²/h) (cross-validation results see Figures S1-S10). 
However, the RF model requires only 3 input variables (i.e. reservoir 

area, temperature, and discharge), which reduces the risk of overfitting 
and is more computationally efficient compared to BPNN, which re-
quires 7 input features. Thus, in this study, the RF model was employed 
to estimate CH₄ ebullition (variable sets see Table S1).

3.2. Spatial distribution patterns of CH4 emissions

Fig. 2 shows the estimated total emission rates (CH₄ diffusive and 
CH₄ ebullitive pathways) of 97,435 reservoirs in China, with CH₄ 
diffusive emissions estimated using the SVR model and ebullitive 
emissions estimated using the RF model. Reservoirs larger than 0.01 km³ 
are primarily located in the YRB, PRB and the NERB (full name see 

Fig. 1. Predictions of machine learning models versus observed testing data for CH₄ emissions: the left panel shows the diffusive CH₄ emission rate prediction, while 
the right panel shows the ebullitive CH₄ emission rate. Models in the panel a) and b) are GRNN, c) and d) are BPNN, e) and f) are SVR, g) and h) are KNN, and i) and j) 
are RF.
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Fig. 2. Interpolated flux rates for (a) reservoirs > 0.01 km3, and (b) reservoirs < 0.01 km3. (c) Basin-level total CH4 emissions and (d) total reservoir areas across nine 
major river basins in China, with annotations indicating each size category’s contribution to the basin.
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Fig. 2), regions rich in hydrological resources for hydropower develop-
ment. The highest mean CH₄ flux rates for reservoirs > 0.01 km3 are 
observed in the SIRB, YRB, and HARB (Fig. 2). For reservoirs < 0.01 
km3, they are clustered in the middle and downstream regions of YRB, 
PRB and SCRB, where they serve as critical infrastructure for irrigation 
water supply. The CH₄ flux rates of reservoirs < 0.01 km3 are more 
evenly distributed across basins, with a maximum mean rate observed in 
the NIXRB, and the minimum mean rate in the SCRB. But from the map, 
a high-rate cluster can be observed is the Hainan island located at the 
southernmost part of the PRB.

The maximum flux rate in reservoirs < 0.01 km3 is lower than in 
those > 0.01 km3, with an overall tendency towards lower emission 
rates. In terms of total CH₄ emissions, reservoirs > 0.01 km3 collectively 
contribute 4587 Gg CH₄ per year, while reservoirs 〈 0.01 km3 add 557 Gg 
CH₄ annually. Fig. 2c illustrates the basin-level total emissions from 
reservoirs of all sizes, with reservoirs 〉 0.01 km3 size accounting for an 
average of 89 % of total CH₄ emissions. In HARB and NIXRB, their 
contribution exceeds 95 % of total emissions, driven largely by their 
expansive reservoir areas, which constitute nearly 90 % of the total 
reservoir area (Fig. 2d).

3.3. Reservoir volume and CH4 emission rates

Boxplots of the five volume-based categories reveal that reservoirs >
0.01 km3 tend to have higher estimated fluxes than smaller ones. This 
pattern is particularly evident in CH₄ diffusive emissions, where the 
interquartile range (IQR) progressively increases from the smallest 
category to the largest category (Fig. 3).

Among reservoir categories, reservoirs > 1 km³ had the highest mean 
CH₄ diffusive flux rate, followed by reservoirs size 0.1 to 1 km³. Reser-
voirs 0.001 to 0.01 km³ and < 0.001 km³ exhibited lower mean diffusive 
flux rates. The Dunn post hoc test confirms significant differences (p <
0.01) between reservoirs < 0.01 km3 and reservoirs > 0.01 km3, while 
no significant difference was found between reservoirs 0.1 to 1 km³ and 
reservoirs >1 km³ (p =0.33) (Fig. 3a).

