Millimeter-scale vertical distribution of bacterial groups involved in nitrogen, iron and sulfur cycling and its potential influence on the migration and transformation of nitrogen and phosphorus in sediments of Meiliang Bay, Lake Taihu
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    In this study, sediment cores were collected in Meiliang Bay, Lake Taihu. The surface 50 mm sediment were sliced at 2 mm section using the self-made device to analyze the vertical distribution of bacterial communities in sediment with high-throughput sequencing technology. High-resolution dialysis and diffusive gradients in thin films technology (DGT) with resolution of millimeter were used to analyze the vertical distribution of dissolved and DGT-labile ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), Fe and P. Results indicated that the composition of bacterial community, concentrations of dissolved and DGT-labile NH4+-N, NO3--N, Fe and P changed significantly across the sediment depth. Bacterial nitrate reduction process mainly occurred at the sediment depth from -16 mm to 0 mm, which should cause an obvious decrease in the concentrations of dissolved and DGT-labile NO3--N in this sediment depth. Bacterial iron reduction process mainly distributed in the sediment depth from -32 mm to -18 mm, while bacterial sulfate reduction process mainly dominated in the sediment depth from -50 mm to -34 mm. Bacterial sulfate reduction was the main cause for the significant increase of dissolved and DGT-labile Fe and P concentrations in the sediment depth from -32 mm. This study has deepened the understanding of the bacterial influence on the vertical migration and transformation of nitrogen and phosphorus in eutrophic lake sediments.

    Reference
    Related
    Cited by
Get Citation

范献方,高帅帅,丁士明.太湖梅梁湾沉积物中氮铁硫转化细菌的毫米级垂向分布及对氮磷迁移转化的潜在影响[J]. Journal of Lake Sciences,2023,35(3):854-862.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 12,2022
  • Revised:August 10,2022
  • Adopted:
  • Online: April 25,2023
  • Published: May 06,2023
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2