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Reversal of the levee effect towards 
sustainable floodplain management

Meng Ding    1,2,9, Peirong Lin    1,3,9 , Shang Gao    4, Jida Wang    2,5, 
Zhenzhong Zeng    6, Kaihao Zheng1, Xudong Zhou    7, Dai Yamazaki    7, 
Yige Gao8 & Yu Liu    1

Levees constrain roaring floodwater but are blamed for reducing people’s 
perception of flood risks and promoting floodplain human settlements 
unprepared for high-consequence flood events. Yet the interplay between levee 
construction and floodplain development remains poorly quantified, obscuring 
an objective assessment of human–water relations. Here, to quantitatively 
assess how floodplain urban expansion is linked to levee construction, we 
develop a multiscale composite analysis framework leveraging a national levee 
database and decades of annual land-cover maps. We find that in the contiguous 
United States, levee construction is associated with a 62% acceleration in 
floodplain urban expansion, outpacing that of the county (29%), highlighting 
a clear change in risk perception after levees are built. Regions historically 
lacking strong momentum for population growth while experiencing frequent 
floods tend to rely more strongly on levees and we suggest these areas to 
develop a more diversified portfolio to cope with floods. Temporally, the 
positive levee effect is found to have weakened and then reversed since the 
late 1970s, reflecting the role of legislative regulations to suppress floodplain 
urban expansion. Our quantitative framework sheds light on how structural 
and non-structural measures jointly influence floodplain urban growth 
patterns. It also provides a viable framework to objectively assess the floodplain 
management strategies currently in place, which may provide useful guidance 
for managing flood risks towards sustainable development goals.

Flooding is one of the most devastating natural hazards, causing 
US$25.5 billion of economic losses and 6,570 fatalities worldwide 
annually on average between 1970 and 20201. The property and life 
losses related to flooding have accelerated at a rate of 6.3% and 1.5% 
per year during the past five decades2,3. Yet despite the devastating 
consequences of floods and the increasing awareness of changing 

flood risks under a warming climate, floodplain encroachment is still 
inevitable largely due to increasing population pressure4–7, which has 
posed grand challenges to flood risk management8.

Levee construction is a well-known yet poorly quantified driving 
force for promoting floodplain development. As one of the oldest and 
least costly hydraulic engineering infrastructures, levees function 
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and the number used is larger than in existing studies12,13. Documented 
levee constructions can date back to over 150 yr with a boom in the 
1940–1960s, slightly earlier than but largely coinciding with the peak 
time of damming in the United States (Supplementary Fig. 2).

To assess whether there is an association (not necessarily a causal 
relationship) between levee construction and change in people’s per-
ceptional of flood risk, we first use the seven decades of annual LULCC 
maps from the US Geological Survey (USGS) to derive the urban expan-
sion curves at two critical spatial scales, that is, the levee-protected 
floodplains and the counties that intersect the floodplains (see Methods  
for the pairing process). The former reflects urban developments that 
are more incentivized by the perceived flood protection from levees, 
whereas the latter also includes other socio-economic and biophysi-
cal drivers for urban growth. The raw urban expansion curves exhibit 
multiple breakpoints (Supplementary Fig. 3), suggesting the presence 
of many factors jointly promoting urban growth40. Thus, we introduce 
a composite analysis around the levee construction year (T0 denotes its 
completion year) to exclusively focus on levees (Methods, equations 1 
and 2). The high linearity of the curves suggests the effective averaging 
of other compounding factors, which allows for the calculation of the 
multiplicative changes in the urban expansion rates before and after T0 
(see the red and blue curves for the observed and the predicted urban 
expansion rates, respectively, assuming no perturbations; Fig. 1c).  
Then we define an LE index e that subtracts the accelerated urban 
expansion percentage at the county level from that at the floodplain 
level (Methods, equation 3) to quantify LE – e > 0 denotes an outpaced 
floodplain urban expansion compared with the county urban expan-
sion after T0, while e ≤ 0 suggests a negative or non-prominent LE due 
to constantly faster urban expansion in other parts of the county. We 
find that the urban expansion rate in the levee-protected floodplain has 
accelerated by 62% (Fig. 1c) after T0. This acceleration exceeds and is 2.1 
times that of the county (29% acceleration; Fig. 1d), hence the e = 0.33 
at the national scale offers strong evidence of urban expansion shifting 
towards places close to rivers, as well as quantitative confirmation of 
risk perception change after T0.

