基于无人机影像和深度学习技术的青海湖刚毛藻水华提取研究
DOI:
CSTR:
作者:
作者单位:

1.西北师范大学地理与环境科学学院;2.青海湖国家级自然保护区管理局

作者简介:

通讯作者:

中图分类号:

基金项目:

2023年第一批中央财政林业草原生态保护恢复资金青海湖湿地保护与恢复项目(2024-037)


Extraction of Cladophora blooms in Qinghai Lake based on unmanned aerial vehicle (UAV) imagery and deep learning techniques
Author:
Affiliation:

College of Geography and Environmental Science, Northwest Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    受青藏高原气候暖湿化影响,青海湖新生湖滨带刚毛藻水华频繁暴发。以往刚毛藻水华提取研究主要依赖多源卫星遥感影像,但受限于影像空间分辨率和混合像元效应,难以精确捕捉刚毛藻水华的真实分布及其细节特征。本文利用低空无人机影像结合Attention DeepLab V3+深度学习模型自动提取青海湖刚毛藻水华特征,对比分析其与光谱指数和机器学习方法的提取结果,并探讨无人机影像与光学卫星遥感影像提取结果的差异。结果表明:(1)Attention DeepLab V3+可在没有先验阈值情况下准确检测刚毛藻水华分布范围,模型的Kappa系数、精度、召回率和F1得分分别为0.985、0.969、0.983和0.976,表明识别能力较强。(2)与现有方法相比,模型Kappa系数和F1得分分别提高4.47%-29.75%和6.35%-34.02%,能够更好地适应复杂的刚毛藻水华分布特征,尤其是在边界细节呈现和空洞分离方面具有明显优势。(3)基于Landsat OLI和Sentinel-2 MSI等常用光学卫星遥感影像的提取结果存在高估青海湖刚毛藻水华面积现象,平均相对误差值范围为5.5%-323.47%。

    Abstract:

    Frequent outbreaks of Cladophora blooms in the newly formed littoral zone of Qinghai Lake have been observed due to the warming and humidification of the Qinghai-Tibet Plateau climate. Previous studies on the extraction of Cladophora blooms mainly relied on multi-source satellite remote sensing imagery. However, the limitations of image spatial resolution and mixed-pixel effects hindered the accurate identification of the true distribution and detailed features of the blooms. This study utilized low-altitude UAV imagery combined with the Attention DeepLab V3+ deep learning model to automatically extract Cladophora bloom features in Qinghai Lake. A comparative analysis was conducted with results derived from spectral indice and machine learning methods, and the differences between UAV imagery and optical satellite remote sensing imagery in extracting Cladophora blooms were explored. The results revealed the following: (1) Attention DeepLab V3+ could accurately detect Cladophora blooms without prior thresholds, achieving a kappa coefficient, precision, recall, and F1 score of 0.985, 0.969, 0.983, and 0.976, respectively. (2) Compared with existing methods, the model’s kappa coefficient and F1 score improved by 4.47%-29.75% and 6.35%-34.02%, respectively, demonstrating superior adaptability to complex bloom distribution patterns, especially in capturing boundary details and separating voids. (3) Optical satellite remote sensing imagery tended to overestimate Cladophora blooms in Qinghai Lake, with mean relative error values ranging from 5.5% to 323.47%. This study leveraged the high-resolution advantages of UAV imagery to provide technical support for accurately assessing the true distribution of Cladophora blooms in Qinghai Lake and laid a foundation for the monitoring and tracking of algal blooms features in other water bodies.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-09
  • 最后修改日期:2025-04-02
  • 录用日期:2025-04-03
  • 在线发布日期: 2025-06-16
  • 出版日期:
文章二维码
您是第    位访问者
地址:南京市江宁区麒麟街道创展路299号    邮政编码:211135
电话:025-86882041;86882040     传真:025-57714759     Email:jlakes@niglas.ac.cn
Copyright:中国科学院南京地理与湖泊研究所《湖泊科学》 版权所有:All Rights Reserved
技术支持:北京勤云科技发展有限公司

苏公网安备 32010202010073号

     苏ICP备09024011号-2