
Long-term hydroclimate trends in the Great Lakes basin: Are there 
hotspots of regional change?

Satbyeol Shin a,d,*, Andrew D. Gronewold a, Lauren M. Fry b, Yi Hong c, 
David Cannon c, Ayumi Fujisaki-Manome c,e

a School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
b NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, MI, USA
c Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
d Department of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
e Climate & Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

A R T I C L E  I N F O

Keywords:
Historical changes
Seasonal shifts
Hydrological modeling
Apportionment entropy

A B S T R A C T

Study Region: The Laurentian Great Lakes basin
Study focus: This study analyzed key hydroclimate components across the entire Laurentian Great 
Lakes basin, one of the largest freshwater basins on Earth and home to roughly 20% of all fresh, 
unfrozen surface water. The hydroclimate components analyzed included surface air temperature, 
precipitation, evapotranspiration (ET), snow water equivalent (SWE), runoff, and surface soil 
moisture from 1951 to 2020. Hydrological variables were simulated using regional customization 
of the Weather Research and Forecasting hydrological model (WRF-Hydro), and changes in the 
annual magnitude and seasonal variability (i.e. seasonality) of all variables were assessed.
New hydrological insights for the region: Our findings reveal significant spatial and temporal vari-
ations in hydroclimate variables across the basin. The Great Lakes basin is experiencing note-
worthy changes in hydroclimate variables, including pronounced rises in surface air temperature, 
ET, and runoff (low flow), as well as declines in SWE. The distinct spatial patterns of changes in 
magnitude and seasonality are identified throughout the region. For instance, the Superior basin 
exhibits unique hydrological patterns, including an earlier peak in SWE and decreased high flow, 
both of which are influenced by its unique climatic and geographical conditions. This long-term 
analysis of hydroclimate trends provides valuable insights into historical hydrological changes 
and their implications for future conditions in the Great Lakes basin, emphasizing the need for 
localized studies and targeted management strategies.

1. Introduction

Understanding long-term historical hydroclimate changes in a region is crucial, particularly in the context of a changing climate 
(Stevenson et al., 2022). A comprehensive, long-term retrospective analysis of hydrological simulations provides a vital reference point 
for studying future hydroclimatic conditions. In order to effectively anticipate future scenarios, it is imperative to establish a baseline 
that accurately reflects historical hydroclimate conditions. For example, thorough assessments of historical hydroclimate conditions 
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are essential prior to integrating them into hydrological models for future scenarios (Johnson and Sharma, 2009; Woldemeskel et al., 
2016; Song et al., 2020; Shin et al., 2023a). This research aims to enhance our comprehension of historical regional trends within the 
unique and complex transboundary region of the North American Laurentian Great Lakes basin. By focusing on a baseline that most 
accurately captures real historical changes, we can better interpret baseline simulations and, as a result, have greater confidence in 
future climate projections.

Hydrological changes across the Great Lakes and their drainage basins are particularly important given concerns about the po-
tential impacts of future climate (Byun et al., 2019; Mailhot et al., 2019; Soonthornrangsan and Lowry, 2021; Kayastha et al., 2022; 
Myers et al., 2023; Pal et al., 2023). The Great Lakes basin holds approximately 20% of the world’s surface freshwater (Gronewold 
et al., 2013; 2019). Due to the region’s importance as a highly populated transboundary river basin, numerous studies have inves-
tigated hydrological responses to climate change in the Great Lakes. These studies have explored topics such as lake warming (Mason 
et al., 2016; Cannon et al., 2024), water balance (Gronewold et al., 2013), hydrologic extremes (Byun et al., 2019), compound floods in 
coastal regions (Hong et al., 2024), vulnerability of water resources (Soonthornrangsan and Lowry, 2021), the impacts of land-use 
changes on hydrologic responses (Kult et al., 2014; Mao and Cherkauer, 2009), and projected rain-on-snow melt events (Myers 
et al., 2023). While each study provides unique insights into hydrological processes in the Great Lakes region, none have examined 
long-term historical hydroclimate trends for the entire Great Lakes drainage basin. Only a select few (Mailhot et al., 2019; Kayastha 
et al., 2022; Shrestha et al., 2022; Myers et al., 2023) have considered the entire Great Lakes basin; however, these studies have not 
covered a sufficiently long historical period to provide insights into long-term hydroclimate trends. What’s more the spatial resolution 
of hydrological models used in these studies is too coarse (e.g., lumped or semi-distributed unit at the subbasin scale) to consider 
interactions between the land surface and hydrological processes.