CH₄ ebullition flux rates exhibit a less pronounced increasing trend 
across reservoir sizes (Fig. 3b). Reservoirs 〈 0.01 km3 showed higher IQR 

than reservoirs 0.01 to 1 km3, and reservoirs 〉 1 km3 had the highest flux 
overall. Post hoc analysis revealed significant variations between res-
ervoirs 〈 0.01 km3, and reservoirs 〉 0.01 km3 (p < 0.01) but no signifi-
cant differences between reservoirs 0.01 to 0.1 km³ and reservoirs > 1 
km³ (p = 0.19) (Fig. 3b).

3.4. Reservoir usage and CH₄ emission rates

Boxplots of CH₄ diffusive and ebullitive emission rates across four 
primary reservoir usage categories are shown in Fig. 4. Hydropower 
reservoirs generally show the highest CH₄ emissions, with water supply 
reservoirs having the lowest rates. Emission rates for both irrigation and 
flood control reservoirs are comparable across both diffusion and ebul-
lition pathways. Statistical analysis indicates no significant difference in 
diffusive emissions rates between flood control and hydroelectric res-
ervoirs, while other pairs showed significant differences (p < 0.01; see 
Fig. 4c). In contrast, for ebullitive emissions, statistical tests revealed 
notable differences solely between irrigation and water supply reser-
voirs, with other categories showing no significant relationships 
(Fig. 4f).

Fig. 4 illustrates the spatial distribution of reservoirs by scale and 
usage. Hydropower reservoirs, predominantly in southern China, 
exhibit the highest emission flux rates. Irrigation reservoirs are 
dispersed in clustered patterns, mainly along the middle and lower 
reaches of the Yangtze River, the lower sections of the Yellow River, and 
the Pearl River Basin. Flood control reservoirs are concentrated in the 
east, reflecting China’s terrain, which slopes from high western plateaus 
and mountains to the lower plains and hills in the east and south. In 
contrast, water supply reservoirs, the least numerous of four types, form 
noticeable clusters around metropolitan areas such as Beijing-Tianjin in 
the north, Shanghai along the eastern coast, and Kunming in the 
southwestern. Additionally, clusters of water supply reservoirs are found 
near other cities.

The substantial variability in CH₄ diffusive emissions across reservoir 
types is related to their storage characteristics. Reservoirs designated for 
irrigation and water supply purposes are often constrained by 
geographical and environmental limitations, necessitating integration 

Fig. 3. Boxplots showing CH4 diffusion (a) and ebullition (b) by reservoir size categories of estimated reservoirs in China.
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into diverse landscapes with minimum ecological disruptions (Jurík 
et al., 2019). Smaller reservoirs are generally sufficient for irrigation and 
water supply, as these needs are seasonal and temporary, and also less 
expensive to construct and maintain (Wisser et al., 2010). Consequently, 
smaller reservoirs are commonly found in areas with extensive agri-
culture and human settlements (see Fig. 4), highlighting their impor-
tance in supporting urban and agricultural development (Grinham et al., 
2018). Large reservoirs, however, are primarily situated in mountainous 
areas, such as the upper reaches of the Yangtze, Lancang, and Pearl 
Rivers, where significant elevation change facilitates their development 

(Song et al., 2022a).
Flood control reservoirs, characterised by large storage capacities for 

managing excess water, are typically located in low-lying areas (see 
Fig. 4) with abundant vegetation, which decomposes underwater and 
contributes to organic matter accumulation. This could explain why CH₄ 
diffusive emissions from flood control reservoirs, as depicted in the 
boxplot, are comparable to those of hydropower reservoirs. However, 
ebullitive emission rates are notably lower in flood control reservoirs, 
possibly due to reduced water column disturbance by lower discharge, 
which inhibits CH₄ bubble release.

Fig. 4. Reservoirs of various sizes are categorised by primary use: a) hydropower; b) water supply; d) flood control; and e) irrigation. Boxplots c) and f) showing CH4 
diffusion (c) and ebullition (f) by reservoir usage type of estimated reservoirs in China.

