联合Sentinel-1SAR和Sentinel-2MSI的湖泊浮叶和挺水植被自动分类算法*
doi: 10.18307/2025.0436
辛逸豪1,2 , 罗菊花1,2 , 徐颖1,2 , 秦海涛1,2 , 孟迪3 , 何锋3 , 鲁露3 , 陈青1 , 徐亚田1
1. 中国科学院南京地理与湖泊研究所,湖泊与流域水安全全国重点实验室,南京 211135
2. 中国科学院大学南京学院,南京 211135
3. 云南省昆明市滇池高原湖泊研究院,昆明 650228
基金项目: 国家自然科学基金项目(42271377)和云南省省市一体化专项 (202202AH210006)联合资助
Automatic classification algorithm for floating-leaved and emergent aquatic vegetation in lakes using the joint Sentinel-1 SAR and Sentinel-2 MSI data*
Xin Yihao1,2 , Luo Juhua1,2 , Xu Ying1,2 , Qin Haitao1,2 , Meng Di3 , He Feng3 , Lu Lu3 , Chen Qing1 , Xu Yatian1
1. State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135 , P.R.China
2. University of Chinese Academy of Sciences, Nanjing, Nanjing 211135 , P.R.China
3. Yunnan Kunming Dianchi and Plateau Lakes Institute, Kunming 650228 , P.R.China
摘要
浮叶植被和挺水植被是湖泊的重要初级生产者,在湖泊生态系统中发挥着不同的生态功能。利用卫星遥感技术监测浮叶植被和挺水植被空间分布和变化对湖泊生态评估和碳源汇核算具有重要意义。浮叶植被和挺水植被均具有典型的植被光谱特征,仅使用光学遥感难以进行区分,并且在富营养化湖泊中其分类还会受到具有相似光谱特征的藻类水华干扰。针对这些问题,本研究提出了一种联合Sentinel-1 SAR和Sentinel-2 MSI的湖泊浮叶植被和挺水植被自动分类算法。算法首先通过归一化植被指数(NDVI)和Otsu算法获取湖泊中具有植被光谱特征的地物区域,然后使用Sentinel-1 SAR影像的第一主成分(PCA1)和K-means聚类算法从该区域中提取浮叶植被和挺水植被。其中,PCA1是算法的核心分类指标,可以去除藻类水华影响并实现浮叶植被和挺水植被的准确分离。算法在太湖、乌梁素海、阳澄湖、南漪湖4个典型湖泊中开展了精度验证,平均总体分类精度为83.76%,Kappa系数为0.71。基于该算法,本研究获取了太湖年内和年际浮叶植被和挺水植被的变化。结果表明,两类植被的年内覆盖度峰值均出现在7—10月份;2016—2023年间,浮叶植被面积显著增加,从24.21 km2增至68.03 km2,而挺水植被面积则相对稳定,年均面积约为41.48 km2。该算法不仅解决了浮叶和挺水植被识别难的问题,还实现了自动化。在大尺度湖泊浮叶和挺水植被时空变化监测中具有广泛应用前景,为未来的湖泊生态评估和碳源汇核算提供了技术支撑。
Abstract
Floating-leaved and emergent aquatic vegetation play crucial roles as primary producers in lake ecosystems, each fulfilling distinct ecological functions. Monitoring the spatial distribution and changes of floating-leaved and emergent aquatic vegetation using satellite remote sensing is essential for lake ecological assessment and carbon source-sink accounting. However, distinguishing between the two types of aquatic vegetation using only optical remote sensing data is challenging due to their typical spectral characteristics. This challenge is further compounded by algal blooms in eutrophic lakes, which also exhibit similar spectral characteristics. To address this issue, we proposed an automatic classification algorithm for identifying two types of aquatic vegetation by combining Sentinel-1 SAR and Sentinel-2 MSI data. Firstly, we identified areas with vegetation spectral characteristics using the Normalized Difference Vegetation Index (NDVI) and Otsu's method in lakes. Then, in these regions, the first principal component (PCA1) of Sentinel-1 SAR image and the K-means clustering algorithm were used to extract floating-leaved and emergent aquatic vegetation. It's noted that PCA1 was a key classification indicator of the algorithm, which could remove the interference of algal blooms and achieve the separation of floating-leaved and emergent aquatic vegetation. The algorithm was conducted accuracy validation in four typical lakes (i.e. Lake Taihu, Lake Ulansuhai, Lake Yangcheng and Lake Nanyi), with an average overall classification accuracy of 83.76% and a Kappa coefficient of 0.71. Based on the algorithm, we mapped and analyzed the intra-annual and inter-annual variations of floating-leaved and emergent aquatic vegetation in Lake Taihu. The results showed that the area of both groups reached their coverage peaks from July to October. From 2016 to 2023, the area of floating-leaved aquatic vegetation significantly increased from 24.21 km2 to 68.03 km2, while the area of emergent aquatic vegetation remained relatively stable and the average annual area was 41.48 km2. This algorithm not only addresses the difficulties in identifying floating-leaved aquatic vegetation and emergent aquatic vegetation, but also achieves automation. It has great potential for monitoring large-scale spatial and temporal changes of floating-leaved aquatic vegetation and emergent aquatic vegetation in lakes. This provides the technical support for future lake ecological assessments and carbon source-sink accounting.