Hydrological models are essential tools for water resources management and planning, and the increasing spatial and temporal 
resolution of these models is resulting in a more comprehensive understanding of diverse hydrological processes, including the 
identification of potential environmental and climate hot spots (Bierkens et al., 2015; Clark et al., 2015; Fatichi et al., 2016). Though 
historical hydrological conditions can be assessed using ground-based or remotely sensed data, each method has limitations. In-situ 
measurements are often limited by ungauged areas and sparse spatial and temporal resolution (Balsamo et al., 2018; Shin et al., 
2023b), and remotely sensed products, being relatively new, generally do not cover multi-decadal historical time scales and require 
robust validation against in-situ measurements (Moradkhani, 2008; Dong, 2018). Moreover, individual data sources cannot fully 
capture interactions between atmospheric, land surface, and hydrological processes, though they serve as valuable supplementary 
datasets to assess hydrologic model skill (Ragettli et al., 2015; Rajib et al., 2016; Balsamo et al., 2018). Hydrological models, especially 
high-resolution modeling at large scales, therefore serve as a well-established tool for bridging gaps in historical data while also of-
fering potential additional insights into the complexities of hydrological processes (Fatichi et al., 2016; Shin et al., 2023b). As 
fundamental tools for water management, they also enable decision-makers to develop effective strategies for sustainable and 
responsible water resource management, providing a holistic understanding of hydrological dynamics.

Numerous studies have analyzed long-term hydrological trends using various modeling approaches, including data-driven methods 
(Kult et al., 2014; Ljungqvist et al., 2016; Adnan et al., 2024), lumped models (Chen et al., 2007; Wu et al., 2014), semi-distributed 
models (Nijssen et al., 2001; Wu and Johnston, 2007), and fully-distributed models (Pal et al., 2023), but are not limited to these 
approaches. Many of these studies employ computationally efficient models, which are well-suited for analyzing hydrological pro-
cesses over multi-decadal periods. However, these models often simplify hydrological processes and operate at relatively coarse spatial 
resolution, which can potentially miss important localized hydrological dynamics. The application of complex, hyper-resolution hy-
drological models for long-term trend analysis remains limited. The advanced models offer high-resolution capabilities and a more 
detailed representation of hydrological processes. However, they come with challenges, including high computational demands and 
significant storage requirements for inputs and outputs, which have limited their use in long-term studies.

This study tests the two hypotheses: first, there are distinct environmental hotspots where hydroclimate processes are significantly 
changing across the Great Lakes basin, and second, the magnitude and direction of long-term changing trends in various hydroclimate 
variables differ. In order to test these assumptions, this study investigated comprehensive long-term hydroclimate changes across the 
entire Great Lakes basin from 1951 to 2020, to identify environmental hot spots, annual and seasonal trends, and interrelationships 
between hydroclimate components – such as surface air temperature, precipitation, evapotranspiration (ET), snow water equivalent 
(SWE), runoff (considered as routed runoff or streamflow), and surface soil moisture. Previous studies have been limited either by their 
focus on short-term periods for the whole region or by long-term analyses for only portions of the basin, and they have not employed 
fine-resolution hydrological models. Our work fills these gaps by utilizing a fully-distributed hyper-resolution land surface hydro-
logical model, the Weather Research and Forecasting Hydrological model (WRF-Hydro; Gochis et al., 2020), to conduct 70 years of 
retrospective simulations in the Great Lakes basin with recent 20-year outputs compared against various in-situ measurements and 
remote sensing products. This approach allows us to examine environmental hot spots at different spatial scales (e.g., lake basins and 
subbasins) and temporal scales (e.g., annual and seasonal) and analyze trends in extreme conditions. The novelty of this study lies in its 
extensive spatial and temporal scope, offering valuable insights into historical hydroclimate changes across the entire Great Lakes 
region. The findings of this study provide implications for the development of effective water resource management strategies in the 
Great Lakes region and other areas with similar hydroclimate dynamics.
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2. Methods