We also calculate the ratio of urban area in the levee-protected 
floodplain (Up(t)) to that in the county (Uc(t)) to investigate how the 
floodplain urban area ratio changes over time (Methods, equation 4). 

We find that the Up(t)
Uc(t)

 ratio first decreases linearly before T0 (red line in 

Supplementary Fig. 4a), implying more allocation of urban expansion 
to the portion of counties beyond levee-protected floodplains, prob-
ably attributable to people’s tendency to avoid flood risks. The ratio 
begins to increase after T0, suggesting an outpaced urban expansion 
inside the floodplain, again highlighting a clear perceptional shift in 
treating floodplains as more habitable land than other parts of the 
county after levee construction. Subtracting the predicted ratio from 

the observed ratio and then dividing by the original Up(t)
Uc(t)

 ratio (Methods, 

equation 5), E(t) represents the relative percentage of urban growth in 
the floodplain exclusively induced by levee construction, and a net of 
~4% more urban areas have been promoted 10 yr after T0 (Supplemen-
tary Fig. 4b). Interestingly, E(t) starts to become positive1–2 yr before 
T0, suggesting that an accelerated floodplain urban expansion occurred 
in parallel with the near-completion phase of levee construction, during 
which people’s flood risk perception may already be shifting.

Strong regional levee effects
We further break down the positive LE at the national scale by probing 
into the spatio-temporal patterns, and investigate factors that may 
explain the varying strengths of LE. To address the limitations of the 
non-smoothed urban expansion curves at each individual levee level, 
we aggregate levees within different spatial units defined by the state 
(that is, administrative) and watershed (that is, natural hydroclimate) 
boundaries, such that spatial patterns of positive/negative LE can be 

to confine the lateral distribution of roaring floodwater. However, 
levees can also reduce people’s awareness of flood risks or the physi-
cal boundaries of a potential floodplain9 and subsequently promote 
floodplain settlement (Fig. 1a,b); such a phenomenon is often known 
as the ‘levee effect’ (hereafter referred to as LE) and has been widely 
discussed among scholars since the 1940s10–15 but rarely quantified 
across scales. The paradox of LE is that levees introduce a ‘false sense 
of security’, which may lead to unintended consequences despite the 
original goal of levee building to reduce flood risks. Although lev-
ees are designed to reduce the probability of flood hazards, studies 
have increasingly alerted people about the residual risks of levees, 
that is, levees can only protect areas from floods below the designed 
protection standards, but they cannot eliminate the occurrence of 
low-probability but high-consequence flood events15–17. Indeed, over 
the years, prominent cases of levee breaching have been reported, and 
due to the reduced awareness/preparedness, such events were often 
associated with high vulnerability and unexpected socio-economic 
losses, including but not limited to the New Orleans levee failures in 
2005 after Hurricane Katrina18, the Mississippi River levee failure in the 
1927 and 2008 floods19,20, and the UK levee breaches in the 1953 North 
Sea flood21. Currently, levees remain important structural measures 
to cope with flood risks22. Under this context, it is crucial to better 
understand the changing threat of flooding people may face even in 
areas protected by levees23.

In this study, we are motivated to gain an in-depth understand-
ing of how floodplain urban expansion can be linked with levee con-
struction. Intuitively, a tight binding between levee construction and 
floodplain urban expansion indicates a strong socio-economic reliance 
on levees, which should call for attention given the underlying LE 
and its ramification for flood risk management. However, in the past,  
studies have reported difficulties in deriving a clear-cut linkage 
between levees and floodplain urban expansion patterns12,13, partly due 
to a dearth of levee geodatabases and the highly complex nature of local 
decisions or policies compounding the problem24–26. Here we develop 
a multiscale composite analysis framework that leverages a national 
levee inventory27 documenting key attributes such as levee comple-
tion year and levee-protected floodplain areas, which allows for an 
exclusive analysis on this factor. Building on the national levee database 
(NLD), we extract and analyse the floodplain and county urban expan-
sion curves with seven decades of annual land-use land-cover change 
(LULCC) maps28,29 for over a thousand locations. Then we introduce an 
LE index, which quantifies positive and negative LE using composite 
analysis and the similar concept of econometric methods (for example,  
difference-in-difference, synthetic control30) that compares the rates 
of accelerated urban expansion at the floodplain and the county lev-
els (Methods); this helps to average out the compounding effects 
from other factors, allowing for an exclusive analysis of the LE. Ulti-
mately, we provide a quantitative framework to assess the interplay 
between levee construction and floodplain urban expansion, and 
more importantly, an improved understanding of factors regulating 
this interplay. As climate change continues to intensify the hydrome-
teorological extremes31–34, a deeper understanding into these inner 
dynamics is expected to inform wiser management strategies, which 
is key to achieving sustainable development goals for countries facing 
varying degrees of flood risk and financial/governance constraints.

