Abstract:Aquatic plants decaying will accelerate the process of dissolved oxygen depletion and promote the dissolution of reducing substance, which can easily lead to partial water black-odor in a hot summer. In this study, dominant species of submerged plants Potamogeton malaianus, Vallisneria natans and floating-leaved dominant species Nymphoides peltatum in Lake Taihu were selected as test material. Then the macrophytes decayed in cylindrical sediment in the culture system in which simulated conditions in situ. The black-odor waters were formed to study the flocculation and sedimentation kinetics, removal mechanism of water turbidity, volatile sulfide, dissolved oxygen and other water and soil interface characteristics which were treated with different environmental material disposals(chitosan(CTS), poly aluminum chloride(PAC), polyacrylamide(PAM), CTS+PAC and PAC+PAM). The results suggest that:(1) After 24 h, the turbidity removal of black smelly water treated by CTS+PAC was optimal, when turbidity removal rate was 70.3%. The CTS+PAC combination can increase the dissolved oxygen in overlying water more significantly than other environmental material disposals, and the increase rate is 261.5%.(2) Taking flocculation experiments by joining flocculants in the black smelly water with different flocculants, the suspension of quartz sand was added at different timing. Quartz sand suspension can accelerate flocculant precipitation, adding quartz sand before flocculant is significantly better than after it with turbidity removal rate 74.9% compared to 29.8%.(3) Sulfur characteristic odor compounds released by decay aquatic plants are mainly hydrogen sulfide(H2S), dimethyl sulfide and dimethyl trisulfide. volatile organic sulfur compounds(VOSCs) released by difference decayed plants was significantly different. The sum of the four forms of organic sulfur released from Potamogeton malaianus were 319.8% of Nymphoides peltatum and 252.2% of biter grass.(4) Volatile organic sulfur compounds contents of Vallisneria natans and Potamogeton malaianus decaying water treated by CTS+PAC was reduced by 18.6% and 44.5%. Treatment PAC+PAM has a good deodorizing effect on Nymphoides peltatum for the removal rate of H2S reached 52.4% when treatment CTS+PAC affected both three kind of plants. The content of H2S reduced by 27.4%, 41.0% and 28.6% in Vallisneria natans, Potamogeton malaianus and Nymphoides peltatum, respectively. The inhibitory effect of odorant(such as H2S and dimethyl sulfide) in treatment CTS+PAC was higher than that in treatment PAC+PAM.