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ABSTRACT: Cyanobacterial harmful algal blooms (CyanoHABs)
pose serious risks to inland water resources. Despite advancements
in our understanding of associated environmental factors and
modeling efforts, predicting CyanoHABs remains challenging.
Leveraging an integrated water quality data collection effort in
Iowa lakes, this study aimed to identify factors associated with
hazardous microcystin levels and develop one-week-ahead
predictive classification models. Using water samples from 38
Iowa lakes collected between 2018 and 2021, feature selection was
conducted considering both linear and nonlinear properties.
Subsequently, we developed three model types (Neural Network,
XGBoost, and Logistic Regression) with different sampling
strategies using the nine selected variables (mcyA_M, TKN, %
hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the
strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857,
LR+ 5.993, and 1/LR− 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928,
specificity 0.833, LR+ 5.557, and 1/LR− 11.569). This study exhibited the intricacies of modeling with limited data and class
imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the
methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
KEYWORDS: cyanobacterial harmful algal blooms, microcystin concentration, predictive modeling, freshwater lakes,
environmental monitoring, classification models, class imbalance, neural network, XGBoost, logistic regression

1. INTRODUCTION
The growth of microscopic phytoplankton, including Cyano-
bacteria, on the surface of a water body is natural to some
extent.1 However, under certain environmental, chemical, and
biological conditions, their excessive growth can result in
harmful algal blooms, which can be highly disruptive to the
surrounding environment by altering the physicochemical
properties of water bodies, leading to a decline in biodiversity
due to oxygen depletion and lack of sunlight.2−4 Harmful algal
blooms are often accompanied by heavy growth of
Cyanobacteria (CyanoHABs), which can produce cyanotoxins,
such as microcystins and cylindrospermopsin.4,5 In humans,
cyanotoxins can cause a variety of symptoms, including
gastrointestinal distress, rashes, liver and kidney toxicity, joint
pain, and in extreme cases, neurological damage or paralysis
from ingestion or skin contact.6 Similar exposure to
cyanotoxins has also been shown to cause disease or death
in wildlife and domestic animals.4,5 Hence, many national and
local governments worldwide have been monitoring inland
water resources for cyanotoxins regularly, and the local
authorities close the site to the public or recommend avoiding

contact when the concentration of cyanotoxins exceeds a
certain threshold.7−9 Subsequently, the closure of beaches or
waterways in response to elevated toxin levels may lead to
significant economic damage, resulting in lost revenue.4

Previous research on CyanoHABs suggest that while blooms
have been a long-standing issue,10 the increased frequency of
occurrences is associated with climate change and/or the
increasing use of fertilizers in agriculture.11−13 Historical
records show that CyanoHABs have also been a problem in
the Midwestern United States for nearly a century. One of the
first reports of HABs in the Midwestern states dates from the
1930s, and another report was published in 1951 based on
observations of “toxic algae” in Iowa and Minnesota lakes.10 It
has also been recognized that local and global occurrences of
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CyanoHABs are interconnected.13−15 Water quality challenges
in the Midwestern states are not limited to local impact, and
connections between the waterways of the Midwestern states
and the Mississippi River stream network move nutrients to
the Gulf of Mexico.16,17 The severity and frequency of harmful
algal blooms in the Gulf of Mexico have increased since 1985,
and total nitrogen loading to the Mississippi River has tripled
in about 40 years since the 1950s.15,18 Despite various efforts
in upstream states to reduce nitrogen loading into the
Mississippi River and extensive research conducted to
understand and mitigate the CyanoHAB problem, negative
impacts on the ecosystem and water quality still persist in local
lakes and the Gulf of Mexico.19

For the last few decades, our understanding of CyanoHAB
occurrences has been expanded through numerous studies
investigating the relationship with individual factors. For
instance, nitrogen and phosphorus levels have been identified
as significant factors, as those stimulate cyanobacterial
growth.12,20,21 Phosphorus availability is a known limiting
factor for algal growth and has been shown to correlate with
harmful algal bloom occurrence.1,22 Several other factors, such
as higher water temperature,23,24 land use,25 precipitation,12,26

wind speeds,27 and light intensity,28,29 have also been linked
with the growth of toxin-producing Cyanobacteria. However,
the correlations with individual factors have not been highly
effective in forecasting CyanoHAB occurrences because the
activities of toxin-producing Cyanobacteria are controlled by
complex interactions of chemical, biological, and climate
factors rather than a few individual factors.

Beyond exploring the relationships between CyanoHABs
and single factors, plenty of previous studies have applied
statistical and machine learning techniques to construct data-
driven predictive models for CyanoHABs.1 Notably, one of the
traits commonly found in many previous studies is the lack of
clear definitions for the thresholds to determine the occurrence
of CyanoHABs in samples (Table S1). The general definition
of CyanoHABs is a large growth of microscopic phytoplankton,
including Cyanobacteria, on the water surface. However,
establishing a standardized definition for CyanoHAB occur-
rence is crucial for practical predictive modeling because the

administrative procedures of local authorities are determined
based on the cyanotoxin thresholds recommended by environ-
mental agencies or international health organizations. There-
fore, defining CyanoHAB occurrence based on cyanotoxin
concentration thresholds advised by authoritative agencies and
developing predictive models using cyanotoxin concentration
as the target parameter can be more informative for decision-
making. Previous studies on forecasting CyanoHABs can be
categorized into five groups based on their target parameters:
(i) chlorophyll-a concentration,30−35 (ii) cyanobacterial
abundance/biomass,36−40 (iii) phytoplankton biomass,41−43

and (iv) microcystin concentration,44−47 and (v) other related
parameters48−52 (Table S1). Most of these studies used
chlorophyll-a concentration, cyanobacterial abundance/bio-
mass, or phytoplankton biomass as the target parameter to
develop predictive models, considering these parameters are
proxies for cyanobacterial harmful algal blooms. In some cases,
cyanotoxin-producing species like Microcystis and Dolichosper-
mum were used as the target parameter rather than all
Cyanobacteria.48−52 These predicted targets provide compre-
hensive information about algae growth in general but may
have limitations in directly correlating to CyanoHAB
occurrence when the occurrence is defined based on
cyanotoxin concentrations. For instance, Kasinak et al.
demonstrated a poor correlation between chlorophyll-a
concentrations and cyanobacterial cell density, which is the
bacterial group producing cyanotoxins.53 A handful of previous
studies employed microcystin concentration as the target
parameter.44−47 In a study aiming to issue an early warning if
the predicted microcystin concentration exceeds 1 μg/L,
regression models were developed to predict microcystin
concentration 10, 20, and 30 days in advance.44 However,
these models did not incorporate diverse parameters as input
variables, particularly significant factors such as nitrogen and
phosphorus. Similarly, other three previous studies that used
microcystin concentration as the target parameter also did not
include biological parameters as the input variables for their
models.45−47

