Abstract:Lake Sifangshan (49°22'32.97"N, 123°27'49.90"E, altitude:933 m asl) is a nearly dried up volcanic lake, located on the central-northern part of the Great Khingan Mountain, northeast China. This study obtained n-alkane samples from Holocene sediment cores in the lake, and analysed their distribution and compound specific carbon isotope compositions. The distribution of n-alkanes showed the four following characteristics:(1) a homologous series of n-alkanes was detected with carbon numbers ranging from nC17 to nC33; 2) Most samples show a single peak, while others have double peeks; 3) For single peak samples, the peak is nC27, and for double peak samples, the first peak is nC21 and the second peak is nC27; 4) For short chain (<nC21) n-alkanes do not have obvious carbon number characteristics. For middle (nC23~nC25) and long (>nC27) chain n-alkanes have an odd-over-even carbon number predominance. These characteristics show that the organic matter in the lake came from both terrestrial and aquatic plants, the former of which is the main input. The isotope ratios (δ13C27~31) of n-alkanes in these samples are negative, and gradually decreases along the time, in good accordance with changes of summer solar radiation in the Northern Hemisphere during the Holocene. This implies that effective precipitation changes on the orbital scale were directly controlled by changes in summer solar radiation. Based on above proxy indicators, the environmental evolution of Lake Sifangshan during Holocene is divided into five stages:(1) In the 11.2-8.0 ka BP,effective precipitation was low and proportion of woody plants in terrestrial C3 plants increased slightly.The lake water level fluctuated frequently, but the primary productivity and nutritional status of the lake deteriorated. (2) In the 8.0-6.4 ka BP,effective precipitation increased and proportion of woody plants in terrestrial C3 plants increased slightly. The lake surface area shrunk and water level dropped.The primary productivity and nutritional status of the lake were stable. (3) In the 6.4-3.4 ka BP, effective precipitation was higher than that in the previous stage, and the proportion of woody plants increased but that of herbs decreased.The lake surface area expanded and water level rised.The primary productivity increased, and the tropical level of the lake started to be lower; (4) In the 3.4-2.4 ka BP,effective precipitation continued to rise, and the proportion of herbs increased. The lake surface area shrunk and water level dropped. The primary productivity decreased, and depletion of nutrition occurred again. (5) In the 2.4-0.9 ka BP,effective precipitation was in a high level and the proportion of woody plants increased gradually. The lake surface area expanded and water level rised.The primary productivity increased and the tropical level of the lake started to get lower. The climatic evolution produced by this study is in good agreement with other high-resolution climate records of Northeast China, and the differences show unique regional climate characteristics of the Lake Sifangshan.