半湿润流域水文模型比较与集合预报
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(41130639,51179045)和水利部公益项目(201501022)联合资助.


Hydrological models comparison and ensemble forecasting in semi-humid watersheds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 附件
  • |
  • 文章评论
    摘要:

    选择7种水文模型分别在中国北部3个半湿润流域做模拟对比,分析不同水文模型在各流域的适用性,并使用贝叶斯模型平均法对不同模型集合,比较各种集合方法的优势,研究贝叶斯模型平均法的应用效果.研究结果表明,以蓄满产流模式为主的模型在半湿润流域应用效果较好,针对不同流域特点对传统模型进行改进可以提高模拟精度.贝叶斯模型平均法能提供较好的确定性预报结果和概率预报结果,仅对少数模拟效果好的模型进行集合,并不能有效提高预报精度,适当增加参与集合的模型数量能使贝叶斯模型平均法更好地综合各模型优势,提高预报结果的精度.

    Abstract:

    Watershed hydrological simulation is a measure to simulate the real world hydrological processes based on hydrological models. A large number of conceptual hydrological models have been invented driven by different generalizations of the identical hydrological process. The advantages of different models can be investigated by comparison of different hydrological models. Ensemble forecasting is a means that integrates several model results to obtain more reliable and stable predictions. Arithmetic Mean, Weighted Averaging and Bayesian Model Averaging are three common ensemble forecasting methods. In this study, seven hydrological models were applied and compared in three semi-humid watersheds in the northern China to explore the applicability of different models in each watershed. Bayesian Model Averaging scheme were used to integrate these models to compare the advantages of different combinations, and the application effect of Bayesian Model Averaging scheme was studied. The results show that models with saturation-excess mechanisms have a good simulation effect in semi-humid watersheds. Traditional models are improved based on the characteristics of different watersheds, and the accuracy of simulation is higher after improvement. The certainty forecasting results and probabilistic forecasting results are provided by Bayesian Model Averaging scheme. The integrated result of few good-simulated models shows poor stability. Bayesian Model Averaging scheme can take advantages of each model efficiently and provide high-precision forecasting results by increasing the number of integrated models properly.

    参考文献
    相似文献
    引证文献
引用本文

霍文博,李致家,李巧玲.半湿润流域水文模型比较与集合预报.湖泊科学,2017,29(6):1491-1501. DOI:10.18307/2017.0621

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-10-30
  • 最后修改日期:2017-01-20
  • 录用日期:
  • 在线发布日期: 2017-10-12
  • 出版日期:
文章二维码
您是第    位访问者
地址:南京市江宁区麒麟街道创展路299号    邮政编码:211135
电话:025-86882041;86882040     传真:025-57714759     Email:jlakes@niglas.ac.cn
Copyright:中国科学院南京地理与湖泊研究所《湖泊科学》 版权所有:All Rights Reserved
技术支持:北京勤云科技发展有限公司

苏公网安备 32010202010073号

     苏ICP备09024011号-2