To address these limitations, the current study embarks on
the development of a predictive model aimed at enhancing

Figure 1. Site names and locations of 38 lake water sampling points. Lake water samples were collected in collaboration with the Iowa DNR Beach
Monitoring Program from 2018 through 2021.
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decision-making capabilities concerning CyanoHAB occurren-
ces. This involves utilizing microcystin concentration as the
target variable and incorporating various molecular biological,
chemical, climate, and land use parameters as input variables.
This research was underpinned by collaborative efforts with
the Iowa Department of Natural Resources (DNR) between
2018 and 2021, enabling us to generate a comprehensive data
set derived from 1591 samples collected across 38 lakes in
Iowa. To identify “CyanoHABs” samples, we applied the EPA-
recommended microcystin concentration threshold for recrea-
tional use, defined as exceeding 8 μg/L. Since the number of
samples surpassing this 8 μg/L microcystin concentration
threshold is considerably smaller compared to the number of
“non-CyanoHAB” samples, our approach leaned toward
constructing a classification model instead of regression
models. In practical terms, this classification model can serve
as a diagnostic or screening tool for local authorities, assisting
in acknowledging the possibility of microcystin concentrations
exceeding the threshold at a site in advance. In essence, our
research aims to accomplish two central objectives: (i) the
identification of pivotal indicators with a strong predictive
capacity for CyanoHABs and (ii) the development of a
classification model for forecasting CyanoHAB events with a
one-week lead time.

2. MATERIALS AND METHODS
2.1. Sample Collection and Chemical Measurements.

Lake water samples were collected in collaboration with the
Iowa DNR Beach Monitoring Program from 38 lake beaches in
Iowa, USA (Figure 1). The Iowa DNR has been monitoring
various water quality parameters, such as microcystin
concentration, dissolved oxygen, and pH, at each lake beach
site since 2006. Following the protocol of the Iowa DNR,
sampling was conducted on a weekly basis during the summer
recreation season from Memorial Day (late May) to Labor Day
(early September). The samples used in this study were
collected from all 38 lakes between 2018 and 2020. In 2021, as
the duration of the EPA project supporting the current study
was extended for 1 year due to COVID-19, we decided to
collect additional samples to provide more data for model
training. We selected one of the four sampling routes, which
included lakes with multiple CyanoHAB occurrences in the
previous three years, to collect additional samples within the
budget. Consequently, 1591 lake water samples were used for
further analysis and model training. Detailed information about
sites, sampling procedures, and measurements is available on
the Beach Monitoring (AQuIA) Web site, operated by the
Iowa DNR.54 Microcystin concentrations for 38 lakes since
2006 were obtained from the AQuIA Web site and used to
investigate the trends and occurrences of CyanoHABs over
time.

Upon collection, the lake water samples received from the
Iowa DNR were immediately stored at 4 °C and analyzed for
chemical parameters within 3 days. Prior to collection, pH was
determined with a WTW Multi 340i meter and Sentix pH
electrode (Weilheim, Germany). According to the EPA 415.3
method, dissolved organic carbon (DOC) was analyzed using a
Shimadzu TOC analyzer (Kyoto, Japan) with persulfate
digestion. Other chemical parameters were measured using a
Seal AQ2 Automated Discrete Analyzer (Seal Analytical,
USA). Chloride (Cl−) was measured following the EPA-105-A
Rev 5 protocol. Total Kjeldahl nitrogen (TKN) was measured
following the EPA-111-A Rev 5 protocol with copper(II)

catalyst digestion prior to analysis. Total Kjeldahl phosphorus
(TKP) was measured following the EPA-135-A Rev 5 protocol,
also using a copper catalyst. Orthophospate (ortho-P) was
measured following the EPA-118-A Rev 5 protocol with
ascorbic acid reduction. The microcystin level in the water
samples was determined by Iowa DNR using an enzyme-linked
immunosorbent assay (ELISA) test.

2.2. DNA Extraction and Quantitative Real-Time PCR.
As soon as the samples arrived at the laboratory, 250 mL of
each lake water sample was filtered using 0.22 mm PES
Membrane filters (Millipore, USA) and stored in a −80 °C
freezer until use. From the filters, genomic DNA was extracted
using the MagAttract PowerWater DNA/RNA Kit (Qiagen,
Germany) and an automated liquid handling system
(epMotion 5075, Eppendorf, Germany). To quantify micro-
cystin-producing (mcyA) genes in lake water samples, three
primer sets (i.e., mcyA_MF/MR for Microcystis mcyA genes,
mcyA_AF/AR for Anabaena mcyA genes, and mcyA_PF/PR
for Planktothrix mcyA genes) were used,55 and bacterial 16S
rRNA genes were also quantified using 341F/534R primer
set.56 High-throughput qPCR (HT-qPCR) assays were
performed on the BioMark HD System (Fluidigm, USA)
using Flex Six gene expression IFCs. Each Flex Six IFC
contained 48 lake water samples, 24 standards (i.e., 6 serial
dilutions for each primer set), and four primer sets in triplicate.
According to the manufacturer’s protocol, an IFC Controller
HX (Fluidigm, USA) was used for priming and loading the
IFC. Followed by the default thermal mix and hot start steps,
the operating conditions were 40 cycles of (i) 95 °C for 15 s,
(ii) 60 °C for 30 s, and (iii) 72 °C for 30 s, followed by the
melting step. After the number of target genes per reaction was
calculated from the corresponding standard curve, the number
of target genes per mL of the sample was determined using the
volume of extracted DNA, the volume of DNA in each
reaction, and the volume of the filtered sample.57

2.3. Land Use and Climate Data. Land use information
was obtained from the National Land Cover Database
(NLCD).58 The latest version of land cover classifications
was released in 2019. The percentage of land dedicated to each
land use category within 1 km were determined for each
sampling site using the raster, sf, and exactextractr packages in
the R programming and added as additional variables for each
observation.59−61 Ordination via nonmetric dimensional
scaling was applied to sampling sites based on their land-use
profiles to determine if there were any clustering patterns
apparent between sites (Figure S1).

Climate data were sourced from Weather Underground, an
online network of local weather stations.62 We collected
weekly averages of temperature, humidity, dewpoint temper-
ature, wind speed, gust speed, and precipitation from the
weather station nearest to each sampling site. In cases where
data could not be obtained from the closest weather station to
a sampling point, we utilized readings from the next closest
station. Since the locations of these weather stations were not
originally intended for collecting climate data from lake
beaches, there were variations in the distances between the
sampling points and the closest weather stations (Table S2).