Conceptualization to quantitative measures
Levees remain the least mapped features25 for the river–floodplain 
system despite recent progress in mapping rivers, lakes and reservoirs/
dams worldwide35–38, which precludes a global-scale analysis of LE. 
Here we use the US NLD39 as it is one of the most comprehensive and 
openly accessible levee geodatabases covering key attributes crucial to 
our analyses (Methods). Despite studies suggesting that the archived 
39,445 km of levees only took up ~30% of the total US levee length24,26, 
the 1,129 levee systems (Supplementary Fig. 1) cover the major ones 
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revealed. In Fig. 2a,b, the spatial composite index e ≤ 0 (blue) points 
to either limited floodplain urban expansion before and after T0, or 
floodplain urban settlements already saturated before T0. The former 
scenario implies the diversity of levee services, as exemplified by loca-
tions 1 and 2 (Fig. 2c) that function to protect agricultural lands rather 
than urban development, whereas the latter corresponds to high his-
torical socio-economic pressures that had attracted floodplain urban 
growth long before levees were in place (locations 3 and 4 in Fig. 2c). 
These contrast with cases of e > 0 (red in Fig. 2a,b), which corresponds 
to noticeable urban sprawl towards rivers after levees were built.

We find that in general, regions historically lacking strong momen-
tum for population growth while suffering from frequent flooding (for 
example, Lower Mississippi, Missouri, Arkansas-White-Red, Lower 
Colorado, the Pacific Northwest and Florida) tend to rely more strongly 
on levees (that is, e > 0; red in Fig. 2a,b and Supplementary Fig. 5a,c). For 
example, floods occur frequently along the Missouri River in eastern 
Nebraska, where several major floods in Omaha were reported41. For this 
location (location 7 in Fig. 2d), people considered the adjacency to the 
Missouri River meanders non-habitable without levees (urban area in 
grey), but their floodplain settlement strategy markedly changed after 
levees were built (urban area in red). South Florida presents another 
prominent example, where urban development relied heavily on flood 

control systems due to excessive surface water and prominent coastal 
flooding42 (location 8 in Fig. 2d). Similarly, cases of e > 0 are found in 
Montana and New Mexico, where unpleasant natural conditions (for 
example, arid/semi-arid climates or mountainous areas) drove people 
to inhabit levee-protected areas due to the need for water resources. 
These are opposite to the eastern United States where no clear shifts 
in floodplain urban expansion patterns were found before and after T0 
(e < 0; blue in Fig. 2a,b and Supplementary Fig. 5b,d), prominently in the 
Ohio River Basin. This low reliance on levees was historically inevitable 
as the high population pressure since the colonial times drove flood-
plain urban expansion long before structural protections were in place. 
To further corroborate this finding, we replicate the composite analysis 
and quantify how LE varies at different levels of terrain variability and 
major city population43 (Supplementary Fig. 6 and Table 1). Despite a 
certain degree of complexity implying the impacts of other exogenous 
factors, the general pattern shows that the signal of e tends to weaken 
with increasing population and decreasing terrain variability, which 
is consistent with our expectation. Meanwhile, urban expansion rates 
have accelerated in the levee-protected floodplains under all popula-
tion and terrain conditions, confirming the overall prevalence of LE.

