Remote sensing-based estimation for Gaussian distribution parameters of vertical structure of algal biomass in Lake Chaohu
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    The relationship between water surface reflectance and total depth integrated algae biomass can be very complex as different kinds of algal vertical distributions can occur. For this reason, effectively identifying the algae vertical profiles is fundamental to estimate algal biomass. Gaussian profiles are the most typical algae vertical profiles which occur in most environmental conditions (including external and internal system). In this research, a back propagation (BP) neural network was established to estimate Gaussian distribution parameters of the vertical structure h and σ by wave bands Rrs(469), Rrs(555), Rrs(645) and chlorophyll-a concentration band CChl.a(0). The BP neural network was trained by using 3000 simulated datasets (radiative transfer simulation based on in-situ measured data by HydroLight), and verified by another 200 groups of simulated data and measured data. The correlation coefficient between estimated and measured h and σ were 0.97 and 0.95, while the relative errors were 13.20% and 12.36%, respectively. The relative error of h and σ was mostly less than 30%. This indicated that it is a good effectiveness of BP neural networks to estimate the vertical distribution parameters and able to explore the three dimensional algal distribution in Lake Chaohu, thereby providing a significant theoretical basis for remote sensing estimation of algal biomass.

    Reference
    Related
    Cited by
Get Citation

梁其椿,张玉超,薛坤,段洪涛,马荣华.巢湖藻类高斯垂向分布结构参数的遥感估算[J]. Journal of Lake Sciences,2017,29(3):546-557.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 21,2016
  • Revised:July 18,2016
  • Adopted:
  • Online: April 20,2017
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2