2.4. Data Preparation. The parameters collected in this
study included microcystin concentrations, pH, DOC, Cl−,
TKN, TKP, ortho-P, Microcystis mcyA gene copies (mcyA_M),
Planktothrix mcyA gene copies (mcyA_P), Anabaena mcyA
gene copies (mcyA_A), bacterial 16S rRNA gene copies (16S
rRNA), precipitation, temperature, dewpoint temperature,
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wind speed, gust speed, humidity, and percentages of land use
within a 1 km radius from each sampling point (for instance,%
developed, % hay/pasture, % cultivated crops, and others)
(Table S3). Based on the EPA-recommended microcystin
concentrations for recreational use (below 8 μg/L), the
observed microcystin concentrations in lake water samples
were categorized into two groups: “Hazardous” and “Safe”.
Among the 1591 samples, 79 samples were labeled as
“Hazardous” while 1512 samples were labeled as “Safe”.
Since the data were collected weekly, each week’s input
variables were paired with the subsequent week’s microcystin
safety level (i.e., Hazardous or Safe) to build one-week-ahead
predictive models, with the observed one-week-ahead concen-
tration serving as the target prediction for the models (Figure
S2). Once the input variables and the target variable (i.e., the
following week’s microcystin safety level) were linked together,
the sequential property of the original data set was no longer
considered.63 Following the rearrangement of the original data
set by pairing the input variables of the prior week with the
microcystin safety level of the following week, a total of 1473
pairs of input and target variables were used for further
analysis. Among these, 70 cases were labeled as “Hazardous”,
and 1403 were labeled as “Safe”. Wilcoxon rank-sum tests were
conducted to assess the significance of differences in the mean
values of the input variables between the Hazardous and Safe
groups. For machine learning, the data were divided into
training and testing sets using an 80:20 split stratified based on
the following week’s microcystin safety level. The division
resulted in a training set with 56 Hazardous cases with 1122
Safe cases, while the testing set contained 14 Hazardous and
281 Safe cases. For the training set, two separate procedures
(oversampling and downsampling) equalizing the proportion
of classes were implemented to address the class imbalance. In
the downsampling procedure, the majority (Safe) class was
randomly downsampled to match the number of observations
of the minority (Hazardous) class. The oversampling
procedure generated simulated observations of the Hazardous
class by following the SMOTE algorithm until the number of
observations in the minority class equaled that of the majority
class.64 The initial training set without adjustments was also
retained for subsequent procedures. These three different
training sets were used in separate configurations of the model
training pipeline and evaluated separately. All the data used in
this study and subsequent analyses are publicly archived at
https://github.com/pommevilla/one_week_ahead.

2.5. Feature Selection. Feature selection was conducted
before model training to ensure consistent feature sets and
enhance model performance evaluation for predicting Hazard-
ous and Safe classes. After creating 1000 permutations of the
data set by sampling from the original data set 1000 times with
replacement, a LASSO model and an XGBoost model were
trained using glmnet65 and XGboost66 packages, respectively.
LASSO is a linear model that excels at inducing sparsity by
eliminating features, while XGBoost excels at capturing
complex relationships through nonlinear modeling. The aim
of combining these two techniques was to create a more
comprehensive feature selection approach capable of ultimately
enhancing the prediction performance. Importance scores were
assigned to each feature during the training process for the
feature selection, with 1000 scores generated for each feature
from both the LASSO and the XGBoost models after training.
For each of the 1000 permutations, the feature importance
scores of the two models were normalized separately to a mean

of 0 and a standard deviation of 1. An overall average
importance score was calculated for each feature by calculating
the mean LASSO importance and mean XGBoost importance
and then taking the mean of the two scores. The overall
average importance score, akin to a Z-score, serves as an
indicator of the predictive power of each feature. A score of 0
denotes average predictive power; scores below 0 suggest
below-average predictive power, and scores above 0 indicate
above-average predictive power. Therefore, features with an
overall average importance score of >0 were chosen for
constructing the final models.

2.6. Model Training and Performance Assessment.
To evaluate their effectiveness in predicting CyanoHAB
occurrence in the following week, three types of models,
including XGBoost, Neural Network (Feedforward Neural
Networks), and Logistic Regression (Elastic Net), were trained
based on the selected features using XGboost,66 Brulee,67 and
glmnet65 packages, respectively. For each model, hyper-
parameter tuning was first performed by (i) creating a set of
candidate hyperparameter values for each model, (ii) creating a
model for each combination of hyperparameter values, (iii)
training each model on the training set using 10-fold cross
validation, and (iv) recording the average receiver operating
characteristic area under the curve (ROC-AUC) (i.e., overall
metric indicating how well the model does at discriminating
between classes) across all folds on the testing set (Table S4).
For each model type, the set of hyperparameters achieving the
highest average ROC-AUC was kept and used to compare the
different models against each other. Among the 200 candidates
for each model type, the candidate model that achieved the
highest ROC-AUC on the testing set was selected as the
representative for each model type (Table S5). The perform-
ance evaluation of each representative model was conducted
using the testing set (14 Hazardous and 281 Safe cases) based
on various performance metrics, including ROC-AUC,
accuracy (i.e., the ratio of correct predictions out of all
predictions), sensitivity (i.e., the ratio of correct predictions for
the samples belonging to the Hazardous class), specificity (i.e.,
the ratio of correct predictions for the samples belonging to the
Safe class). To intuitively present the overall performance of
each model, likelihood ratios (i.e., ratios to compare the
probability of an event happening to the probability of it not
happening) were used, which are often employed in hypothesis
testing and diagnostic testing.68 Likelihood ratios are
represented as the likelihood ratio for a positive test result
(LR+) and the likelihood ratio for a negative test result (LR−).
A likelihood ratio of 1.0 means no difference in the probability
of the particular test results between the positive and negative
cases and, for example, LR+ = x means that a sample with >8
μg/L microcystin concentration is x times more likely to be
predicted as “Hazardous” than a sample with <8 μg/L
microcystin concentration. Therefore, models with higher LR
+ and or higher 1/LR− (i.e., lower LR−) can be expected to
exhibit better performance.