Fig. 5. Feature importance for the SVR model on the testing dataset for diffusive CH4 emissions (plot a) and the RF model on the testing dataset for ebullitive CH4 
emissions (plot b).
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3.5. Variables and carbon flux dynamics

This study examines a range of variables impacting carbon flux, 
including key climatic factors such as temperature and GHI, as well as 
reservoir area and volume. The feature importance for each prediction 
model is shown in Fig. 5, with Shapley values expressed as percentages, 
representing each feature’s contribution to the deviations from the mean 
prediction.

For CH₄ diffusive emissions, GHI is the most significant factor, with a 
mean Shapley value of 0.22, followed by VPD at 0.19 (see Figure S11). 
This indicates that GHI shifts predictions by approximately 0.22 units 

from the dataset average. Given the log₁₀ transformation of CH₄ values 
for model compatibility, GHI affects the original prediction by around 
1.659 times, or roughly 66%, while VPD contributes about 54%. Tem-
perature and NPP rank third and fourth, each with Shapley values of 
approximately 0.14, indicating an influence of 36%. Volume has the 
lowest impact, influencing predictions by about 26%. For CH₄ ebullitive 
emissions, discharge has the highest influence at around 83%, followed 
by reservoir area at 46 % and temperature at 20%.

In addition to the commonly discussed predictor variables such as 
temperature, GHI, and reservoir area, this study introduces new vari-
ables. For example, VPD, the gap between saturated and actual vapour 

Fig. 6. Regression lines depicting relationships between independent variables and CH4 fluxes for different reservoir sizes based on the generated 1000 samples 
based on the statistical distribution of variables in the CRD dataset. Figures (a-d) present diffusive CH4 emissions, while (e-f) show ebullitive CH4 emissions, with 
variables for (a) temperature, (b) VPD, (c) NPP, (d) GHI, (e) temperature, and (f) discharge.
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pressures, determines the atmosphere’s moisture absorption capacity 
(Zhong et al., 2023). A higher VPD correlates with increased CH₄ flux 
rates, as depicted in Fig. 6b, potentially due to warmer temperatures that 
often co-occur with high VPD (Amitrano et al., 2019). Elevated tem-
peratures can enhance the metabolic rates of methanogenic bacteria in 
sediments, thereby increasing CH4 diffusion into the atmosphere 
(Yvon-Durocher et al., 2014).

High VPD also intensifies evaporation, thinning the water layer and 
heightening the CH₄ concentration gradient, accelerating diffusion rates 
(Lee et al., 2018). High VPD levels are associated with drought-induced 
forest mortality (Yuan et al., 2019), where increased VPD prompts sto-
matal closure to mitigate water loss under high atmospheric water de-
mand. This response negatively impacts carbon balance by depleting 
carbohydrate reserves, desiccating plant tissue, and causing plant death 
(Xu et al., 2023). As a result, elevated VPD can increase the mortality 
rate of plants and algae, contributing organic material to water bodies, 
which serves as a rich source for methanogenesis (Yuan et al., 2019).

Reservoir productivity, represented by NPP, is another key factor 
influencing carbon flux (Hertwich, 2013; Deemer et al., 2016; Chen 
et al., 2018). NPP representing the increase in dry organic matter in an 
ecosystem through photosynthesis CO₂ uptake, influences CH₄ emissions 
by producing organic matter that serves as a substrate for CH₄ produc-
tion, and generating O₂ for CH₄ oxidation (Venkiteswaran et al., 2013).

Fig. 6c illustrates a non-linear relationship between NPP and CH₄ 
diffusion, with CH₄ flux rates rising at NPP values up to 1000 gC/m²/yr 
and subsequently declining. At lower NPP, organic matter supports CH₄ 
production (Deemer et al., 2016; Hertwich, 2013), though limited ox-
ygen from low NPP constraints CH₄ oxidation. However, once NPP 
surpasses a threshold, increased oxygen availability enhances oxidation, 
reducing CH₄ emissions (Pacheco et al., 2014). This inverse trend of CH₄ 
emissions at high productivity levels has also been observed in other 
studies, where increased primary production in lentic systems can turn 
them from CO₂ sources to sinks.