2.1. Great Lakes Basin

The North American Laurentian Great Lakes basin includes the largest system of lakes on Earth and is one of the largest trans-
boundary watersheds, encompassing parts of both the United States and Canada and multiple other sovereign tribal nations. Over 30 
million people live in the Great Lakes basin, relying on the lakes for drinking water, transportation, recreation, and industry 
(Gronewold et al., 2013; Méthot et al., 2015; Sterner et al., 2020). It is common for the Great Lakes to be analyzed at lake basin scales (i. 
e. for the basins of Lake Superior, Michigan-Huron, Erie, and Ontario), as shown in Fig. 1 (Hong et al., 2022). It is less common for 
spatial variability to be assessed across the region’s subbasins (Fig. 1), which are often utilized for regional hydrological modeling and 
water supply forecasting (Croley, 2002; Gronewold et al., 2011; Gronewold and Fortin, 2012; Fry et al., 2014; Gaborit et al., 2017).

The Great Lakes basin covers a total surface area of 717,797 km2, of which about 35% is the surface area of the lakes themselves 
(see Figure S1 in the Supplementary Materials). The land elevation across the basin ranges from 75 to 800 m above mean sea level (m a. 
s.l.), with an average elevation of 260 m a.s.l. The dominant land uses are forest (27%) and cropland (18%), with most forests located 
in the northern parts of the region and most cropland in the southern parts (Figure S1). Soil texture varies throughout the basin; sandy 
loam is dominant in the northern parts, including the Superior, Michigan-Huron, and northern Ontario basins, while silt loam is 
dominant in the southern parts, where the Erie and southern Ontario basins are located (Figure S1; see Data Availability for detailed 
information of the land surface datasets).

2.2. Land surface and hydrological modeling

WRF-Hydro was used to analyze long-term hydroclimate trends in the Great Lakes basin. Originally developed by the National 
Center for Atmospheric Research (NCAR). This model simulates land surface energy and hydrological fluxes, with options to either 
couple with regional atmospheric models (e.g. WRF) or use external meteorological forcing datasets (i.e., in uncoupled or standalone 
mode) with land surface modeling (Gochis et al., 2020). WRF-Hydro allows users to choose between two 1-dimensional column land 
surface models: Noah (Ek et al., 2003) and Noah Multiparameterization (Noah-MP; Niu et al., 2011), which both simulate vertical 
fluxes of energy and moisture in the land surface. Each column of the model has a fixed 2-meter soil depth, divided into four layers with 
thicknesses of 0.1, 0.3, 0.6, and 1.0 m from the surface to the bottom, respectively. The model uses the Penman-Monteith equation 
(Monteith, 1965) to calculate ET, connecting the water and energy balance equations (Cai et al., 2014; Duan and Kumar, 2020), and 
employs the 1-dimensional diffusive form of Richard’s equation for vertical water movement within the soil layers (He et al., 2023). 
These land surface processes are dynamically coupled with terrestrial hydrological processes, representing surface, subsurface, 

Fig. 1. Map of the Great Lakes basin with locations of the in-situ measurements for streamflow (the United States Geological Survey (USGS) and 
Water Survey of Canada (WSC) gages) and latent heat flux (AmeriFlux tower). Colors differentiate individual lake basins, and subbasins are 
delineated within each lake basin.

S. Shin et al.                                                                                                                                                                                                            Journal of Hydrology: Regional Studies 59 (2025) 102347 

3 



channel routing, and groundwater systems.
In this study, we employed WRF-Hydro in standalone mode with the Noah-MP land surface model. The hydrological routing 

options of the steepest descent method and the Muskingum-Cunge method were selected to represent surface overland flow routing 
and reach-based channel routing, respectively. We used the configuration and calibrated parameter sets of the National Water Model 
version 2.1 (NWMv2.1) for the WRF-Hydro simulation. The NWM was originally calibrated by NCAR and further refined by the NOAA 
Great Lakes Environmental Research Laboratory using an updated spatially consistent hydrofabric dataset for the Canadian portion of 
the Great Lakes (Mason et al., 2019). NWMv2.1 was calibrated and validated for the period from 2008 to 2016, focusing on streamflow 
with the meteorological forcing of the Analysis of Record for Calibration (AORC; Fall et al., 2023) dataset (Cosgrove et al., 2024).