浮叶植被和挺水植被是湖泊生态系统的重要组成部分,在稳定边岸、净化水质和碳汇等方面发挥着关键作用[1-3]。这两种植被作为湖泊的重要生产者,在湖泊生态系统中承担着不同生态功能。其中,浮叶植被可以形成遮光层,抑制浮游植物生长并削减水体营养盐,具有抑藻等功能,可以阻碍湖泊向藻类主导的浊水态转变[4-5]。但同时,浮叶植被叶片浮在水面也会遮挡光线,导致沉水植被以及底栖生物难以生存。因此,与沉水植被相比,浮叶植被主导的湖泊生物多样性更低[6-8]。此外,在富营养化湖泊生态系统中,浮水植物(如凤眼莲 Eichhornia crassipes)因其显著提升的初级生产力,可以通过生物地球化学过程调控淡水系统的二氧化碳排放动态[9-10]。相较而言,挺水植被的碳汇能力更为显著,由于可以直接获取阳光和来自沉积物的养分,挺水植被将大量碳封存于地上和地下生物量中,固碳能力远高于其他水生植被类群[11]。然而,挺水植被提供重要碳汇功能的同时,也会加速湖泊淤积,使湖泊变浅,加剧沼泽化[12-13]。因此,开展浮叶植被和挺水植被的时空演变研究,对湖泊生态系统稳态演变评估和碳源汇核算具有重要意义。
传统的浮叶植被和挺水植被监测依赖实地调查,费时费力,且有限的实测样点无法反映植被复杂的时空异质性及变化。卫星遥感技术具备大面积、非破坏性和可追溯性等优势,已被广泛用于浅水湖泊水生植被群落分布及其时空变化监测[14]。不同于沉水植被,浮叶植被和挺水植被位于水面之上,其光谱信号无需经过水体辐射传输过程,受水环境影响较小,具有典型的植被光谱特征,易于识别[15]。然而,正因为两类植被都具有典型的植被光谱特征,光学遥感中常出现异物同谱现象,难以区分。因此,目前在基于光学遥感的湖泊水生植被分类制图研究中,通常都将它们归为一类[16-19],无法满足湖泊生态精细化监测与评估需求。此外,在草藻共存的富营养化湖泊中,藻类水华也具有类似植被的光谱特征[20],这给浮叶植被和挺水植被的精细分类带来了挑战。合成孔径雷达(synthetic aperture radar,SAR)数据可以提供光学遥感难以获取的地物表面粗糙度、介电常数、湿度和形态等信息[21]。这些物理和几何信息常被作为光学信息的补充,被广泛应用于湿地植被制图[22-24]。研究表明,浮叶植被和挺水植被对SAR的极化波段存在不同响应。挺水植被(如芦苇)密集的小叶片结构和内部空腔造成的多重散射现象显著降低了后向散射信号[25-26]。而浮叶植被叶片广泛分布于水面上,增加了水体表面的粗糙度,从而加强了后向散射信号[27]。因此,理论上,SAR在区分湖泊浮叶植被和挺水植被方面具有巨大潜力,但相关研究鲜有报道。
本研究针对光学遥感难以区分湖泊浮叶植被和挺水植被,且受到藻类水华干扰的局限性,尝试引入SAR数据解决这一难题。以典型草藻共存的富营养浅水湖泊——太湖为研究区,联合Sentinel-1 SAR和Sentinel-2 MSI数据开发一种既能去除藻类水华干扰,又能准确识别浮叶植被与挺水植被的自动分类算法,并在多个湖泊开展验证,最终应用至太湖年内和年际浮叶与挺水植被的时空变化分析。
1 材料与方法
1.1 研究区概况
本研究选取了典型草藻共存的富营养化浅水湖泊——太湖作为研究区构建算法。太湖(30°5′~32°8′N,119°8′~121°55′E)西部藻类水华频发,是典型的藻类主导湖区[28];而东部则分布有大量水生植被群落,尤其是东太湖湾,浮叶植被和挺水植被广泛分布,因此,太湖是开展浮叶与挺水植被分类算法构建的理想实验场。此外,本研究还选择了4个典型湖泊开展算法验证和鲁棒性检验,包括挺水植被为主导的乌梁素海(40°36′~41°3′N,108°43′~108°57′E)[29]、浮叶植被广泛分布的阳澄湖(31°21′~31°30′N,120°39′~120°50′E)[30]和重度富营养化且偶有藻类水华暴发的南漪湖(30°57′~31°15′N,111°43′~119°13′E)[31]
1.2 遥感影像数据及预处理
本研究使用了欧洲空间局的Sentinel系列卫星数据,包括Sentinel-1和Sentinel-2。其中,Sentinel-2具有13个波段,最大重访周期为5 d。Google Earth Engine(GEE)平台提供了两种Sentinel-2 MSI数据产品:Level-1C大气顶层(TOA)和Level-2A大气底层(BOA)反射数据。本研究使用的是Sentinel-2 Level-2A BOA数据,预处理包括辐射校准、地理校正和大气校正等。在GEE中,数据集公开访问接口为“COPERNICUS/S2”。为保证影像的可用性,在使用HydroLAKES数据集提供的研究湖泊矢量数据对影像进行裁剪后,使用QA60波段进行云掩膜。
