Spatial distribution of soil carbon, nitrogen and phosphorus concentrations and their ecological stoichiometry along a water gradient in Caohai wetland, Guizhou Province
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Top soils (0-10 cm) were collected along a water gradient in three sampling belts in Caohai wetland of Guizhou Province, including agricultural areas, transition areas, shallow-water areas and deep-water areas. Soil total organic carbon (TOC), total nitrogen (TN), total phosphorous (TP) and their ecological stoichiometry in different water levels were measured to investigate their horizontal distribution patterns, as well as their influencing factors. Our results showed that the difference of TOC, TN and TP contents were significant in four water gradients. The soil TOC and TN contents gradually increased from the transition areas to the deep-water areas, while the TP content firstly decreased and then increased. The soil TN content in agricultural areas were significantly higher than that in the shallow-water areas, but TP content in the deep-water areas were significantly lower than that in the agricultural areas. The difference of soil C/N, C/P and N/P ratios were significant in four water levels. The soil C/P and N/P ratios gradually increased from the transition areas to the deep-water areas, while the C/N ratios firstly increased and then decreased. Compared with the transition areas, the soil C/N, C/P, and N/P ratios in the agricultural areas were lower. Correlation analysis showed that the spatial distribution of soil C/N, C/P and N/P ratios were related to soil physical and chemical properties such as TOC, TN and water content. In summary, the hydrology significantly affects the spatial distribution of soil TOC, TN, TP, C/N, C/P and N/P ratios in Caohai wetland, and the accumulation of soil carbon and nitrogen will be enhanced when the water level rises.

    Reference
    Related
    Cited by
Get Citation

杨羽,夏品华,林陶,严定波,宋旭,马莉,汤向宸.贵州草海湿地不同水位梯度土壤碳、氮、磷含量及其生态化学计量比分布特征[J]. Journal of Lake Sciences,2020,32(1):164-172.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2019
  • Revised:August 21,2019
  • Adopted:
  • Online: December 31,2019
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2