Integrated simulation of hydrological and hydrodynamic processes for Lake Poyangcatchment system
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Similar Literature
  • |
  • Cited by
  • |
  • Appendix
  • |
  • Comments
    Abstract:

    Lake Poyang catchment,a large scale system with high spatial variability in land surface characteristics,was chosed to be the study area in this paper.Catchment hydrological and lake hydrodynamic processes are the main processes in the system.To represent the interaction of hydrological and hydrodynamic processes between the lake-catchment and reflect the mechanisms for different processes,an integrated model was set up.The integrated model used three sub-models with different functions to perform spatial linkage and it included a catchment distributed hydrological model WATLAC,a lakeside plain area runoff model and a lake hydrodynamic model MIKE 21.The integrated model used an input-output linkage approach and involved sequential execution of individual sub-model,i.e.,the discharges of major rivers and runoff of plain area were used as input conditions to drive the lake hydrodynamic model,and thus simulate the lake water level in response to catchment discharges.We used the river discharges of six hydrological stations and average base flow index as well as water levels of four lake stations as state variables to calibrate the integrated model.The Nash-Sutcliffe efficiency (Ens) and determination coefficients (R2) of daily river discharges vary from 0.71-0.84 and 0.70-0.88,respectively and vary from 0.88-0.98 and 0.96-0.98 for lake water levels.Results indicate that the integrated model can ideally reproduce the response of lake water level to the catchment rainfall-runoff process.The simulated lake lev-els further demonstrate that the integrated model has the ability to obtain the detailed hydrodynamic characteristics in space and time.The proposed model can be used as an effective tool to quantitatively reveal the hydrological and hydrodynamic processes of lake-catchment system in response to climate change and human activities in the catchment.

    Reference
    Related
    Cited by
Get Citation

李云良,张奇,姚静,李相虎.鄱阳湖湖泊流域系统水文水动力联合模拟[J]. Journal of Lake Sciences,2013,25(2):227-235.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 08,2012
  • Revised:August 22,2012
  • Adopted:
  • Online: March 19,2015
  • Published:
You are the first    Visitors
Address:No.299, Chuangzhan Road, Qilin Street, Jiangning District, Nanjing, China    Postal Code:211135
Phone:025-86882041;86882040     Fax:025-57714759     Email:jlakes@niglas.ac.cn
Copyright © Lake Science, Nanjing Institute of Geography and Lake Sciences, Chinese Academy of Sciences:All Rights Reserved
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Su Gongwang Security No. 11040202500063

     苏ICP备09024011号-2