3. RESULTS
3.1. Unpredictable Patterns of CyanoHAB Occurren-

ces in Iowa Lakes. Among the 1591 samples collected
between 2018 and 2021, 79 samples exceeded the EPA
threshold for recreational use (i.e., 8 μg/L) and were labeled as
Hazardous. Notably, 50 of the Hazardous samples were
collected from three locations: Lake Darling Beach (19
occurrences), Green Valley Beach (18 occurrences), and
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Table 1. Number of Cyanobacterial Harmful Algal Bloom Occurrences (i.e., Exceeding 8 μg/L Microcystin Concentration
Based on the EPA-Recommended Threshold for Recreational Use) by Location and Year

location 2018 2019 2020 2021 total location 2018 2019 2020 2021 total

Lake Darling Beach 0 9 2 8 19 Black Hawk Campground Beach 0 0 0
Green Valley Beach 3 10 0 5 18 Brushy Creek 0 0 0 0
Lake of Three Fires Beach 3 6 3 1 13 Emerson Bay Beach 0 0 0 0
Union Grove Beach 0 2 5 7 Gull Point Beach 0 0 0 0
Viking Lake Beach 7 0 0 0 7 Lacey-Keosauqua Beach 0 0 0 0
Lake Keomah Beach 0 3 0 0 3 Lake Ahquabi Beach 0 0 0 0
McIntosh Beach 1 1 0 2 Lake Anita Beach 0 0 0 0
Beeds Lake Beach 0 1 0 1 Lake Manawa Beach 0 0 0 0
Clear Lake State Park Beach 0 1 0 1 Lake Wapello Beach 0 0 0 0 0
Crandalls Beach 1 0 0 1 Blue Lake Beach 0 0 0 0
Denison Beach 1 0 0 1 Pine Lake South Beach 0 0 0 0
George Wyth Beach 0 0 1 1 Nine Eagles Beach 0 0 0 0
Honey Creek Resort St. Park 0 1 0 1 North Twin Lake West Beach 0 0 0 0
Lake Macbride Beach 1 0 0 0 1 Pikes Point Beach 0 0 0 0
Marble Beach 1 1 Pleasant Creek Beach 0 0 0 0
North Twin Lake East Beach 0 1 0 1 Prairie Rose Beach 0 0 0 0
Rock Creek Beach 0 0 0 1 1 Red Haw Beach 0 0 0 0
Backbone Beach 0 0 0 0 Springbrook Beach 0 0 0 0
Big Creek Beach 0 0 0 0 Triboji Beach 0 0 0 0

Figure 2. Count of CyanoHAB occurrences (i.e., based on the current EPA threshold for recreational water, 8 μg/L of microcystins) at Iowa lakes
between Memorial Day and Labor Day for each year since 2006.
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Lake of Three Fires Beach (13 occurrences) (Table 1). When
also considering the number of Hazardous cases that had
occurred in Union Grove Beach (7 occurrences) and Viking
Lake Beach (7 occurrences), 81% (64/79) of all CyanoHAB
occurrences were observed in five out of 38 lakes. The
observations in the study period may suggest that there are
certain lakes with repetitive problems; however, the historic
data gathered from 2006 does not support this hypothesis
(Figure 2).54 Out of 38 lakes, only five lake beaches have been
consistently free of CyanoHAB problems since 2006 and most
of those have had CyanoHAB occurrences from time to time
without distinctive patterns. For instance, the historic data
show that Black Hawk Campground Beach had many
Hazardous occurrences between 2008 and 2015 but had no
recorded instances of CyanoHAB occurrences during the study
period. Viking Lake, which had the highest number of
Hazardous samples in 2018, had no such cases in 2019,
2020, and 2021. Conversely, Union Grove had no Hazardous
cases in 2018, but had two cases in 2019 and five cases in 2020.
Overall, the monitoring data suggest that the patterns of
CyanoHAB occurrences are neither predictable nor consistent.

3.2. Identifying Key Factors for Predicting Cyano-
HABs in Iowa Lakes. Differences between all chemical,
biological, climate, and land use measurements in Hazardous
and Safe groups were compared and significant differences (p <
0.001) were observed between the Hazardous and Safe groups
for 10 of the 27 variables analyzed using Wilcoxon rank-sum
tests on the rearranged data set that each week’s observations
were coupled with the following week’s microcystin safety level
(n = 1473) (Table 2). These variables included pH, DOC, Cl−,
TKN, ortho-P, mcyA_M, mcyA_M:16S, percentages of land

within a 1 km radius from the sampling point categorized as
wetlands (% wetlands), developed area (% developed), and
hay/pasture area (% hay/pasture). The gene copies of mcyA
genes (mcyA_M), which are directly associated with micro-
cystin production,69 were observed to be approximately 20
times higher than in Hazardous cases compared to safe
samples. Similarly, the mean ratio of Microcystis mcyA to
bacterial 16S rRNA gene copies (mcyA_M:16S) was as high as
0.18 in the Hazardous group while the ratio was 0.02 in the
Safe group. Consistent with observations that high nutrients
loads are associated with CyanoHABs, the concentrations of
nutrients such as TKN and ortho-P were significantly higher in
the Hazardous group. However, no significant differences were
observed in TKP and TP measurements between Safe and
Hazardous groups. Other chemical parameters like DOC and
pH were also higher in the Hazardous cases, while the mean
chloride concentration was higher in the Safe group.

Through the feature selection on the rearranged data set that
linked each week’s input variables together with the following
week’s microcystin safety level class (n = 1473), nine factors
were identified as having above-average predictive power based
on the average normalized feature importance scores obtained
(Figure 3). The feature selection analysis suggested that
microcystin-producing gene copies of Microcystis (mcyA_M)
were the most important factor in predicting CyanoHAB
occurrences and chose multiple parameters from all available
categories, including chemical, biological, climate, and land use
variables. These highly predictive factors, including mcyA_M,
TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC,
dewpoint temperature, and ortho-P, were selected as input
variables to train subsequent models.

Table 2. Summary of Wilcoxon Rank-Sum Tests Conducted on All Available Variables between Hazardous and Safe Samplesa

category variable hazardous (n = 70) safe (n = 1403) P-value

chemical pH 9.05 8.46 <0.001***
DOC (ppm) 8.64 6.35 <0.001***
Cl− (mg/L) 10.44 14.82 <0.001***
TKN (mg N/L) 2.30 0.86 <0.001 ***
TKP (mg P/L) 0.51 0.50 0.5
ortho-P (mg P/L) 0.14 0.04 <0.001***
TP (mg P/L) 0.64 0.54 0.076

biological Microcystis mcyA (copies/mL) 1.30 × 106 7.38 × 104 <0.001***
Planktothrix mcyA (copies/mL) 6.43 × 103 4.23 × 103 0.7
Anabaena mcyA A (copies/mL) 0.00 × 100 0.00 × 100 >0.9
16s rRNA (copies/mL) 7.02 × 106 6.19 × 106 0.6
mcyA_M:16s rRNA 0.18 0.02 <0.001***

climate precipitation (mm) 4.06 3.3 0.8
temperature (°C) 22.7 22.4 0.6
dewpoint (°C) 17.2 17.8 0.7
wind speed (m/s) 1.02 1.03 0.6
gust speed (m/s) 1.88 1.97 0.8
humidity (%) 75 76 >0.9