Areas with low reliance on levees also tend to have higher Federal 
Emergency Management Agency (FEMA) flood hazard map coverages44 
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Fig. 1 | Composite analysis of the LE, lumping over the contiguous United 
States. a, Conceptual illustration of LE. b, Satellite images of four selected 
sites hinting urban development within the floodplain (from left to right: 
Larksville, Pennsylvania; Louisville, Kentucky; Chico, California; Albuquerque, 
New Mexico). c,d, Composite analysis of the urban area (103 km2) in the levee-
protected floodplains (Up, c) and that in the counties (Uc, d). X axes separate the 

urban expansion time series into years before and after the levee construction 
year T0, where all leveed locations in the United States are summed up for 
composite analysis; k shows the linear urban expansion rate. Background World 
Imagery Map source credits: Esri, Maxer, GeoEye, Earthstar Geographics,  
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN and the GIS User Community.
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and vice versa. This may be explained by the fact that regions with high 
urbanization pressure and low reliance on levees (locations 3 and 4 
in Fig. 2c) tend to possess better perceptions of flood risks, which 
often corresponds to more diversified ways of coping with floods, for 
example, funding to develop flood hazard maps, more comprehen-
sive and well-firmed public alert systems. When levee systems were 
constructed later there, they were also designed with relatively higher 
protection standards as an ad hoc solution for protecting the already 
settled floodplains (for example, 2000-yr levees in the Ohio River Basin; 
Supplementary Fig. 7). By contrast, the majority of places that show a 
strong reliance on levees (red in Fig. 2; more cases in Supplementary 
Fig. 8) are typically devoid of FEMA flood hazard information and thus 
lack FEMA regulations to limit development, and their constructed 
levees also tend to have relatively lower protection standards in gen-
eral (Supplementary Fig. 7). While not all high LE regions correspond 
to low flood protection standards, the tendency for such a distinct 
pattern provides an alarming picture of how areas exhibiting strong 
LE may probably have less preparedness for the residual risks of levee 
breaching or overtopping and thus high vulnerability to flooding, 

cautioning policymakers to pay special attention to these regions. 
Therefore, we suggest that such contrasting spatial patterns of LE be 
better considered in future flood risk management.

Temporal dynamics and the US floodplain 
management practices
Finally, we also analyse the temporal dynamics of LE to complement 
the above analysis that blurs out the years. To do that, we conduct a 
temporal composite analysis that groups the levees constructed 3, 5, 
7 and 9 yr centred around the levee construction year to ensure that 
the results are consistent regardless of the examined timespans. While 
slight differences are found in the 3-yr composite (a likely result of the 
smaller sample size compared with other groups), all results point 
towards the positive LE before the late 1970s, suggesting the positive 
association between levee construction and the accelerated flood-
plain urban expansion primarily before the late 1970s (red in Fig. 3). 
Prominently, variations in the positive LE were observed before 1970, 
but LE then started to decline from the early 1970s until it came to a 
reversal after the late 1970s (blue in Fig. 3). The consistent temporal 
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Fig. 2 | Spatial pattern of the LE. a,b, LE (e) at the watershed (HUC2, a) and state 
levels (b). c, Example cases of limited urban expansion after levee construction 
(locations 1–4, marked as green squares in a). d, The opposite cases (locations 
5–8, marked as green triangles in a). In c and d, the left figure shows the county 
and the adjacent river where levee is located; the right figure shows the urban 
change at T0 − 10 and T0 + 10 (red denotes the newly increased urban area). 
Circles in a and b denote the total area of the levee-protected floodplains; the 
larger the area, the smoother the urban expansion curves for the validity of the 

spatial composite analysis. NA indicates a lack of either levee completion year or 
sufficient data for calculation. At locations 1 and 2, levees were built to protect 
local agricultural areas; at locations 3 and 4, the floodplain was fully urbanized 
before levees were built. It is reasonable to expect inconsistencies between a 
and b due to the modifiable areal unit problem and the scattered distribution of 
levees; here we focus more on the prominent consistencies for interpreting  
the results.
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patterns revealed interesting LE dynamics, highlighting distinct flood-
plain management strategies that have become effective. It is worth 
emphasizing that as our definition of the index e always compares the 
changes in urban expansion rate at two spatial scales, the natural slow-
down of urban growth in the United States does not affect this result. 
The sensitivity analysis also suggests that the urban saturation level 
of the floodplain does not affect the decreased LE and its prominent 
reversal (Supplementary Fig. 9).