Sentinel-1搭载了C波段合成孔径雷达负载,工作频率为5.405 GHz,最大重访周期为6 d。本研究选用了Sentinel-1的干涉宽幅模式,包含垂直-垂直极化(VV)和垂直-水平极化(VH)两种极化波段。数据经过地面范围检测、轨道修正、地形修正和热噪声减少等处理,转换为10 m空间分辨率的地面投影影像。在GEE中,可以通过“COPERNICUS/S1_GRD”接口获取Sentinel-1 SAR GRD数据。考虑到可用数据的数量,本研究将获取的Sentinel-1 SAR影像与Sentinel-2 MSI影像进行了时间匹配,即以Sentinel-2 MSI影像日期为基准,选择与其时间最接近的Sentinel-1 SAR影像[1932-33]。在完成影像的时间匹配后,对Sentinel-1 SAR影像使用Lee-Sigma滤波,进一步减少斑点噪声[34]。最后,使用HydroLAKES数据集提供的研究湖泊矢量数据对影像进行裁剪。
1.3 实测样点的获取
基于水生植被生长特征以及卫星过境时间,本研究于2019年8月16—23日在太湖进行了实地调查。以DJI Phantom 4 RTK无人机图像和船只标记目标群落区域的两种方式获得13个样本区域,包括2个挺水植被区域、6个浮叶植被区域、2个藻类水华区域、3个水体区域。基于2019年8月17日Sentinel-2 MSI影像和样本区域,获取了2181个水体像素、1021个浮叶植被像素、602个挺水植被像素和1752个藻类水华像素,作为构建算法和测试指标的样点数据集。
此外,本研究基于亚米级高分辨率影像,包括DJI Phantom 4 RTK无人机图像(空间分辨率为0.03 m)和JL-1高分影像(空间分辨率为0.7 m),通过目视选点,分别在太湖、乌梁素海、阳澄湖和南漪湖4个典型湖泊获取了390、144、362和231个样点作为验证集,用于算法验证。
1.4 研究方法
本研究开发的联合Sentinel-1 SAR和Sentinel-2 MSI的浮叶和挺水植被自动分类算法,包括3个步骤(图1):(1)基于Sentinel-2 MSI影像计算NDVI,并使用Otsu算法计算阈值,生成植被和非植被地物掩膜(图1a~c);(2)基于Sentinel-1 SAR影像的VV和VH极化波段进行主成分变换,将得到的第一主成分(PCA1)使用步骤(1)中的掩膜去除非植被区域(图1d~g);(3)对剩余区域使用K-means聚类算法,最终实现浮叶和挺水植被的分类和制图(图1h和i)。
1.4.1 植被特征地物的提取
藻类水华和水上植被(包括浮叶植被和挺水植被)均表现出典型的植被光谱特征,即在红光波段表现出强烈的吸收和较低的反射率,在近红外波段则显示出较高的反射率。基于这种光谱特性,传统的归一化植被指数(normalized difference vegetation index,NDVI)能够有效地识别藻类水华和水上植被[2035]。因此,本研究用NDVI来获取浮叶植被、挺水植被以及藻类水华区域(图2a)。NDVI公式如下:
NDVI=RRed -RNIR RRed +RNIR
(1)
式中,RRed代表红光波段反射率,RNIR代表近红外波段反射率。
NDVI的阈值采用了Otsu算法获取。Otsu基于影像灰度特征,将影像分为目标和背景两个部分,是一种自适应阈值算法,被广泛用于水生植被和湿地分类[36-37]。其中,最优阈值通过最大化前景和后景的类间方差确定。公式如下:
1浮叶植被和挺水植被分类算法流程
Fig.1Workflow of the algorithm for identifying floating-leaved and emergent aquatic vegetation
T=argmaxp0×p1×q0-q12
(2)
式中,p0代表前景像元数占影像的比例;p1代表后景像元数占影像的比例;q0代表前景平均值;q1代表后景平均值;T代表最大类间方差所对应的阈值。
1.4.2 浮叶植被和挺水植被分离指标的构建
本研究用于分离浮叶植被与挺水植被的关键指标,是通过主成分分析(principal component analysis,PCA)构建。PCA是一种简单降维技术,它将相互关联的变量转化为一组新的线性正交(非相关)变量,称为主成分,这些成分具有最大方差[38]。这种最大方差条件可以增强SAR影像中特定类别的特征[39]。本研究通过对Sentinel-1 SAR影像的VV和VH极化波段标准化后的协方差矩阵进行特征分解获取主成分。其中,第一主成分(PCA1)包含了波段的99%信息,第二主成分(PCA2)仅包含1%信息(图2c)。PCA1由VV极化波段主导(图2c),对浮叶植被、挺水植被和藻类水华具有非常好的分离效果(图2b)。在PCA1中,挺水植被表现为最低值,浮叶植被次之,水体和藻类水华存在重叠,均位于高值区,因此PCA1可以被用于浮叶植被和挺水植被的分离。公式如下:
PCA1 =σVV,σVH×k
(3)
式中,σVHσVV分别代表VH后向散射系数和VV后向散射系数;k是主成分分析中第一主成分的变换系数。
2NDVI和PCA1对浮叶植被、挺水植被、藻类水华和水体的可分性(a和b); 不同主成分的方差比例以及PCA1中VV与VH的波段贡献(c)
Fig.2Separability of floating-leaved vegetation, emergent vegetation, algal bloom and open water in NDVI and PCA1 (a and b) ; variance proportion of different principal components and band contributions of VV and VH in PCA1 (c)