land use % wetlands 3.0 6.0 <0.001***
% forest 29.0 23.0 0.003
% developed 7.0 11.0 <0.001***
% barren land 0.1 0.1 0.231
% scrub/shrubbery 0.6 0.3 0.010
% cultivated crops 20.0 16.0 0.027
% open water 18.0 30.0 0.003
% hay/pasture 19.0 10.0 <0.001***
% herbaceous 3.0 3.0 0.2

aThe bold rows indicate the variables with a statistically significant difference in means between the two classes (P-value <0.001).
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3.3. Performance Evaluation of One-Week-Ahead
CyanoHABs Prediction Models. The present study
evaluated three different model types (XGBoost, Neural
Network, and Logistic Regression) with three different
sampling strategies to train the selected variables. The

performance of each model on the testing set was compared
using diverse metrics, including ROC-AUC, accuracy,
sensitivity, specificity, LR+, and 1/LR− (Table 3). The three
models for the training set without class imbalance adjustment
showed high scores in ROC-AUC, accuracy, and specificity,
while the sensitivity scores were low (0.357 for XGBoost,
0.286 for Neural Network, and 0.000 for Logistic Regression).
As the low sensitivity scores indicate that the models are not
capable of predicting Hazardous cases correctly, the models
built on the training set without class imbalance adjustment
were excluded from further considerations. The Neural
Network model with oversampling most consistently demon-
strated high scores across all evaluation metrics (i.e., ROC-
AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857,
LR+ 5.993, and 1/LR− 5.993). Likelihood ratios of the Neural
Network model with oversampling indicate that a Hazardous
case is 5.993 times more likely to be predicted as “Hazardous”
than a Safe case, while a Safe case is 5.993 times more likely to
be predicted as “Safe” than a Hazardous case. Interestingly, the
LR+ of the XGBoost with downsampling (5.557) was slightly
lower than the LR+ of the Neural Network model with
downsampling (5.993), while it showed a much higher 1/LR−
(11.569) value than the Neural Network model with
downsampling (5.993). In other words, through the XGBoost
model with downsampling, a Hazardous case is 5.557 times
more likely to be predicted as “Hazardous” than a Safe case,
while a Safe case is 11.569 times more likely to be predicted as
“Safe” than a Hazardous case. Other models, such as the
XGBoost with oversampling, the Neural Network with
downsampling, and Logistic Regression models, showed a bit
lower LR + or 1/LR− compared to the XGBoost with
downsampling and the Neural Network oversampling. While
both the XGBoost with downsampling and the Logistic
Regression model with oversampling achieved the highest
sensitivity scores, correctly predicting 13 out of 14 Hazardous
cases, the Logistic Regression model had more false positives,
resulting in a lower LR+. In summary, the evaluation of one-
week-ahead CyanoHABs prediction models consistently
demonstrated the strong performance of the Neural Network
model with oversampling. Notably, XGBoost with down-
sampling and the Neural Network with oversampling emerged
as strong contenders, each excelling in different aspects of
predictive power. The XGBoost with downsampling exhibited
a slightly lower LR+ but a significantly higher 1/LR−, while

Figure 3. Variable importance scores as determined by average over
1000 iterations of (a) LASSO and (b) XGBoost on permuted data
sets. The LASSO and XGBoost scores were normalized separately,
then averaged together to derive (c) an average normalized
importance score. A score of 0 indicates that the feature has average
predictive power, a negative score indicates predictive power worse
than average, and positive scores indicate better-than-average
predictive power.

Table 3. Performance Metrics on the Test Set for the Models Traineda

model sampling strategy ROC-AUC accuracy sensitivity specificity LR+ 1/LR−
XGBoost oversampling 0.940 0.902 0.786 0.900 7.860 4.206

downsampling 0.944 0.831 0.928 0.833 5.557 11.569
none 0.930 0.963 0.357 0.993

neural network oversampling 0.940 0.861 0.857 0.857 5.993 5.993
downsampling 0.932 0.810 0.786 0.807 4.073 3.771
none 0.925 0.966 0.286 1.000

logistic regression oversampling 0.932 0.813 0.928 0.811 4.910 11.264
downsampling 0.915 0.831 0.714 0.839 4.435 2.934
none 0.927 0.953 0.000 1.000

aThe sampling strategy refers to how class imbalances were handled: oversampling refers to using the SMOTE algorithm to generate observations
of the minority class to even out class proportions, downsampling refers to randomly selecting samples in the majority class as many as the number
of samples in the minority class, and none refers to the training set without class imbalance adjustment. After excluding the models with low
sensitivity scores, which were built on the training set without class imbalance adjustment, the top three scores in each metric are displayed in bold
boxes.
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the Neural Network with oversampling demonstrated a
balanced performance across all metrics.

4. DISCUSSION
The primary objectives of the current study were to identify
predictive factors for CyanoHAB occurrences and to develop
classification models capable of one-week-ahead forecasting
whether microcystin concentrations would exceed EPA
thresholds. Feature selection highlighted the significance of
nine key factors, spanning biological (mcyA_M,
mcyA_M:16S), chemical (TKN, pH, DOC, ortho-P), land
use (% hay/pasture, % developed), and climatic (dewpoint
temperature) variables. The machine learning model evalua-
tion, based on six performance metrics (ROC-AUC, accuracy,
sensitivity, specificity, LR+, and 1/LR−), led to the
recommendation of the Neural Network with oversampling
and the XGBoost with downsampling. These models offer
stable and balanced predictions of CyanoHAB occurrences.
Overall, this study underscores the potential of machine
learning approaches in predicting CyanoHABs and emphasizes
the importance of an integrative approach to understanding the
complex interplay of variables influencing CyanoHAB
occurrences.

One of the principal findings of this study is the close
alignment between the relationships between CyanoHABs and
individual factors described in the existing literature and the
variables that displayed significant differences between Hazard-
ous and Safe groups in Wilcoxon rank-sum tests (Table 2),
which are also well aligned with the input variables selected for
model training (Figure 3). For example, samples exceeding the
EPA threshold (i.e., 8 μg/L microcystin concentration) in the
following week exhibited significantly higher nitrogen and
phosphorus concentrations, corroborating previous stud-
ies.20,21,39 Earlier research have also demonstrated a strong
relationship between changes in Microcystis activities and DOC
concentrations or pH.70 Notably, ortho-P, which can be
directly utilized by microscopic phytoplankton,71 emerged as
a more predictive variable than TKP. While only dewpoint
temperature was chosen for model training among the climate
parameters, despite no significant differences observed between
the Hazardous and Safe groups in this regard, there is room for
discussion regarding why the feature selection algorithms
singled out dewpoint temperature. A possible explanation
might be found in a previous study conducted in Cobscook
Bay, Maine, USA,72 which reported a negative correlation
between higher dewpoint temperatures and harmful algal
blooms. This correlation could be attributed to higher
dewpoint temperatures indicating cloudier or stormier weather
conditions, characterized by increased atmospheric water
vapor, which is less favorable for cyanobacterial growth.
Alternatively, the consistency of weather conditions across
Iowa or the varying distances from weather stations to the
sampling sites (Table S2) could have influenced the statistical
significance of the climate parameters.