We further investigate the factors that can explain the observed 
LE dynamics and find the progress of the National Flood Insurance 
Program (NFIP) (triangle 1 in Fig. 3) as the key in shifting the US flood-
plain management policies from relying on levees alone to a joint use of 
structural and non-structural measures45. Because of NFIP, floodplain 
urban expansion started to face higher costs and more rigorous stand-
ards than before; thus, suppressed new developments were observed 
after initial rebounds in floodplain urban growth, which was faithfully 
captured by the index immediately after 1968. Then, the 1973 Flood  
Disaster Protection Act (triangle 2) added a mandatory insurance 
purchase requirement to NFIP, and the 1977 Executive Order 11988 
(triangle 3) required that federal government activities in floodplains 
must strictly comply with NFIP; these collectively contributed to the LE 
weakening. Later, the 1982 ‘A Levee Policy’ (triangle 4) specified detailed 
requirements of flood insurance purchase within levee-protected 
areas, which continued to strengthen the control of urban expansion in 
flood-prone areas and may explain the continuous decline and the even-
tual reversal in LE (Fig. 3). Overall, the LE dynamics reflected how each 
legislative non-structural measure has come into play. Our quantitative 
framework not only captures these detailed dynamics, but also high-
lights the timepoint when non-structural measures have become truly 
effective in suppressing floodplain urban growth in the United States.

Discussion
The interesting temporal dynamics offers a clear picture of the more 
sustainable floodplain management route that the United States has 
taken, which has been successful in suppressing ‘risky growth’46, in 
accordance with the call by the Intergovernmental Panel on Climate 
Change Sixth Assessment Report promoting joint use of structural 
versus non-structural measures for managing floodplains47. Thus, as 
a natural follow up, one might be interested in assessing LE dynamics 
more widely to offer insights into the floodplain management practices 
currently in place in other countries. Unfortunately, data limitations 
have precluded such an analysis; therefore, we instead surveyed ten 

countries frequently facing flood hazards to reveal their diverse struc-
tural and non-structural measures and the varying degrees of flood risk 
concerns (Supplementary Table 2). In general, the choice of adapta-
tion measures varies considerably across regions due to their specific 
hydroclimatic and socio-economic contexts, precluding a simplified 
form of the expected LE and/or how it could affect risk management.

To offer a conceptual protocol, three possible pathways by which 
levees could affect flood risks are summarized, involving three deter-
minants of risk: hazard, exposure and vulnerability44 (right boxes in 
Fig. 4). The pathways are: (1) levees can reduce flood hazard under the 
designed flood protection standards and thus reduce flood risks44; 
(2) levees can reduce people’s awareness or preparedness for floods, 
thus increasing flood vulnerability11; and (3) levees can stimulate urban 
expansion and flood exposure, thus increasing fatalities and economic 
losses with levee failure48. Given the complexity of these aggregated 
linkages, it remains challenging to directly associate flood risk with LE.

By developing a framework to assess LE, our study not only offers 
quantitative evidence of the existence of the last pathway, but also 
clarifies the interplay between levee construction and urban expansion, 
which can be jointly regulated by hydroclimatic and socio-economic 
factors as well as non-structural measures (left boxes in Fig. 4). This 
non-uniform LE dynamics in space and time adds a layer of uncertainty 
in risk management, as further confounded by the sign of changes in 
flood hazards under climate change31 (top box in Fig. 4). As climate 
change continues to exacerbate weather extremes and the designed 
protection standard of hydraulic engineering infrastructures are 
increasingly challenged4,8,49,50, it seems that directly advocating for 
similar non-structural measures (for example, those applied in the 
United States) for regions exhibiting a close link between levee con-
struction and floodplain urban growth (that is, positive LE) should 
be prioritized, but the advocacy can be complicated by the specific 
hydroclimate and socio-economic background. Thus, should data 
become available, we argue that similar quantitative analyses need 
to be performed to facilitate an objective and in-depth assessment of 
spatio-temporal LE patterns. To achieve the sustainable development 
goals set by the United Nations that aim to reduce flood fatality world-
wide, such assessments can foster a better rethinking of human–water 
relations to emphasize ‘soft path solutions’51 to complement physical 
infrastructures (for example, better legislation for floodplain man-
agement, raising awareness of flood risks and early-warning systems) 
towards better-informed strategic planning for sustainable floodplain 
management. Lastly, as such analyses would require data on hydraulic 
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engineering infrastructures, our study also advocates for the develop-
ment or open sharing of levee databases, in line with several recent 
studies26,52, which will be useful for assessing the changing flood risks 
of the global river–floodplain system under increasing anthropogenic 
pressures.