Fig. 6 also illustrates the varying regression relationships between 
predictor variables and CH₄ flux rates across different reservoir sizes 
(Regression Coefficient in Tables S2 and S3). Reservoirs > 0.01 km3 

exhibit a larger regression coefficient compared to reservoirs 〈 0.01 km3, 
suggesting that CH₄ emissions rates from larger reservoirs are more 
sensitive to changes in climatic variables. For example, in the case of 
temperature, in CH4 diffusion, rising temperatures lead to an increased 
flux across all reservoir sizes, with reservoirs 〉 0.01 km3 experiencing a 
more pronounced increase compared to smaller ones. The sensitivity to 
temperature variation is also evident in CH₄ ebullition, where reservoirs 
at 10 km3 size exhibit greater fluctuations. Below 15 ◦C, rising tem-
peratures are associated with an increase in emissions rates, whereas 
beyond 15 ◦C, further temperature increases are linked to a decrease in 
emissions rates.

4. Discussion

4.1. Mechanisms behind high CH4 emissions rate of larger reservoirs

Two primary physical processes drive high CH₄ diffusive emission 
rates in larger reservoirs: sediment and nutrient trapping, and thermal 
stratification (Winton et al., 2019). The first mechanism involves dams 
effectively trap sediments (Winton et al., 2019), which contributes 
significantly to CH₄ emissions. Organic matter in sediment provides 
substrates and anoxic conditions ideal for methanogenesis (Maeck et al., 
2013). Larger reservoirs, with greater storage capacities, tend to trap 
more sediment, creating substantial submerged organic carbon that 
promotes CH₄ production under anaerobic conditions.

The second mechanism, thermal stratification, is more pronounced 
in larger reservoirs due to their greater capacity for heat retention, 
resulting in longer stratification seasons compared to smaller reservoirs 
(Nhiwatiwa and Marshall, 2006). This prolonged stratification supports 
extended hypoxic conditions in the hypolimnion, favouring CH₄ 

production (Kalff, 2002). In contrast, smaller reservoirs often experience 
vertical mixing at night, oxygenating the water and reducing CH₄ pro-
duction (Yang et al., 2018).

The greater slope in the regression line between climatic variables 
and CH4 diffusive emissions rate in larger reservoirs, particularly for 
temperature-related variables may be attributed to the higher suscep-
tibility of larger reservoirs to thermal stratification as temperatures rise. 
In contrast, for shallower reservoirs, the increase in temperature inhibits 
stratification, leading to uniform warming across the vertical profile 
(Lee et al., 2018). Prolonged thermal stratification in larger reservoirs 
creates conditions for CH₄ generation.

The elevated CH₄ ebullition observed in reservoirs < 0.01 km3 

(compared to reservoirs 0.01 to 1 km3) may be attributed to their 
extended shallow areas or littoral zones. Larger reservoirs typically have 
deeper central areas, reducing the extent of littoral zones, while smaller 
reservoirs are shallower, leading to more extensive littoral areas. Seekell 
et al. (2021) analysed 54 Swedish lakes and demonstrated that lakes 
with lower mean-to-maximum depth ratios have relatively larger littoral 
areas than those with high ratios. High water depth also blocks the 
penetration of light, influencing the growth of vegetation and inhibiting 
the expansion of the littoral zone (Seekell et al., 2021).

The widespread shallower area promotes CH4 ebullition due to lower 
hydrostatic pressure, allowing CH4 bubbles to ascend in the water col-
umn and burst into the atmosphere (Beaulieu et al., 2018). In deeper 
water, a significant proportion of CH4 in bubbles can dissolve before 
reaching the surface (McGinnis et al., 2006), contributing to higher CH₄ 
ebullition rates in smaller reservoirs.