1.4.3 浮叶植被和挺水植被的自动提取
基于PCA1指标,本研究使用了K-means算法实现对浮叶与挺水植被的识别。K-means算法是一种无监督、非确定性迭代方法,被广泛应用于大规模数据集聚类问题[40]。算法以距离作为相似度评价指标,将数据对象划分为K个不同的簇,并迭代直至K个簇中心的移动距离小于给定值。K-means算法具有简单、快速且易于实现的特点,主要包括2个步骤:(1)基于PCA1中潜在可能簇数预设聚类中心数量范围,本研究为3~8;(2)通过迭代计算不同聚类数量对应结果的方差比率标准(variance ratio criteria,VRC)确定最优簇数,并获取对应结果。其中,最优聚类数由VRC确定[41],即将类间方差与类内方差之比近似1时,说明类别来自同一个正态总体,而远大于1时,则两者是不同类。公式如下:
VRC=SSB(n-k)SSW(k-1)
(4)
式中,SSB(between-cluster sum of squares)表示类间方差;SSW(within-cluster sum of squares)表示类内方差;k表示聚类的类别数;n表示样本总数。
基于PCA1中浮叶植被与挺水植被数值分布特征,最优聚类结果中,均值最小的一类被定义为挺水植被,均值第二小的一类被定义为浮叶植被(图2b)。
2 结果与分析
2.1 浮叶植被和挺水植被分类结果及精度验证
基于本研究算法,获得了太湖(2023年8月6日)、乌梁素海(2022年8月9日)、阳澄湖(2022年6月27日)和南漪湖(2018年8月5日)四景影像的浮叶与挺水植被分类结果(图3)。从浮叶和挺水植被的空间分布看,乌梁素海和南漪湖的优势类群为挺水植被,而太湖和阳澄湖的优势类群为浮叶植被;此外,南漪湖影像中存在明显的藻类水华,但算法能去除藻类水华的影响,并能将浮叶植被和挺水植被准确分类(图3)。利用验证数据集,通过混淆矩阵分类结果进行精度验证(表1)。结果显示,浮叶植被和挺水植被的平均总体分类精度达到83.76%,Kappa系数为0.71。
3太湖、乌梁素海、阳澄湖和南漪湖的假彩色影像及浮叶与挺水植被分类
Fig.3False color images and classification maps of floating-leaved and emergent aquatic vegetation in Lake Taihu, Lake Ulansuhai, Lake Yangcheng and Lake Nanyi
1太湖、乌梁素海、阳澄湖和南漪湖的浮叶植被和挺水植被分类精度评估
Tab.1 Accuracy assessment of floating-leaved and emergent aquatic vegetation in Lake Taihu, Lake Ulansuhai, Lake Yangcheng and Lake Nanyi
2.2 2021年太湖浮叶与挺水植被季节变化分析
将该算法应用于2021年Sentinel数据,获取了太湖月尺度浮叶植被和挺水植被空间分布及变化(图4)。结果表明,浮叶植被主要分布于东太湖和胥口湾,挺水植被则稳定分布于湖滨带(图4a~h)。同时,由于种群的多样性,浮叶植被和挺水植被也展现出明显的季节性变化,例如太湖的浮叶植被种群主要为菱和荇菜,菱在6—7月生物量达到最大值,而荇菜则可以一直生长到10月[42-44],因此浮叶植被面积在7月(74 km2)和10月(52 km2)出现了两个峰值(图4i)。此外,浮叶植被面积年内整体表现为先增加后减小的趋势,3—4月开始生长,7—10月面积达到最大,11月基本消亡(图4h),符合浮叶植被的物候变化特征[44]。挺水植被虽然也表现出与浮叶植被相似的生长模式,但与浮叶植被不同的是,其在衰亡期后不会直接腐烂而是枯萎。因此挺水植被面积虽有季节变化,但变化较缓[45]
2.3 2016—2023年东太湖浮叶植被和挺水植被变化分析
考虑到太湖的浮叶植被与挺水植被最大面积均出现在7月左右,并且主要分布在东太湖,本研究选择了2016—2023年每年7—8月的东太湖Sentinel数据,并基于算法获取了两类植被的空间分布和面积变化(图5)。结果表明:2016—2023年间,东太湖挺水植被面积变化不显著(P=0.22),年际间波动较小可能是影像监测时间差异、水位差异等导致;而浮叶植被面积则显著增加(P=0.005),尤其是2019年后,浮叶植被面积是2019年前的近2倍,这可能与2019年东太湖湾围网被全部拆除有关。围网拆除前,渔民为了河蟹的优质生长,会人为补充围网中的沉水植被,并自发地对围网区内的浮叶植被进行打捞调控;2019年围网拆除后,失去了人为管控,浮叶植被的生长和竞争能力远大于沉水植被,导致浮叶植被快速扩张[46]
42021年太湖浮叶植被和挺水植被面积年内变化
Fig.4Changes of floating-leaved vegetation and emergent vegetation in Lake Taihu in 2021
3 讨论