Methods
Geodatabase of levee systems
The US NLD (https://levees.sec.usace.army.mil/#/; accessed November 
2021) developed by the US Army Corps of Engineers (USACE) was used 
in our study. NLD records 6,969 levee systems in the United States 
with a total levee length of 39,445 km. NLD also provides important 
attributes such as the levee completion year, levee performance and 
the protection standard (as flood return period), among many others. 
The inventoried levee systems are represented by polylines and their 
protected areas (that is, the floodplain extent that a levee protects) 
are represented by polygons (Supplementary Fig. 1). The levee length 
ranges from 4.6 m to 578.27 km (median 1.63 km, mean 6.24 km), and 
the levee-protected area ranges from 140 m2 to 19,511.71 km2 (median 
0.55 km2, mean 31.26 km2). Among the levees, 1,750 have documented 
construction completion years (from 1882 to 2021), but only 1,129 were 
constructed between 1948 and 1995, which satisfies our calculation 
criteria for the LE. Thus, these 1,129 levees were eventually used for 
the analysis.

Multitemporal urban land-cover maps at annual time scales
Many LULCC maps can be used to derive urban expansion curves useful 
for our analyses. Here we chose the USGS LULCC maps28,29 that cover the 
period from 1938 to 2005 annually, because the levee constructions in 
the United States peaked in the 1940s–1960s (Supplementary Fig. 2). 
Despite a suboptimal spatial resolution of 250 m, this LULCC dataset 
included the peak levee construction period, thus allowing inclusion of 
as many levees as possible. This dataset was developed by combining 
a diverse set of data sources with a spatially explicit modelling frame-
work, and it contained 14 LULC classes for the years 1938–1992 and 17 
classes from 1992 to 2005. For both timespans, we extracted Class 2 
(Urban/Developed) data for our analyses.

County, watershed and state shapefiles
We used the 1:500,000 2018 USA 116th Congressional Districts data-
set as the county boundary (https://www.census.gov/geographies/
mapping-files/time-series/geo/carto-boundary-file.2018.html; 
accessed November 2021). We also used the watershed boundary 

dataset53 (https://apps.nationalmap.gov/downloader/#/; accessed 
May 2021) and the 1:5,000,000 2018 US state shapefile (https://
www.census.gov/geographies/mapping-files/time-series/geo/
carto-boundary-file.2018.html; accessed November 2021) for pre-
senting the spatial distribution of LE.

Reprojection, rasterization and zonal averaging
The data layers have different projection systems and spatial extent/
resolutions (Supplementary Table 3), and they were first reprojected to 
the USA Contiguous Albers Equal Area Conic USGS version (EPSG: 5070) 
projection system before other processing steps. The reprojected data 
files were then consistently rasterized and resampled to the same spa-
tial resolution (250 m) and the same spatial extent (top: 3175292.633, 
left: −2357953.1839, right: 2282796.8161, bottom: 238542.633) as the 
USGS LULCC data with the Geospatial Data Abstraction Library. We then 
calculated the average urban percentages within each floodplain and 
county for time-series analysis (1938–2005) using zonal averages per-
formed with the Python Pandas ‘groupby’ function (the Python scripts 
are openly available at https://github.com/peironglinlin/leveeRS).

Pairing levees with counties and protected floodplains
Each levee was paired up with a levee-protected area polygon, which 
comes with the NLD dataset and was digitized by a variety of methods  
(for example, hydraulic modelling, flood fill method, projected profile 
method, flow path method, manual digitizing) employed by USACE 
personnel (P. F. Kline, personal communication). We directly used this 
NLD polygon dataset for the floodplain-scale analyses. The minimum 
polygon in NLD is 0.000138 km2, which is smaller than one LULCC pixel 
(0.0625 km2), so we eliminated 270 levees whose protected areas are 
smaller than one pixel. In the remaining dataset, ~21.37% of the levee 
systems and their protected floodplain polygons intersect with mul-
tiple counties. For levees completely within the boundary of a single 
county, the pairing relationship was determined simply by using the 
‘completely within’ spatial join function in ArcGIS. For levees intersect-
ing multiple counties, we assumed that its floodplain urban expansion 
can be jointly influenced by all counties intersecting with it (mean-
ing joint influence from the county policy or local government deci-
sions). Accordingly, we visually inspected each of the ‘one-to-many’ 
spatial relationships and excluded cases where the intersection was 
caused by slivers or other mapping artefacts, retaining only the valid 
‘one-to-many’ cases after visual inspection. The national-scale results 
presented in Fig. 1c,d are based on the correspondence of 1,129 unique 
levees and 601 unique counties.
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Fig. 4 | Conceptual diagram illustrating the role of levees in flood risk management. Numbers 1, 2 and 3 refers to the links of LE to three determinants of flood risk: 
hazard, exposure and vulnerability. ‘+’ and ‘−’ denote positive/negative correlation, respectively.
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Constraints applied in quantifying the LE
To focus our analyses on levees and to rule out other compounding 
factors, we applied two key layers of constraints for developing our 
quantitative framework, namely (1) ‘spatial constraints’ defined by 
two spatial scales, that is, the levee-protected floodplains (where the 
close proximity to rivers makes the levee protection a direct effect) and 
the counties (where the socio-economic drivers and policies within 
the administrative boundaries play a key role), and (2) ‘temporal con-
straints’ that separated our analysis critically by the levee construction 
year (T0). Below, we introduce how we used them specifically.