According to the National Land Cover Database (NLCD),
planted/cultivated land can be categorized into two classes: (i)
% hay/pasture, which refers to areas of grasses, legumes, or
grass-legume mixtures planted for livestock grazing or the
production of seed or hay crops, and (ii) % cultivated crops,
which represents areas used for the production of annual crops,
such as corn, soybeans, vegetables, and more. Since agricultural
land is generally considered a major source of nutrient loads
into inland water resources, both types of land use showed

statistical difference between Hazardous and Safe groups
(Table 2), although the significance was weaker for cultivated
crop area (p < 0.05). However, the overall analysis, including
feature selection, suggest that the % hay/pasture area can be a
more influential source of nutrient loads into the lakes
compared to % Cultivated Crop. This higher influence of %
hay/pasture has also been demonstrated in a previous study,
which suggested decreasing the percentage of grazing land
cover can potentially improve water quality and reduce the
occurrence of cyanobacterial blooms in water reservoirs.73 In
the same context, the negative correlations with % developed
and % wetland between Hazardous and Safe groups can be
explained, as a larger developed and wetland area indicates less
agricultural area nearby.

The successful development of accurate data-driven models
for natural events in the environment may require four
essential elements: (i) the collection of high-quality data sets
encompassing diverse and relevant variables, (ii) the collection
of sufficient data, (iii) the selection of appropriate machine
learning algorithm(s), and (iv) the formulation of a well-
defined research question.74,75 With the assumption that a
well-defined research question can only emerge from a proper
data set, the question arises: among a high-quality data set
containing diverse and relevant input variables, a sufficient
amount of data, and appropriate machine learning algorithms,
which element holds the utmost importance? A previous study
on rainfall-runoff modeling, which assessed the influence of
input data, model type, preprocessing, and data length on
forecasting accuracy, concluded that the primary element is the
input data, followed by data length, preprocessing, and model
type.76 Unfortunately, attempts to construct data-driven
models using environmental data sets often get caught in the
trap of comparing various model types with an inadequate list
of variables and searching for ways to modify the data to
achieve better performance. This undesirable initial approach
can also lead to the adoption of indirect parameters as target
values, frequently resulting in a disconnect from effectively
addressing the ultimate research question. A sufficient amount
of high-quality, relevant data with appropriate training can
enable machine learning models to achieve desired levels of
accuracy for desired target variables.77

In the case of predicting CyanoHABs, the ideal scenario
would involve developing a regression model that forecasts
specific concentrations of microcystins or other cyanotoxins
with some lead time. Although the current study collected
1591 samples from dozens of lakes across Iowa in collaboration
with a state government agency, the data set was not suitable
for regression models due to the limited number of samples
with microcystin concentrations above 8 μg/L (Figure S3).
Consequently, the target parameter had to be adjusted by
categorizing the microcystin concentrations into two classes
according to the EPA threshold (i.e., 8 μg/L). Despite this
limitation, our models still serve as a practical solution from
the regulatory perspective by informing us whether a site
should be closed, even without informing specific microcystin
concentration values. Another limitation was the class
imbalance in the available data, with the majority of lake
water samples classified as Safe. This imbalance skews the
model performance as a model predicting all cases to be the
majority class would achieve high accuracy and sensitivity but
low specificity (i.e., less correctly classifying samples belonging
to the minority class). Excluding data from lakes without
CyanoHABs occurrence during the study period cannot be
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considered as an option to improve the class imbalance. Such
data from lakes without historical issues are equally important
as they can provide information about why certain lakes have
remained problem-free. Additionally, as shown in Figure 2, all
lakes have the potential for CyanoHABs occurrences if specific
conditions are met. Thus, the class imbalance problem needs
to be addressed further, for example, by collecting more
Hazardous cases through continuous and long-term sampling
efforts. Such continuous monitoring efforts will enhance our
understanding of the dynamics surrounding CyanoHAB
occurrences and facilitate practical mitigation strategies.
Additionally, further investigations are also necessary to
understand the intricate interplay among relevant variables in
both laboratory and field settings. These investigations should
involve identifying parameters that serve as root causes or
triggers or simply exhibit co-occurrences.
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(45) de J Magalhães, A. A.; da Luz, L. D.; de Aguiar Junior, T. R.
Environmental factors driving the dominance of the harmful bloom-
forming cyanobacteria Microcystis and Aphanocapsa in a tropical water
supply reservoir. Water Environ. Res. 2019, 91 (11), 1466−1478.

(46) Bui, M.-H.; Pham, T.-L.; Dao, T.-S. Prediction of
cyanobacterial blooms in the Dau Tieng Reservoir using an artificial
neural network. Mar. Freshwater Res. 2017, 68 (11), 2070−2080.

(47) Tyler, A. N.; Hunter, P. D.; Carvalho, L.; Codd, G. A.; Elliott, J.
A.; Ferguson, C. A.; Hanley, N. D.; Hopkins, D. W.; Maberly, S. C.;
Mearns, K. J.; Scott, E. M. Strategies for monitoring and managing
mass populations of toxic cyanobacteria in recreational waters: a
multi-interdisciplinary approach. Environ. Health 2009, 8, S11.