We used the fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis data (ERA5; Hersbach 
et al., 2018) as an external forcing of WRF-Hydro in standalone mode instead of the original AORC forcing. This choice was due to 
ERA5’s longer data record (ERA5 is available from 1940 onwards, whereas AORC is available from 1979) and its well-documented and 
more widely used presence in the peer-reviewed literature (Shin et al., 2024). ERA5 provides data on precipitation, surface air 
temperature, surface pressure, specific humidity, short and long wave radiation, and wind speed (zonal and meridional directions) 
with a spatial resolution of 0.25◦ and a temporal resolution of hourly. This study employed spatial datasets including digital elevation 
maps, soil maps, land use, and river networks for model setup (see Data Availability). The hydrofabric dataset for the entire Great Lakes 
basin, customized by Mason et al. (2019), seamlessly combines hydrographic data from the United States and Canada and is incor-
porated into NWMv2.1. The meteorological forcing dataset and spatial inputs were regridded to a 1 km resolution. The modeling 
outputs are provided at a 1 km/daily resolution (Shin and Gronewold, 2024).

We evaluated the model accuracy for streamflow as well as auxiliary hydrological variables such as ET, SWE, and surface soil 
moisture. The model evaluation was conducted for the period from 2001 to 2020 using Kling-Gupta Efficiency (KGE; Gupta et al., 
2009) and Percentage Bias (PBIAS) comparing the simulations against various reference datasets including in-situ measurements and 
remote sensing products (Table 1 and Fig. 1). KGE and PBIAS are widely used error metrics that evaluate hydrological model per-
formance (Huang et al., 2017; Althoff and Rodrigues, 2021; Mai et al., 2022). KGE integrates different error components such as 
correlation, bias, and variability (Eq. 1), and ranges from -∞ to 1, where negative values indicate an unreliable model, while values 
closer to 1 represent reliable. On the other hand, PBIAS measures the systematic overestimation and underestimation of a model by 
calculating the difference between observed and simulated values (Eq. 2). PBIAS values closer to zero indicate better model accuracy, 
while higher absolute values suggest greater bias in model predictions. 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (β − 1)2

+ (γ − 1)2
√

(1) 

Table 1 
Summary of model inputs and references for output evaluation.

Type Item Data period Number of subbasins 
covered

Spatial/temporal 
resolution

Model inputs Spatial 
data

Topography NEDa – All 1 arc-second/–
Reach NHD Plus V2b – All 1 arc-second/–
Land use NLCDc – All 30 m/–
Soil STATSGOd – All 1 km/–

Climate data ERA5e 1940 – 2020 All 0.25⁰/hour

Reference for output 
evaluation

ET GLEAMf 1980 – 2020 All 0.25⁰/day
MODISg 2002 – 2020 All 500 m/8-day
AmeriFluxh Vary 4 (8 stations), Fig. 1 Point/30-min

SWE CMCi 1998 – 2020 All 0.33⁰/month
Runoff USGS and WSC j 2000 – 2020 65, Fig. 1 Point/day
Soil moisture GLEAM 1980 – 2020 All 0.25⁰/day

a NED: National Elevation Dataset (NED; Gesch et al., 2002).
b NHD Plus V2: National Hydrography Dataset Plus V2 (NHD Plus V2; McKay et al., 2012).
c NLCD: National Land Cover Database (NLCD; Homer et al., 2015).
d STATSGO: State Soil Geographic (STATSGO; Miller and White, 1998).
e ERA5: The fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis data (ERA5; Hersbach et al., 2018).
f GLEAM: Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017), a Satellite-based modeling product.
g MODIS: Moderate Resolution Imaging Spectroradiometer (MODIS; Running et al., 2017), a Satellite-based modeling product.
h AmeriFlux: In-situ measurements collected from the AmeriFlux towers. The AmeriFlux towers employed in this study are CA-Cbo (Staebler, 2022) 

