The trade-offs of functional traits in Microcystis (FACHB-905) and Anabaena (FACHB-82) responding to temperature
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Microcystis and Anabaena are two major genera of bloom-forming cyanobacteria. The way in which the two cyanobacteria regulate their own morphology and physiological characteristics to maintain rapid growth is to explain the maintenance of two cyanobacteria blooms. In this study, the response of growth, morphological and photosynthetic characteristics of Microcystis (FACHB-905) and Anabaena (FACHB-82) to temperature changes were measured, and the trade-offs relationship between growth and these characteristics were analyzed. The results showed that the cell diameter of Microcystis decreased under high temperature, but the growth rate did not decrease under high temperature. These indicates that Microcystis could increase the growth rate by reducing the cell size under high temperature conditions. The cell diameter and the chain length of Anabaena changed significantly with the change of temperature. The chain length decreased significantly and the growth rate did not decrease under high temperature conditions, which suggests that Anabaena might regulate its morphological characteristics to maintain the high growth rate. At the same time, the specific growth rate of the two algae has a certain relationship with the photochemical activity, indicating that the two algae can adapt to the temperature change by weighing the relationship between their own morphology, photosynthetic characteristics and growth rate to obtain the best growth status. This study will be helpful to improve our understanding for the growth mechanism of cyanobacteria.

    Reference
    Related
    Cited by
Get Citation

管乐,张民,赵兴青.微囊藻(FACHB-905)和鱼腥藻(FACHB-82)响应温度变化的功能特性权衡[J]. Journal of Lake Sciences,2020,32(1):134-143.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 05,2019
  • Revised:August 12,2019
  • Adopted:
  • Online: December 31,2019
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2