Composite analysis
It is recognized early in the analysis that one cannot directly apply the 
floodplain-level LULCC calculation to assess LE due to the complex 
factors conjointly promoting urban growth (for example, multiple 
breakpoints not corresponding to T0 in Supplementary Fig. 3), data 
limitations (for example, the suboptimal spatial resolution of the USGS 
LULCC data at 250 m due to the need for long historical data before 
1985) and the scattered distributions of levees that can compromise a 
clear interpretation of LE. Therefore, we introduced the composite 
analysis that grouped levees at different spatial and temporal scales to 
derive the national-scale LE. More specifically, in equations (1 and 2), 
up,i and uc,i denote the annual urban area within the levee-protected 
floodplain and within the county boundary, respectively; subscript i 
denotes the ith floodplain–county pair and t ranges from 1938 to  
2005 (see example time series in Supplementary Fig. 3). Then the 
temporal constraints were applied by relabelling the LULCC as 
t ∈ [T0 − 10, T0 + 10] , and for the same year t, the urban area was 
summed up to derive the urban expansion curves (Fig. 1c,d); here, Up(t) 
and Uc(t) denote the total urban area at the protected floodplain and 
county levels, respectively; np and nc denote the total number of flood-
plains and counties, respectively.

Up(t) =
np

∑
i=1

up,i(t), t ∈ [T0 − 10, T0 + 10] (1)

Uc(t) =
nc

∑
i=1

uc,i(t), t ∈ [T0 − 10, T0 + 10] (2)

Defining the LE index e
On the basis of equations (1 and 2) and Fig. 1c,d, factors other than 
levees were properly averaged out. We then borrowed the principles 
of the econometric methods to quantify LE, where it is crucial to choose 
a good control group. We selected county-scale urban expansion as 
the control group, as it shared the same socio-economic, hydroclimatic 
and other biophysical drivers for urban growth with the floodplain, 
except for levees. Building on this, a positive LE was logically derived 
if the urban expansion acceleration in the protected floodplain (treat-
ment group) exceeded that of the county (control group). Therefore, 
an index e to quantify LE was constructed by calculating the difference 
in slope change of urban expansion between the levee-protected flood-
plains and counties (equation 3, where kp and kc denote the linear slope 
of the derived urban expansion curves in equations 1 and 2). In particu-
lar, the linear slope of the time-series urban area data from T0 − 10 to 
T0 can be used to calculate kp(predicted)  and kc(predicted)  assuming  
no perturbations from levee construction, and the linear slope from 
T0 to T0 + 10 can be used to calculate kp(observed) and kc(observed). In 
this analysis, we used the 10-yr timespan but our sensitivity analysis 
shows that the results are consistent under different timespans—we 
tested 4, 6, 8, 10, 12 and 14-yr timespans, and only 6, 10 and 14 yr are 
presented in Supplementary Fig. 10 for clarity. Specifically, e can  
be interpreted as the degree of urban growth in the protected flood-
plain exceeding that in the county, even in cases when county urban 
expansion is slowing down. Note that only ~0.5% of the levee-protected 

floodplains take up a percentage of larger than 20% in its corresponding 
county (the largest one is ~51%); this means that majority of the 
levee-protected floodplains are much smaller than the counties, thus 
making the index valid for our purpose.