for the subbasin GEO03, CA-TP1 (Arain, 2018a), CA-TP3 (Arain, 2018b), CA-TP4 (Arain, 2018c), and CA-TPD (Arain, 2018d) for the subbasin ERI20, 
US-Syv (Desai, 2023) for the subbasin SUP05, US-UMB (Gough et al., 2023a), and US-UMd (Gough et al., 2023b) for the subbasin HUR03. The 
available data period for each station varied from 1995 to 2020.

i CMS: Canadian Meteorological Centre (CMC; Brown and Brasnett, 2010), in-situ snow depths measurements and optimal interpolation using a 
simple snow accumulation and melt model.

j USGS and WSC: In-situ measurements collected from the United States Geological Survey (USGS; (https://waterdata.usgs.gov/nwis/rt) and Water 
Survey of Canada (WSC; https://wateroffice.ec.gc.ca/search/historical_e.html) stations.
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PBIAS =

[
∑n

i=1
(Oi − mi)

2

/
∑n

i=1
Oi

2

]

× 100% (2) 

where, r is correlation coefficient between observed and simulated values (measuring linear association), β is bias ratio, defined as μm
μo 

where, μm and μo are the means of modeled and observed values, respectively (measuring systematic bias), γ is variability ratio, defined 
as σm/μm

σo/μo 
where, σm and σo are the standard deviations of modeled and observed values, respectively (measuring relative variability). n is 

the total number of observations, and Oi and mi is the ith observed and modeled data, respectively.
We collected three kinds of ET reference datasets, two of them are remote sensing products from the Global Land Evaporation 

Amsterdam Model (GLEAM; Martens et al., 2017) and the Moderate-Resolution Imaging Spectroradiometer (MODIS; Running et al., 
2017) and one is in-situ dataset collected from 8 AmeriFlux sites (see Table 1). Remote sensing data can cover all of the Great Lakes 
region, but the in-situ dataset for ET can cover only 4 subbasins (Fig. 1). For the SWE reference data, we collected a remote-sensing 
product provided by the Canadian Meteorological Centre (CMC; Brown and Brasnett, 2010). For the runoff reference data, we obtained 
in-situ streamflow measurements from the United States Geological Survey (USGS) and Water Survey of Canada (WSC) stations, which 
can cover 65 subbasins over the Great Lakes basins. Most reference datasets can cover the recent 20 years.

As the reference data and model outputs have different spatiotemporal resolutions (Table 1), first spatial aggregation of the model 
outputs (e.g., 1 km) and reference datasets into subbasin averages was conducted to reduce errors induced by spatial interpolation of 
the reference data (Ma et al., 2017). Satellite-based products were aggregated into subbasin-wide averages directly, whereas in-situ 
measurements—such as ET from AmeriFlux and streamflow from USGS/WSC—required tailored approaches. For ET, only four sub-
basins were covered by AmeriFlux towers (Fig. 1), so average values were computed for the available datasets under the assumption 
that each represents its corresponding subbasin. For runoff, a watershed boundary was delineated based on each streamflow gauge 
(Fig. 1), with the gauged flow assumed to represent the delineated area, and the average of the model outputs for these areas was 
compared accordingly. Then, temporal upscaling–from half-hourly (AmeriFlux), daily (WRF-Hydro, GLEAM, USGS/WSC), and 8-day 
(MODIS) intervals–to monthly scale was conducted, enabling a direct comparison between the model outputs and reference data for 
the period from 2001 to 2020.