本研究基于浮叶植被和挺水植被在SAR中的后向散射特征差异,联合光学和SAR数据,构建了湖泊浮叶植被和挺水植被分类算法,成功解决了光学遥感中传统植被指数难以区分两类植被的问题。该算法无需人为干预,理论上具有可推广性。算法的核心分类指标PCA1能够显著增强浮叶植被和挺水植被间的差异;同时,研究引入了无监督的K-means聚类方法,实现了浮叶和挺水植被的自动分类,避免了传统决策树分类方法中阈值需要人为干预的局限性。此外,该算法适用于不同水环境和水生态特征的湖泊,表现出较高的精度和稳定性。具体而言,算法在水环境和水生态特征差异显著的4个典型湖泊,包括草藻共存的太湖、以挺水植被为优势群落的乌梁素海、以浮叶植被为优势群落的阳澄湖以及重度富营养化的南漪湖,平均总体分类精度达到了83.76%。其中,南漪湖分类精度相对较低(79.65%),这可能是由于使用亚米级高分辨率影像目视选点构建的验证数据集,存在尺度效应和样点局部偏差。而在湖泊长时序浮叶植被和挺水植被分类制图中,算法表现出较高的稳定性(图4图5)。总体而言,该算法在大尺度湖泊浮叶植被和挺水植被时空分布及变化监测方面展现了巨大的应用潜力。
5东太湖2016—2023年浮叶植被和挺水植被变化
Fig.5Changes of floating-leaved vegetation and emergent vegetation in East Lake Taihu from 2016 to 2023
本研究提出的PCA1指标虽然可以有效避免藻类水华对浮叶植被和挺水植被分类的干扰,但仍存在一些不确定性。通常情况下,藻类水华可以抑制表面波浪,降低水体表面粗糙度,导致后向散射信号减弱,并在SAR图像中呈现负对比度[27]。在PCA1中,藻华数值分布与水体基本重合,这也是本研究提出的算法能避免藻类水华干扰分类的根本原因。然而,理论上,藻类水华聚集也可能会增加水体表面粗糙度,增强后向散射信号,导致SAR图像出现正对比度,使得这些区域在PCA1中的数值分布不再与水体一致,而与浮叶植被的分布产生部分重叠,导致算法在聚类时会将少量藻类水华误分为浮叶植被。因此,藻类水华区域这两种不同散射特征可能与藻类水华覆盖度有关[47-49],但目前无法定量评估这一现象导致的误差。未来将通过小规模对照实验,探索SAR在藻类水华区域出现不同响应的临界条件,以进一步明确算法适用条件,并改进和优化算法。
4 结论
本研究以草藻共存的太湖为研究区,开发了一种联合Sentinel-1 SAR和Sentinel-2 MSI的浮叶植被与挺水植被自动分类算法。该算法在水环境和水生态特征差异显著的4个典型湖泊(太湖、乌梁素海、阳澄湖和南漪湖)开展了应用与验证。各湖泊的分类精度分别为86.15%、83.33%、85.91%和79.65%,平均分类精度为83.76%,Kappa系数为0.71。基于该算法,本研究获取了太湖年内和年际浮叶植被和挺水植被的变化。结果表明,太湖的浮叶植被与挺水植被年内峰值均出现在7—10月,主要分布在东太湖湾。2016—2023年间东太湖湾的浮叶植被面积显著增加,从24.2 km2增长至68.1 km2,而挺水植被面积稳定在41.48 km2。自动分类算法在大尺度湖泊浮叶植被和挺水植被时空变化监测中具有应用潜力,可为未来开展湖泊生态评估和碳源汇核算提供技术支撑。
1浮叶植被和挺水植被分类算法流程
Fig.1Workflow of the algorithm for identifying floating-leaved and emergent aquatic vegetation
2NDVI和PCA1对浮叶植被、挺水植被、藻类水华和水体的可分性(a和b); 不同主成分的方差比例以及PCA1中VV与VH的波段贡献(c)
Fig.2Separability of floating-leaved vegetation, emergent vegetation, algal bloom and open water in NDVI and PCA1 (a and b) ; variance proportion of different principal components and band contributions of VV and VH in PCA1 (c)
3太湖、乌梁素海、阳澄湖和南漪湖的假彩色影像及浮叶与挺水植被分类
Fig.3False color images and classification maps of floating-leaved and emergent aquatic vegetation in Lake Taihu, Lake Ulansuhai, Lake Yangcheng and Lake Nanyi
42021年太湖浮叶植被和挺水植被面积年内变化
Fig.4Changes of floating-leaved vegetation and emergent vegetation in Lake Taihu in 2021
5东太湖2016—2023年浮叶植被和挺水植被变化
Fig.5Changes of floating-leaved vegetation and emergent vegetation in East Lake Taihu from 2016 to 2023