However, the susceptibility to thermal stratification may also lead to 
intense fluctuations in CH₄ ebullition rates in larger reservoirs, as seen in 
Fig. 6c for reservoirs at 10 km3. Below 15 ◦C, rising temperatures pro-
mote methanogenesis. More CH₄ is produced which can easily escape 
into the atmosphere. However, when temperatures exceed 15 ◦C, CH₄ 
ebullition decreases as stratification inhibits the passage of CH₄ bubbles 
through the oxycline, preventing their release into the atmosphere. This 
constraint is further intensified at higher temperatures. Nevertheless, 
the accumulated CH₄ that failed to pass through the oxycline can still be 
released into the air through a spike of emissions during fall turnover 
when water mixing allows gas exchange from the hypolimnion to the 
epilimnion, or through degassing pathways (Guérin et al., 2016; Harri-
son et al., 2021). Although in other reservoir sizes temperature varia-
tions minimally impact CH₄ ebullition, Aben et al. (2017) indicate that 
increased water temperatures can enhance CH₄ ebullition rates in 
shallow freshwater systems—such as ponds, rivers, and lakes—where 
stratification is limited.

Looking forward, both reservoir sizes are expected to experience 
increased CH₄ emissions under a warming climate, albeit through 
different processes. In smaller reservoirs, intensified biological activity 
raises emissions, while in medium to large reservoirs, prolonged and 
more extensive thermal stratification facilitates methanogenesis and 
results in increased emissions.

4.2. Scale-specific emissions management

The debate over whether smaller or larger reservoirs offer superior 
solutions for water management remains unresolved. Larger dams are 
generally perceived to have greater environmental impacts due to their 
substantial carbon footprint, extensive inundation areas, deforestation, 
and sedimentation (Abbasi and Abbasi, 2011; Liang et al., 2021). 
Moreover, it was revealed that larger dams such as Three Gorges Dam 
(TGD) resulted in a 79 % decrease in CO₂ export and a 50 % reduction in 
CH₄ export to the sea, highlighting the ’large-dam effects’ on both the 
upstream and downstream regions of the YRB (Ni et al., 2022). These 
dams intercept organic matter from flowing downstream, trapping it 
behind the reservoirs, which may promote CH₄ emissions from the res-
ervoirs. Small dams are often accused of their cumulative effects on 
hydrology, biochemistry, and ecology (Habets et al., 2018; Donchyts 
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et al., 2022). Examining the benefits of smaller versus larger dams from 
different perspectives yields varying conclusions.

In terms of CH4 emissions, larger dams are the dominant contributors 
across China, with higher CH4 diffusion rates and greater national 
emissions due to the extensive surface areas of these reservoirs. More-
over, stratification in large reservoirs might intensify CH4 production, 
increasing emissions rates. Although it was initially assumed that 
China’s numerous reservoirs < 0.01 km3 would contribute higher total 
CH₄ emissions, their combined surface area is still smaller than that of 
reservoirs > 0.01 km3, resulting in a relatively lower contribution to 
total CH₄ emissions. Consequently, CH₄ management efforts should 
prioritise reservoirs > 0.01 km3.

Nevertheless, the boxplot (Fig. 3b) indicated that reservoirs < 0.01 
km3 had higher ebullition rates than reservoirs 0.01 to 1 km3. This is 
likely attributed to their expansive littoral area and relatively lower 
depth. Moreover, the CH4 ebullition rate data collected in our study may 
often be underestimated due to the challenges of capturing bubble fluxes 
over time (Maeck et al., 2014). CH₄ ebullition is often measured over 
short periods lasting only hours or days, whereas long-term continuous 
sampling would provide more representative estimates (Maeck et al., 
2014). Thus, in certain regions, the potential for significant CH₄ ebul-
lition from reservoirs < 0.01 km3 may be higher than previously 
expected.

