Seasonal forecast method of cyanobacterial bloom intensity in eutrophic Lake Taihu, China
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Many important lakes and reservoirs of China, including Lake Taihu, Lake Chaohu, Lake Dianchi, Lake Erhai and Three Gorges Reservoir, were plagued with cyanobacterial blooms. However, the intensity of the blooms in these freshwaters varied significantly in different years, which exhibited significant challenges to the blooms collection organizations and drinking water plants, leading to the urgent need to cyanobacteria blooms prediction model based on annual dataset. Therefore, the long-term (15 years) observation data and meteorological and hydrological datasets of Lake Taihu were collected for the prediction of algal blooms. In current study, cyanobacterial bloom intensity index (BI) were proposed with the consideration of yearly average blooms area interpret by high frequency remote sensing images and whole lake average chlorophyll-a concentration. Furthermore, environmental factors, such as water temperature, rainfall, water level, nitrogen and phosphorus concentrations were used as the crucial factors to predict BI. Our results showed that average water temperature in winter and early spring, as well as the rainfall of the former year were significant positive factors of the yearly BI value in Lake Taihu. While the nutrient-related factors in early spring had no significant relationships with BI. In addition, a multiple (or univariate) regression analysis based on the above factors (BI was the dependent variable and the remaining environmental factors were the independent variables) were performed in this study, and the optimal model was selected. In general, the predicted results of the selected optimal model had a high consistency with the measured concentrations, thus the model obtained in this study had relatively high accuracy for predicting the interannual intensity of cyanobacteria blooms in Taihu Lake. This study may serve reliably for the medium- and long-term prediction of cyanobacteria blooms in Lake Taihu, and other eutrophic lakes.

    Reference
    Related
    Cited by
Get Citation

朱广伟,施坤,李未,李娜,邹伟,国超旋,朱梦圆,许海,张运林,秦伯强.太湖蓝藻水华的年度情势预测方法探讨[J]. Journal of Lake Sciences,2020,32(5):1421-1431.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 10,2020
  • Revised:March 16,2020
  • Adopted:
  • Online: September 03,2020
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2