Distribution, relationship and significance of phytoplankton, chlorophyll-a and environment variables in spring season of the Zhelin Reservoir, Jiangxi Province
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Zhelin Reservoir is a large canyon-reservoir in the midstream of the Yangtze River, and the storage capacity is 79.2×108 m3 and length is 115 km. Through measurements on a moving vessel and at fixed-point sites in the Zhelin Reservoir in April, 2015, the distribution of phytoplankton, chlorophyll-a (Chl.a) concentration and main environment variables (including dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), dissolved silicon (DSi), water temperature, turbidity, dissolved oxygen (DO)) were analyzed. The redundancy relationship of phytoplankton taxa and environmental variables was analyzed using the software CANOCO 4.5. The results showed that, 1) the reservoir water was categorized as a middle-status in nutrients. There were 34 main phytoplankton species in the surface (the cell density of which exceeding 1000 cells/L), and the average biomass of reservoir was 0.41 mg/L. The dominant algae (dominance be equal or greater than 0.02) were the diatoms and cyanobacteria. DIN, DIP, DSi and water temperature can impact on the structure of algae, and the four factors were explained for more than 60% variation of the algal structure. 2) The reservoir had a significant phenomenon of subsurface chlorophyll maximum (SCM). The depth of SCM appears at the water depth from 3 to 8 m, and the thickness is about 2-7 m. The Chl.a in the SCM layer is 25.2%-74.1% among the total in the vertical. The algae in the SCM layer absorbed the nutrients, resulting in decreased concentrations of DIN, DIP and DSi and the increased DO concentration. 3) The reservoir had significant biological and biochemical filtering effect for the DSi. About 11% to 12% DSi were absorbed by organisms in the middle and upper area of in the reservoir, and accumulating about 21% DSi was absorbed by algae from upstream to downstream. 4) Nitrogen and phosphorus emissions by human activities have a serious impact on the ecology and water quality of the reservoir and the adjacent county region. The concentrations of Chl.a and DIP in the region is about 2.9 times and 3 times higher than that in the natural region of the reservoir, respectively.

    Reference
    Related
    Cited by
Get Citation

李懿淼,李茂田,艾威,罗章,胡进,侯立军.江西柘林水库春季浮游藻类、叶绿素a与环境因子的分布、关系及意义[J]. Journal of Lake Sciences,2017,29(3):625-636.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 11,2016
  • Revised:September 05,2016
  • Adopted:
  • Online: April 20,2017
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2