DEM-based quantitative analysis of average peak time lag of Dabie-South Auhui mountain area
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Based on Digital Elevation Model(DEM) in 27 small watersheds of Dabie-South Auhui mountain area, the topographic information was extracted and the average peak time lag was calculated. By establishing the mathematical model of multiple linear regression and path analysis, the influence of the factors on the flood response of the river basin is discussed. The results show the following: At the level of the valley system, shape factor and roundness, valley relative elevation, channel branching frequency and the forest coverage rate affect the basin average peak time lag mainly. And basin relative elevation is the most fundamental explanatory variables; Different geomorphic factors interaction is complex. The multiple linear regression model of average peak time lag has 73.4% explanatory. Further more,the path analysis model respectively describes influence of each variable to the average peak time lag from direct effect and indirect effect. The results can provide important reference to analysis the flood response process of South Anhui mountain area. It is significant for flood control and disaster mitigation.

    Reference
    Related
    Cited by
Get Citation

曹子月,姚成,李致家,钟栗,顾玮琪.基于DEM的大别-皖南山区平均洪峰滞时定量分析[J]. Journal of Lake Sciences,2017,29(3):765-774.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2015
  • Revised:August 14,2016
  • Adopted:
  • Online: April 20,2017
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2