Addressing reservoir carbon emissions by focusing solely on larger 
dams is insufficient. A sustainable water management strategy requires 
attention to both small and large reservoirs, with targeted measures 
based on their spatial distribution patterns. In Figs. 3 and 5, reservoirs <
0.01 km3 tend to cluster near farmland and urban areas, where high 
population densities drive water demand. Conversely, reservoirs > 0.01 
km3 are more dispersed and located predominantly in mountainous 
regions. Such diverse distribution patterns necessitate different carbon 
reduction strategies: reservoirs > 0.01 km3 are best managed at the 
project level, while reservoirs < 0.01 km3 benefit from basin-scale 
management.

Larger reservoirs are typically managed by government agencies or 
large corporations (Donchyts et al., 2022), with the resources for carbon 
reduction measures, such as water quality control and methane recovery 
systems. CH4 recovery involves installing CH4 collection mechanisms at 
the reservoir’s hypolimnion to capture CH4 for power generation. These 
systems are more economically feasible for larger reservoirs given the 
substantial capital investment required (Wood et al., 2023). In contrast, 
for smaller reservoirs, the cost-benefit ratio is less favourable (Wood 
et al., 2023).

Similar to water quality control, larger reservoirs also benefit from 
consistent monitoring, which is less feasible for smaller reservoirs due to 
their large numbers and local ownership, making individualized moni-
toring logistically and financially challenging. Therefore, while project- 
scale management is suitable for larger reservoirs, basin-scale strategies 
are more suitable for particularly managing smaller reservoirs.

Basin-scale management could involve regulatory measures to 
restrict nutrient discharge from wastewater, thereby preventing water 
quality deterioration at the source (Preisner et al., 2020). Collaborating 
with local farmers to implement best management practices at appro-
priate times and locations, supported by policies and incentives, is 
another effective approach (Bijay and Craswell, 2021). Additionally, 
public education campaigns aimed to raise awareness about environ-
mentally friendly practices could improve water resource use in agri-
culture (Zhang et al., 2023).

4.3. Limitations and opportunities from machine learning models

In this study, machine learning was applied to estimate CH₄ emis-
sions from Chinese reservoirs. Unlike commonly used regression models, 
which provide interpretable relationships between variables and emis-
sions rates, the black-box nature of machine learning models limits their 
interpretability. To investigate how the trained machine learning model 

understands the relationship between input variables and emissions 
rates, two techniques were employed: Shapley values and regression 
lines to visualize the trained relationships. However, these techniques 
are limited as they can only provide a vague demonstration of the po-
tential statistical relationships, rather than offering specific mathemat-
ical equations. Furthermore, the learned relationship between input 
variables and emissions rates in machine learning models may involve 
high dimensionality, which current two- and three-dimensional tech-
niques cannot fully capture. Therefore, to enhance the interpretability of 
machine learning models, more innovative expression techniques must 
be explored to better leverage the potential of machine learning in un-
derstanding the underlying mechanisms in environmental research.

5. Conclusion

• Reservoirs > 0.01 km3 contribute nearly 90 % of total CH₄ emissions 
due to their significant CH₄ diffusive flux rates, which are attributed 
to their thermal stratification regime high capacity for receiving 
organic matter, and expansive surface areas.

• Reservoirs < 0.01 km³ exhibited higher CH₄ ebullitive flux compared 
to reservoirs between 0.01–1 km³, owing to their shallow depth, 
emphasizing the importance of addressing CH₄ reduction in smaller 
aquatic systems.

• Hydroelectric and flood control reservoirs tend to have higher CH₄ 
diffusive emission rates, which is related to reservoir size and usage: 
reservoirs < 0.01 km3 primarily serve irrigation and water supply, 
while reservoirs > 0.01 km3 are designated for hydropower and flood 
control. Reservoirs 〈 0.01 km3 reservoirs are often clustered near 
agricultural or urban regions, whereas reservoirs 〉 0.01 km3 are more 
dispersed and located in mountainous or low-lying areas.

• Given the spatial variability of reservoir sizes, carbon reduction ef-
forts require tailored approaches: project-level management for 
reservoirs > 0.01 km3 and basin-scale management for reservoirs <
0.01 km3.
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