1太湖、乌梁素海、阳澄湖和南漪湖的浮叶植被和挺水植被分类精度评估
Chen FX, Lu SY, Hu XZ et al. Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China. Ecological Engineering,2019,134:56-64. DOI:10.1016/j.ecoleng.2019.05.002.
Janssen ABG, Hilt S, Kosten S et al. Shifting states,shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes. Freshwater Biology,2021,66(1):1-12. DOI:10.1111/fwb.13582.
Kosten S, Piñeiro M,de Goede E et al. Fate of methane in aquatic systems dominated by free-floating plants. Water Research,2016,104:200-207. DOI:10.1016/j.watres.2016.07.054.
Karpowicz M, Kornijów R, Ejsmont-Karabin J et al. Seasonal dynamics of phytoplankton and zooplankton communities in the estuarine Elblag Bay(Vistula Lagoon,southern Baltic)dominated by floating-leaved plants. Ecohydrology & Hydrobiology,2024. DOI:10.1016/j.ecohyd.2024.02.009.
Samal K, Kar S, Trivedi S. Ecological floating bed(EFB)for decontamination of polluted water bodies: Design,mechanism and performance. Journal of Environmental Management,2019,251:109550. DOI:10.1016/j.jenvman.2019.109550.
Hilt S, Brothers S, Jeppesen E et al. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience,2017,67(10):928-936. DOI:10.1093/biosci/bix106.
Massicotte P, Bertolo A, Brodeur P et al. Influence of the aquatic vegetation landscape on larval fish abundance. Journal of Great Lakes Research,2015,41(3):873-880. DOI:10.1016/j.jglr.2015.05.010.
Yan YJ, Li XY, Liang YL. A comparative study on community structure of macrozoobenthos between macrophtic and algal lakes. J Lake Sci,2005,17(2):176-182. DOI:10.18307/2005.0214.[闫云君, 李晓宇, 梁彦龄. 草型湖泊和藻型湖泊中大型底栖动物群落结构的比较. 湖泊科学,2005,17(2):176-182.]
Harpenslager SF, Thiemer K, Levertz C et al. Short-term effects of macrophyte removal on emission of CO2 and CH4 in shallow lakes. Aquatic Botany,2022,182:103555. DOI:10.1016/j.aquabot.2022.103555.
Oliveira Junior ES,van Bergen TJHM, Nauta J et al. Water hyacinth's effect on greenhouse gas fluxes: A field study in a wide variety of tropical water bodies. Ecosystems,2021,24(4):988-1004. DOI:10.1007/s10021-020-00564-x.
Ahmad DS, Ahmad DJ. Linking carbon storage with land use dynamics in a coastal Ramsar wetland. Science of the Total Environment,2024,932:173078. DOI:10.1016/j.scitotenv.2024.173078.
