Abstract:Sediment suspension on sediment-water interface caused by dynamic disturbance is the difficult issue in shallow lake eutrophication control. To study the driving force of sediment suspension in Meiliang Bay of Lake Taihu, a set of synchronous, high-frequency data of current, turbidity, wind, wave are obtained using the Acoustic Doppler Velocimeter, Optical Backscatter Sensor, PH-Ⅱ Handheld weather stations, and RBRduo T.D. wave tide gauge. The results show that when the wind speed is less than 3 m/s, the average suspended solid concentration (SSC) on sediment-water interface is approximately 59 mg/L. The bottom shear stresses generated by waves is nearly equal to that generated by currents, where no sediment suspension can be found and the comprehensive shear stress generated by wind-induced waves and currents is less than 0.015 N/m2. When the wind speed ranges from 3 to 6 m/s, the average SSC on sediment-water interface is approximately 103 mg/L. The bottom shear stresses generated by waves is greater than that generated by currents in most cases, where a medium amount of sediment is suspended and the comprehensive shear stress generated by wind-induced waves and currents ranges from 0.015 to 0.25 N/m2. When the wind speed exceeds 6 m/s and the average SSC on sediment-water interface is approximately 174 mg/L, the wave-generated shear stress plays an absolute leading role in large amount of sediment suspension and the comprehensive shear stress generated by wind-induced waves and currents is larger than 0.25 N/m2. The critical shear stress of sediment suspension in Meiliang Bay is approximately 0.015 N/m2 while the critical wind speed is 3 m/s.