(48) Recknagel, F.; Branco, C. W. C.; Cao, H.; Huszar, V. L. M.;
Sousa-Filho, l. F. Modelling and forecasting the heterogeneous
distribution of picocyanobacteria in the tropical Lajes Reservoir
(Brazil) by evolutionary computation. Hydrobiologia 2015, 749 (1),
53−67.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c07764
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

J

https://doi.org/10.1073/pnas.1216006110
https://doi.org/10.1073/pnas.1216006110
https://doi.org/10.1002/lob.10351
https://doi.org/10.1002/lob.10351
https://doi.org/10.1371/journal.pone.0195930
https://doi.org/10.1371/journal.pone.0195930
https://doi.org/10.1111/j.1467-9353.2006.00284.x
https://doi.org/10.1111/j.1467-9353.2006.00284.x
https://doi.org/10.2307/1311453
https://doi.org/10.2307/1311453
https://doi.org/10.2134/jeq2018.12.0435
https://doi.org/10.2134/jeq2018.12.0435
https://doi.org/10.2134/jeq2018.12.0435
https://doi.org/10.1016/j.scitotenv.2011.02.001
https://doi.org/10.1016/j.scitotenv.2011.02.001
https://doi.org/10.1016/j.scitotenv.2011.02.001
https://doi.org/10.1002/wat2.1373
https://doi.org/10.1002/wat2.1373
https://doi.org/10.1002/wat2.1373
https://doi.org/10.1073/pnas.0805108105
https://doi.org/10.1073/pnas.0805108105
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/final_habs_hypoxia_research_plan_and_action.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/final_habs_hypoxia_research_plan_and_action.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/final_habs_hypoxia_research_plan_and_action.pdf
https://doi.org/10.3390/life4040988
https://doi.org/10.3390/life4040988
https://doi.org/10.1007/s11356-011-0616-z
https://doi.org/10.1007/s11356-011-0616-z
https://doi.org/10.1007/s11356-011-0616-z
https://doi.org/10.1016/j.watres.2011.11.052
https://doi.org/10.1016/j.watres.2011.11.052
https://doi.org/10.1016/j.watres.2011.11.052
https://doi.org/10.1016/j.watres.2022.118814
https://doi.org/10.1016/j.watres.2022.118814
https://doi.org/10.1016/j.hal.2018.02.001
https://doi.org/10.1016/j.hal.2018.02.001
https://doi.org/10.1016/s1001-0742(10)60587-6
https://doi.org/10.1016/s1001-0742(10)60587-6
https://doi.org/10.1016/j.ese.2020.100069
https://doi.org/10.1016/j.ese.2020.100069
https://doi.org/10.1016/j.ese.2020.100069
https://doi.org/10.1016/j.jhydrol.2018.12.030
https://doi.org/10.1016/j.jhydrol.2018.12.030
https://doi.org/10.3390/w10101396
https://doi.org/10.3390/w10101396
https://doi.org/10.3390/w10101396
https://doi.org/10.3390/ijerph15071322
https://doi.org/10.3390/ijerph15071322
https://doi.org/10.3389/fpls.2018.00869
https://doi.org/10.3389/fpls.2018.00869
https://doi.org/10.3389/fpls.2018.00869
https://doi.org/10.3389/fpls.2018.00869
https://doi.org/10.1002/ecm.1286
https://doi.org/10.1002/ecm.1286
https://doi.org/10.1016/j.watres.2022.118289
https://doi.org/10.1016/j.watres.2022.118289
https://doi.org/10.1016/j.watres.2022.118289
https://doi.org/10.3390/w13040439
https://doi.org/10.3390/w13040439
https://doi.org/10.1088/1748-9326/ac302d
https://doi.org/10.1088/1748-9326/ac302d
https://doi.org/10.1088/1748-9326/ac302d
https://doi.org/10.3389/fenvs.2020.581091
https://doi.org/10.3389/fenvs.2020.581091
https://doi.org/10.1016/j.watres.2020.116349
https://doi.org/10.1016/j.watres.2020.116349
https://doi.org/10.1111/ele.12927
https://doi.org/10.1111/ele.12927
https://doi.org/10.1021/acs.est.7b01498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b01498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b01498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ecolmodel.2017.06.005
https://doi.org/10.1016/j.ecolmodel.2017.06.005
https://doi.org/10.1016/j.hal.2017.09.003
https://doi.org/10.1016/j.hal.2017.09.003
https://doi.org/10.1002/wer.1141
https://doi.org/10.1002/wer.1141
https://doi.org/10.1002/wer.1141
https://doi.org/10.1071/MF16327
https://doi.org/10.1071/MF16327
https://doi.org/10.1071/MF16327
https://doi.org/10.1186/1476-069X-8-S1-S11
https://doi.org/10.1186/1476-069X-8-S1-S11
https://doi.org/10.1186/1476-069X-8-S1-S11
https://doi.org/10.1007/s10750-014-2144-6
https://doi.org/10.1007/s10750-014-2144-6
https://doi.org/10.1007/s10750-014-2144-6
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c07764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(49) Cao, H.; Recknagel, F.; Bartkow, M. Spatially-explicit
forecasting of cyanobacteria assemblages in freshwater lakes by
multi-objective hybrid evolutionary algorithms. Ecol. Model. 2016,
342, 97−112.

(50) Recknagel, F.; Orr, P. T.; Cao, H. Inductive reasoning and
forecasting of population dynamics of Cylindrospermopsis raciborskii in
three sub-tropical reservoirs by evolutionary computation. Harmful
Algae 2014, 31, 26−34.

(51) Mchau, G. J.; Makule, E.; Machunda, R.; Gong, Y. Y.; Kimanya,
M. Phycocyanin as a proxy for algal blooms in surface waters: case
study of Ukerewe Island, Tanzania. Water Pract. Technol. 2019, 14
(1), 229−239.

(52) Li, W.; Qin, B. Dynamics of spatiotemporal heterogeneity of
cyanobacterial blooms in large eutrophic Lake Taihu, China.
Hydrobiologia 2019, 833 (1), 81−93.

(53) Kasinak, J. M. E.; Holt, B. M.; Chislock, M. F.; Wilson, A. E.
Benchtop fluorometry of phycocyanin as a rapid approach for
estimating cyanobacterial biovolume. J. Plankton Res. 2015, 37 (1),
248−257.

(54) The Iowa Department of Natural Resources Water Quality
Monitoring and Assessment (AQuIA), 2023. https://programs.iowadnr.
gov/aquia/Programs/Beaches (accessed Sept, 2023).

(55) Lee, J.; Choi, J.; Fatka, M.; Swanner, E.; Ikuma, K.; Liang, X.;
Leung, T.; Howe, A. Improved detection of mcyA genes and their
phylogenetic origins in harmful algal blooms. Water Res. 2020, 176,
115730.

(56) Muyzer, G.; de Waal, E. C.; Uitterlinden, A. G. Profiling of
complex microbial populations by denaturing gradient gel electro-
phoresis analysis of polymerase chain reaction-amplified genes coding
for 16S rRNA. Appl. Environ. Microbiol. 1993, 59 (3), 695−700.

(57) Ritalahti, K. M.; Amos, B. K.; Sung, Y.; Wu, Q.; Koenigsberg, S.
S.; Löffler, F. E. Quantitative PCR targeting 16S rRNA and reductive
dehalogenase genes simultaneously monitors multiple Dehalococcoides
strains. Appl. Environ. Microbiol. 2006, 72 (4), 2765−2774.

(58) U.S. Geological Survey. National Land Cover Database (NLCD)
2019 Products (Ver. 2.0, June 2021), 2021. (accessed March, 2023).