Liu PP, Bai JH, Zhao QQ et al. A review on terrestrialization and primary productivity of aquatic vegetations in lake ecosystems. Wetland Science,2013,11(3):392-397.[刘佩佩, 白军红, 赵庆庆等. 湖泊沼泽化与水生植物初级生产力研究进展. 湿地科学,2013,11(3):392-397.]
Gu XH, Zhang SZ, Bai XL et al. Evolution of community structure of aquatic macrophytes in East Taihu Lake and its wetlands. Acta Ecologica Sinica,2005,25(7):1541-1548.[谷孝鸿, 张圣照, 白秀玲等. 东太湖水生植物群落结构的演变及其沼泽化. 生态学报,2005,25(7):1541-1548.]
Luo JH, Yang JZC, Duan HT et al. Research progress of aquatic vegetation remote sensing in shallow lakes. National Remote Sensing Bulletin,2022,26(1):68-76.[罗菊花, 杨井志成, 段洪涛等. 浅水湖泊水生植被遥感监测研究进展. 遥感学报,2022,26(1):68-76.]
Zhou GH, Niu CY, Xu WJ et al. Canopy modeling of aquatic vegetation: A radiative transfer approach. Remote Sensing of Environment,2015,163:186-205. DOI:10.1016/j.rse.2015.03.015.
Dai YH, Feng L, Hou XJ et al. An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sensing of Environment,2021,260:112459. DOI:10.1016/j.rse.2021.112459.
Luo JH, Ni GG, Zhang YL et al. A new technique for quantifying algal bloom,floating/emergent and submerged vegetation in eutrophic shallow lakes using Landsat imagery. Remote Sensing of Environment,2023,287:113480. DOI:10.1016/j.rse.2023.113480.
Cao P, Liang QC, Li SM. A novel remote sensing simultaneous monitoring method for cyanobacteria blooms and aquatic vegetation in Taihu Lake based on Otsu algorithm. Jiangsu Agricultural Sciences,2019,47(14):288-294.[曹鹏, 梁其椿, 李淑敏. 基于Otsu算法的太湖蓝藻水华与水生植被遥感同步监测方法. 江苏农业科学,2019,47(14):288-294.]
Luo JH, Duan HT, Ma RH et al. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information. International Journal of Applied Earth Observation and Geoinformation,2017,57:154-165. DOI:10.1016/j.jag.2016.11.007.
Oyama Y, Matsushita B, Fukushima T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+shortwave infrared bands. Remote Sensing of Environment,2015,157:35-47. DOI:10.1016/j.rse.2014.04.031.
Elachi C, Bicknell T, Jordan RL et al. Spaceborne synthetic-aperture imaging radars: Applications,techniques,and technology. Proceedings of the IEEE,1982,70(10):1174-1209. DOI:10.1109/PROC.1982.12448.
Ade C, Khanna S, Lay M et al. Genus-level mapping of invasive floating aquatic vegetation using Sentinel-2 satellite remote sensing. Remote Sensing,2022,14(13):3013. DOI:10.3390/rs14133013.
Fu BL, Wang YQ, Campbell A et al. Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecological Indicators,2017,73:105-117. DOI:10.1016/j.ecolind.2016.09.029.
Zhang L, Luo WT, Zhang HH et al. Classification scheme for mapping wetland herbaceous plant communities using time series Sentinel-1 and Sentinel-2 data. National Remote Sensing Bulletin,2023,27(6):1362-1375. DOI:10.11834/jrs.20222079.[张琍, 罗文庭, 张皓寰等. 时序Sentinel-1和Sentinel-2数据支持下的鄱阳湖湿地草本植物群落制图分类. 遥感学报,2023,27(6):1362-1375.]
Heine I, Jagdhuber T, Itzerott S. Classification and monitoring of reed belts using dual-polarimetric TerraSAR-X time series. Remote Sensing,2016,8(7):552. DOI:10.3390/rs8070552.
Ma XS, Xu JG, Wu PH et al. Oil spill detection based on deep convolutional neural networks using polarimetric scattering information from sentinel-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing,2021,60:4204713. DOI:10.1109/TGRS.2021.3126175.
Qi L, Wang MH, Hu CM et al. On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sensing of Environment,2022,280:113188. DOI:10.1016/j.rse.2022.113188.
Ai Y, Bi YH, Hu ZY. Response of predominant phytoplankton species to anthropogenic impacts in Lake Taihu. Journal of Freshwater Ecology,2015,30(1):99-112. DOI:10.1080/02705060.2014.992052.
Zhu YH, Zhang S, Zhao SN et al. Analysis of shallow water lake bogginess and causes in Lake Wuliangsu. Water Resources Protection,2017,33(5):69-74.[朱永华, 张生, 赵胜男等. 乌梁素海浅水湖泊沼泽化现状及成因分析. 水资源保护,2017,33(5):69-74.]