e =
kp(observed)
kp(predicted)

− kc(observed)
kc(predicted)

(3)

In addition, to provide more information, we also calculated the 
ratio of urban area within the levee-protected floodplain to that within 
the county (Rp/c(t), equation 4). Results show that the urban area in 
the floodplain takes up ~3% of the urban area in the county, which 
decreased before T0; by extrapolating the linearly decreasing Rp/c(t) 
to predict the ratio of urban area in floodplains (R′p/c(t)) after T0 by 
assuming no perturbations from levees, we derived the red and blue 
curves in Supplementary Fig. 4a. The relative difference between the 
observed and the predicted ratio (Rp/c(t) − R′p/c(t)) can then be viewed 
as the net effect of levee-associated changes and divided by the original 
Rp/c(t) to give E(t) (equation 5), which denotes the percentage change in 
floodplain urban area exclusively associated with levee construction 
(Supplementary Fig. 4b).

Rp/c(t) =
Up(t)
Uc(t)

× 100% (4)

E(t) = [Rp/c(t) − R′p/c(t)]/Rp/c(t) (5)

Spatial composite analysis
To break down the national-scale LE in the contiguous United States 
both spatially and temporally, we further introduced the spatial com-
posite for state/watershed level analysis and the temporal composite 
for assessing the temporal dynamics. Again, as the urban expansion 
rate is difficult to directly assess at the level of individual levees, we 
used two grouping scales, that is, the Hydrologic Unit Code-2 (HUC2) 
watershed and state levels, and performed similar composite analysis 
as the national-scale composite to present a more visual and con-
tinuous distribution of the LE (Fig. 2). This spatial composite derived 
more-smoothed urban expansion curves for each spatial unit (see 
Supplementary Fig. 5 for examples) that allowed for the valid calcula-
tion of e. The same equations (1 and 3) were applied to each state and 
watershed that contains levees satisfying the criteria. It is worth noting 
that due to the imbalanced spatial distribution of the levee systems, 
some spatial units might not have had sufficient data sample size to 
derive well-smoothed curves; thus, we further used the summed area 
of the levee-protected floodplains (shown as circles in Fig. 2a,d) as the 
first-order approximation of the validity of our index e.

Temporal composite analysis
Finally, we also grouped levees constructed in the same years but in 
different locations to focus on the LE temporal dynamics. Similarly, to 
avoid the limitations due to insufficient data samples (locations g, h and 
i in Supplementary Fig. 3), we grouped the levee constructed in 3, 5, 7 
and 9 yr centred around the years of interest for this analysis. This also 
helped to ensure that our results are robust irrespective of the grouping 
method. The derived temporal patterns of LE are presented in Fig. 3.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this study were obtained from openly accessible data 
sources. The NLD27 shapefiles were downloaded from https://levees.
sec.usace.army.mil/#/, accessed November 2021. Historical maps 

http://www.nature.com/natsustain
https://levees.sec.usace.army.mil/#/
https://levees.sec.usace.army.mil/#/


Nature Sustainability

Article https://doi.org/10.1038/s41893-023-01202-9

of the USGS LULCC datasets (1938–2005)28,29 were obtained from 
https://www.sciencebase.gov/catalog/item/59d3c73de4b05fe04cc
3d1d1 and https://www.sciencebase.gov/catalog/item/5b96c2f9e4b
0702d0e826f6d. The shapefiles of the Watershed Boundary Dataset 
(WBD)53 were downloaded from https://apps.nationalmap.gov/down-
loader/#/. The dam data were obtained from the US National Inventory 
of Dams (USNID) dataset39 (https://nid.sec.usace.army.mil). Data on 
the fatalities and economic losses due to flooding in each country are 
from the EM-DAT database1 at https://public.emdat.be/data. Major 
cities43: https://hub.arcgis.com/datasets/esri::usa-major-cities/about. 
Our organized data are available from GitHub at https://github.com/ 
peironglinlin/leveeRS/blob/main/data/COMID_systemID_intersec-
tion.csv and https://github.com/peironglinlin/leveeRS/blob/main/
processed_data/Processed_data_for_Fig1c_and_Fig1d.csv. Source data 
are provided with this paper.

Code availability
Codes for data processing and analyses are openly available via GitHub 
at https://github.com/peironglinlin/leveeRS.
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