2.3. Long-term trend analysis

The hydroclimate change analysis utilized climate variables including surface air temperature and precipitation directly from the 
ERA5 dataset, while hydrological variables include ET, SWE, runoff, and surface soil moisture from the WRF-Hydro simulation. For the 
WRF-Hydro simulation, the initial 11 years from 1940 to 1950 were used as a spin-up to stabilize initial conditions, and the subsequent 
70 years of simulations were used to analyze long-term hydroclimate trends in the Great Lakes basin (more details on the model 
structure, parameters, and input data are available in Section 2.2). The modeling outputs (1 km/daily) were aggregated to subbasin- 
wide or lake-basin-wide averages (Fig. 1) with monthly or annual scales. Based on hydroclimate components from ERA5 dataset and 
WRF-Hydro simulation, the annual and seasonal trends, multidecadal changes, and interrelationships between hydroclimate com-
ponents were analyzed (Fig. 2).

We applied the Mann-Kendall trend test to annual time series to identify significant monotonic trends (p-value less than 0.05) and 
calculated Sen’s slope estimator (Sen, 1968) to estimate the changing magnitudes. Additionally, we investigated lake-basin-wide 
monthly climatology to examine the seasonality of each hydroclimate component. In this study, seasonality refers to recurring tem-
poral patterns observed in monthly time-series data. Then, subbasin-wide changing trends for annual magnitudes and seasonalities 
were assessed to identify hotspots for each hydroclimate variable. For trends in annual magnitude, Sen’s slope estimator of the annual 
time series for each hydroclimate component was calculated at each subbasin. For changes in annual seasonality, we employed a 
non-parametric estimator, the apportionment entropy (AE; Mishra et al., 2009; Konapala et al., 2020), and its change ratio represented 
in units of percentage change per decade (Stahl et al., 2012). 

Fig. 2. Research flow diagram.
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Change ratio =
s • n

x
× 100 (4) 

where, xi is the monthly value for ith month in kth year, s is the Sen’s slope for annual AE, n is the number of years, and x is the 
average value in the study period.

AE quantifies how evenly hydroclimate variables are distributed across 12 months. Theoretically, AE values can range from zero to 
a maximum of log212 (≈ 3.585). High AE indicates a uniform distribution (low seasonality), while low AE suggests significant month- 
to-month differences (high seasonality). AE is useful for characterizing changes in a hydroclimatological context as it is statistically 
well-suited to the characteristics of precipitation, evaporation, and flow regimes (Mishra et al., 2009; Feng et al., 2013; Konapala et al., 
2020; Wang et al., 2024).

Fig. 3. Spatial distribution maps of Goodness-of-fit (GOF) statistics, including Kling-Gupta Efficiency (KGE) and Percentage Bias (PBIAS), for model 
evaluation using multiple reference datasets. Reference evapotranspiration (ET) datasets were obtained from AmeriFlux tower observations and two 
satellite-based products, the Global Land Evaporation Amsterdam Model (GLEAM) and the Moderate Resolution Imaging Spectroradiometer 
(MODIS). Reference datasets for snow water equivalent (SWE), runoff, and soil moisture were collected from the Canadian Meteorological Centre 
(CMC), the United States Geological Survey and Water Survey of Canada (USGS/WSC), and GLEAM, respectively. Subbasin-wide monthly averages 
were calculated for the period from 2001 to 2020.
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3. Results

3.1. Evaluation of simulations against reference data

For the historical period from 2001 to 2020, the simulated hydrological components were evaluated by subbasin-wide monthly 
average values using various observations and satellite-based reference datasets (Fig. 3). In the case of ET evaluation, we have three 
reference datasets including in-situ measurements and two remote sensing-based modeling products (Table 1). For the Lake Erie 
subbasin, the simulated ET closely matches both satellite-based datasets, whereas it is greater than the in-situ flux tower dataset. The 
flux towers are located at the northeastern edge of the Lake Erie basin (Fig. 1), which is influenced by both land surface and lake effects, 
introducing noise into the in-situ measurements. This discrepancy has also been observed in a previous study (Fujisaki-Manome et al., 
2017), which utilized other eddy covariance measurements from a location similar to our Ameriflux towers. For other subbasins, the 
simulated ET closely aligns with the in-situ dataset and mostly falls within observed ranges. Overall, simulated ET values have 
reasonable ranges compared to various reference datasets. The average KGE is greater than 0.6 and the average PBIAS is 16% for in-situ 
datasets and -6% and -1% for remote sensing products.