(59) Raster: Geographic Analysis and Modeling. http://CRAN.R-
project.org/package=raster (accessed March, 2023).

(60) Pebesma, E. Simple features for R: Standardized support for
spatial vector data. R J. 2018, 10 (1), 439−446.

(61) Exactextractr: Fast Extraction from Raster Datasets Using
Polygons. https://CRAN.R-project.org/package=exactextractr (ac-
cessed March, 2023).

(62) Weather Underground, 2023. https://www.wunderground.com/
(accessed March, 2023).

(63) Lee, J.; Im, J.; Kim, U.; Löffler, F. E. A data mining approach to
predict in situ detoxification potential of chlorinated ethenes. Environ.
Sci. Technol. 2016, 50 (10), 5181−5188.

(64) Tidymodels: A Collection of Packages for Modeling and Machine
Learning Using Tidyverse Principles. https://www.tidymodels.org
(accessed March, 2023).

(65) Friedman, J. H.; Hastie, T.; Tibshirani, R. Regularization paths
for generalized linear models via coordinate descent. J. Stat. Software
2010, 33 (1), 1−22.

(66) Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting
System. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016; pp 785−
794.

(67) Kuhn, M.; Falbel, D. Brulee: High-Level Modeling Functions with
“Torch”. https://github.com/tidymodels/brulee (accessed March,
2023).

(68) Ranganathan, P.; Aggarwal, R. Understanding the properties of
diagnostic tests − Part 2: Likelihood ratios. Perspect. Clin. Res. 2018, 9
(2), 99−102.

(69) Tillett, D.; Dittmann, E.; Erhard, M.; von Döhren, H.; Börner,
T.; Neilan, B. A. Structural organization of microcystin biosynthesis in
Microcystis aeruginosa PCC7806: an integrated peptide−polyketide
synthetase system. Chem. Biol. 2000, 7 (10), 753−764.

(70) Hu, L.; Shan, K.; Huang, L.; Li, Y.; Zhao, L.; Zhou, Q.; Song, L.
Environmental factors associated with cyanobacterial assemblages in a
mesotrophic subtropical plateau lake: A focus on bloom toxicity. Sci.
Total Environ. 2021, 777, 146052.

(71) Miao, K.; Li, X.; Guo, L.; Gao, M.; Zhao, Y.; Jin, C.; Ji, J.; She,
Z. Cultivation of Chlorella pyrenoidosa with different phosphorus
forms under photoautotrophic and mixotrophic modes: Biochemical
component synthesis and phosphorus bioavailability appraisement. J.
Clean. Prod. 2022, 359, 132058.

(72) Horecka, H. M. Environmental factors linked to harmful algal
bloom induced shellfish toxicity in Cobscook Bay, Maine. Honors
Thesis, Honors College, 2012. https://digitalcommons.library.
umaine.edu/honors/56.

(73) Leigh, C.; Burford, M. A.; Roberts, D. T.; Udy, J. W. Predicting
the vulnerability of reservoirs to poor water quality and cyanobacterial
blooms. Water Res. 2010, 44 (15), 4487−4496.

(74) Dueben, P. D.; Bauer, P. Challenges and design choices for
global weather and climate models based on machine learning. Geosci.
Model Dev. 2018, 11, 3999−4009.

(75) Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J. G.; Gu, A.; Li, B.;
Ma, X.; Marrone, B. L.; Ren, Z. J.; Schrier, J.; Shi, W.; Tan, H.; Wang,
T.; Wang, X.; Wong, B. M.; Xiao, X.; Yu, X.; Zhu, J.; Zhang, H.
Machine learning: new ideas and tools in environmental science and
engineering. Environ. Sci. Technol. 2021, 55 (19), 12741−12754.

(76) Moosavi, V.; Gheisoori Fard, Z.; Vafakhah, M. Which one is
more important in daily runoff forecasting using data driven models:
Input data, model type, preprocessing or data length? J. Hydrol. 2022,
606, 127429.

(77) Goh, G. B.; Siegel, C.; Vishnu, A.; Hodas, N.; Baker, N. How
much chemistry does a deep neural network need to know to make
accurate predictions?. 2018 IEEE Winter Conference on Applications of
Computer Vision, 2018; pp 1340−1349.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c07764
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

K

https://doi.org/10.1016/j.ecolmodel.2016.09.024
https://doi.org/10.1016/j.ecolmodel.2016.09.024
https://doi.org/10.1016/j.ecolmodel.2016.09.024
https://doi.org/10.1016/j.hal.2013.09.004
https://doi.org/10.1016/j.hal.2013.09.004
https://doi.org/10.1016/j.hal.2013.09.004
https://doi.org/10.2166/wpt.2019.005
https://doi.org/10.2166/wpt.2019.005
https://doi.org/10.1007/s10750-019-3883-1
https://doi.org/10.1007/s10750-019-3883-1
https://doi.org/10.1093/plankt/fbu096
https://doi.org/10.1093/plankt/fbu096
https://programs.iowadnr.gov/aquia/Programs/Beaches
https://programs.iowadnr.gov/aquia/Programs/Beaches
https://doi.org/10.1016/j.watres.2020.115730
https://doi.org/10.1016/j.watres.2020.115730
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.1128/AEM.72.4.2765-2774.2006
https://doi.org/10.1128/AEM.72.4.2765-2774.2006
https://doi.org/10.1128/AEM.72.4.2765-2774.2006
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://CRAN.R-project.org/package=exactextractr
https://www.wunderground.com/
https://doi.org/10.1021/acs.est.5b05090?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.5b05090?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.tidymodels.org
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://github.com/tidymodels/brulee
https://doi.org/10.4103/picr.PICR_41_18
https://doi.org/10.4103/picr.PICR_41_18
https://doi.org/10.1016/s1074-5521(00)00021-1
https://doi.org/10.1016/s1074-5521(00)00021-1
https://doi.org/10.1016/s1074-5521(00)00021-1
https://doi.org/10.1016/j.scitotenv.2021.146052
https://doi.org/10.1016/j.scitotenv.2021.146052
https://doi.org/10.1016/j.jclepro.2022.132058
https://doi.org/10.1016/j.jclepro.2022.132058
https://doi.org/10.1016/j.jclepro.2022.132058
https://digitalcommons.library.umaine.edu/honors/56
https://digitalcommons.library.umaine.edu/honors/56
https://doi.org/10.1016/j.watres.2010.06.016
https://doi.org/10.1016/j.watres.2010.06.016
https://doi.org/10.1016/j.watres.2010.06.016
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.1021/acs.est.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jhydrol.2022.127429
https://doi.org/10.1016/j.jhydrol.2022.127429
https://doi.org/10.1016/j.jhydrol.2022.127429
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c07764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

