Release of copper and lead from the sediment-water interface under in-situ coverage of amino biochar via Diffusive Gradients in Thin-films (DGT)
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    The prevention and control of heavy metal pollution in lake sediments has always been a hot issue in the environmental field. In this study, amino modified biochar was used as the covering material and Diffusive Gradients in Thin-films (DGT) was used to monitor the characteristics of in-situ release of Cu(Ⅱ) and Pb(Ⅱ) at the sediment-water interface with different pH and water flow disturbance conditions. The in-situ remediation effect of amino modified biochar on heavy metal pollution was also analyzed. The results show that the mobile heavy metal ions have a tendency to diffuse from the sediment to other media at 0 r/min or 100 r/min hydrodynamic conditions. The cover strength of 1.86 kg/m2 for amino modified biochar can reduce the release flux of Cu (Ⅱ) and Pb (Ⅱ) over 89%, which effectively reduces the potential ecological risk of heavy metals in the water environment. A large amount of H+ or complex in the water will weaken the adsorption of heavy metal ions by amino biochar. When the overlying water is in neutral condition with pH=7, the in-situ remediation effect is the best. The content of Cu(Ⅱ) and Pb(Ⅱ) in the overlying water under the disturbance of 100 r/min water flow is 0.036-0.096 μg/mL higher than that at 0 r/min when the equilibrium is released. The high-intensity water flow disturbance easily caused the lifting and floating of the covering material, resulting in desorption of heavy metals escaping from the covering material.

    Reference
    Related
    Cited by
Get Citation

黄艳虹,高凡,郭伟,郭家选,王敬贤,许佟.基于梯度扩散薄膜技术(DGT)的氨基生物炭覆盖沉积物水界面铜、铅释放研究[J]. Journal of Lake Sciences,2020,32(1):58-69.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 29,2019
  • Revised:July 25,2019
  • Adopted:
  • Online: December 31,2019
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2