Tian C, Zhang JL, Zhang NX et al. Dynamic extraction and analysis of Yangcheng Lake water hyacinth based on Sentinel-1A radar images. Beijing Surveying and Mapping,2022,36(9):1220-1224.[田晨, 张金龙, 张乃祥等. 基于Sentinel-1A雷达影像阳澄湖凤眼莲遥感动态提取分析. 北京测绘,2022,36(9):1220-1224.]
Zang N, Cao GZ, Xu YX et al. An innovative method based on Gaussian cloud distribution and sample information richness for eutrophication assessment of Yangtze's lakes and reservoirs under uncertainty. Environmental Science and Pollution Research International,2024,31(22):32784-32799. DOI:10.1007/s11356-024-33307-9.
Gargiulo M, Dell'Aglio DAG, Iodice A et al. Integration of Sentinel-1 and Sentinel-2 data for land cover mapping using W-net. Sensors,2020,20(10):2969. DOI:10.3390/s20102969.
Rao P, Zhou WQ, Bhattarai N et al. Using Sentinel-1, Sentinel-2,and planet imagery to map crop type of smallholder farms. Remote Sensing,2021,13(10):1870. DOI:10.3390/rs13101870.
Lee JS, Wen JH, Ainsworth TL et al. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):202-213. DOI:10.1109/TGRS.2008.2002881.
Villa P, Bresciani M, Braga F et al. Comparative assessment of broadband vegetation indices over aquatic vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(7):3117-3127. DOI:10.1109/JSTARS.2014.2315718.
Chen MN, Zhang R, Jia MM et al. Accurate and rapid extraction of aquatic vegetation in the China side of the Amur river basin based on landsat imagery. Remote Sensing,2024,16(4):654. DOI:10.3390/rs16040654.
Fan YX, Chen YY, Chen X et al. Estimating the aquatic-plant area on a pond surface using a hue-saturation-component combination and an improved Otsu method. Computers and Electronics in Agriculture,2021,188:106372. DOI:10.1016/j.compag.2021.106372.
Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics,2010,2(4):433-459. DOI:10.1002/wics.101.
Mashaba-Munghemezulu Z, Chirima GJ, Munghemezulu C. Mapping smallholder maize farms using multi-temporal sentinel-1 data in support of the sustainable development goals. Remote Sensing,2021,13(9):1666. DOI:10.3390/rs13091666.
Shi N, Liu XM, Guan Y. Research on k-means clustering algorithm: An improved k-means clustering algorithm.2010 Third International Symposium on Intelligent Information Technology and Security Informatics. Jian, China, IEEE,2010:63-67. DOI:10.1109/IITSI.2010.74.
Calinski T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics—Theory and Methods,1974,3(1):780133830. DOI:10.1080/03610927408827101.
Poudel S, Rybicki N, Jones C. Phenology of two-horned water chestnut(Trapa bispinosa Roxb.var.iinumai Nakano)in northern Virginia ponds. Journal of Aquatic Plant Management,2023,61:22-29. DOI:10.57257/japm-d-22-00009.
Darbyshire SJ, Francis A. The biology of invasive alien plants in Canada.10. Nymphoides peltata(S. G. Gmel.)Kuntze. Canadian Journal of Plant Science,2008,88(4):811-829. DOI:10.4141/cjps07208.
Zhang Y, Chen B, Li XW et al. Monitoring aquatic vegetation distribution of Taihu Lake from Sentinel-2 and random forest algorithm. Environmental Monitoring and Forewarning,2023,15(6):42-49.[张悦, 陈冰, 李旭文等. 基于Sentinel-2与随机森林算法的太湖水生植被分布监测. 环境监控与预警,2023,15(6):42-49.]
Dai X, Wan RR, Yang GS et al. Impact of seasonal water-level fluctuations on autumn vegetation in Poyang Lake wetland, China. Frontiers of Earth Science,2019,13(2):398-409. DOI:10.1007/s11707-018-0731-y.
Yang JZC, Luo JH, Lu LR et al. Changes in aquatic vegetation communities based on satellite images before and after pen aquaculture removal in East Lake Taihu. J Lake Sci,2021,33(2):507-517. DOI:10.18307/2021.0228.[杨井志成, 罗菊花, 陆莉蓉等. 东太湖围网拆除前后水生植被群落遥感监测及变化. 湖泊科学,2021,33(2):507-517.]
Bresciani M, Adamo M, De Carolis G et al. Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sensing of Environment,2014,146:124-135. DOI:10.1016/j.rse.2013.07.040.
Gao L, Li XF, Kong FZ et al. AlgaeNet: A deep-learning framework to detect floating green algae from optical and SAR imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:2782-2796. DOI:10.1109/JSTARS.2022.3162387.
Gurova E, Lehmann A, Ivanov A. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia,2013,55(3):687-707.
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2