For other variables such as SWE, runoff, and surface soil moisture, there is a consistent pattern of underestimation across all basins. 
We found that WRF-Hydro encountered challenges in properly simulating albedo, which potentially influenced the underestimation of 
SWE, consequently affecting streamflow and surface soil moisture simulations (Figure S2). Despite this underestimation, the corre-
lation coefficients for simulated hydrological variables, including SWE, runoff, and soil moisture, were high (e.g., 0.9 for all cases in 
Figure S2), demonstrating that the simulations could capture the overall patterns and long-term trends of the reference data. The 
average KGEs are greater than 0.4 and the average percentage biases are -24%, -13%, and -17% for SWE, runoff, and surface soil 
moisture, respectively. Since the primary objective of this study is to examine the changing patterns of long-term hydroclimate trends 
rather than determine absolute change magnitudes, model outputs can be used for further analysis. The potential sources of model bias 
are discussed in the Discussion section.

3.2. Analysis of annual trends and seasonality

3.2.1. Annual trends in hydroclimate components across basins
Fig. 4 illustrates the annual average magnitude of hydroclimate components for the four lake basins. Increasing trends are clearly 

observed in surface air temperature and ET, while SWE shows decreasing trends. Meanwhile, precipitation and runoff do not exhibit 
significant trends in their annual averages for the four lake basins. In addition, surface soil moisture shows increasing trends in the Erie 
and Ontario basins, whereas no significant trend is detected in the Michigan-Huron and Superior basins. Air temperature increases at a 
consistent rate of 0.02◦C/year across all four lake basins, which have statistically significant trends. In contrast, statistically significant 
monotonic trends in precipitation are not detected, with large year-to-year variations observed. Substantial variations of the annual 
precipitation in the Great Lakes basin are also observed in previous studies (Hodgkins et al., 2007; Yang et al., 2023). Additional 
analyses of seasonal precipitation trends were conducted, but no significant changes were observed (Figure S3). Three lake basins, 
excluding Superior, show significant increases in annual ET. The Erie basin has the highest increase at 1.1 mm/year, followed by 
Ontario (0.7 mm/year) and Michigan-Huron (0.6 mm/year). The Superior basin, however, shows the smallest increase in ET at 

Fig. 4. Historical annual average hydroclimate variables (panels a through f) across each of the Great Lake basins (differentiated by symbols). 
Significant trends (per Mann-Kendall tests) are highlighted by a red line.
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0.2 mm/year, which is not statistically significant. SWE trends are decreasing across all basins, with statistically significant decreases 
in three basins, excluding Erie.

The Superior basin shows the most substantial decrease in SWE at a rate of -6.1 mm/day, followed by Michigan-Huron (-4.6 mm/ 
day), Ontario (-3.6 mm/day), and Erie (-0.8 mm/day). Trends in ET and SWE are strongly influenced by temperature trends rather 
than precipitation trends. This relationship is further explored in Section 3.4 using a correlation matrix between various hydroclimate 
variables. Runoff for all lake basins does not show a statistically significant trend (Fig. 4). The Great Lakes basin has distinct patterns of 
streamflow discharge due to the complex interactions of climate (e.g., precipitation and lake effect snowfall), groundwater, and surface 
runoff (Johnston and Shmagin, 2008). These interactions make it difficult to establish annual trends, resulting in non-monotonic 
annual patterns. Annual trends in surface soil moisture are statistically significant and increasing for the Erie and Ontario basins 
(both at 0.0001 mm/year), where soil moisture levels are considerably higher compared to the Michigan-Huron and Superior basins. 
The vegetation types in the northern and southern parts of the region are significantly different (Figure S1). The northern areas (e.g., 
the Michigan-Huron and Superior basins) are dominated by forests, while the southern areas (e.g., the Erie and Ontario basins) are 
dominated by cropland, which contributes to large differences in soil moisture between the two regions (Mao and Cherkauer, 2009). 
Overall, the Erie basin exhibits the most substantial changes in the annual magnitudes of hydroclimate components including tem-
perature (0.018⁰C/year), precipitation (0.25 mm/year), ET (1.07 mm/year), and soil moisture (0.0001 mm/year). In contrast, the 
Superior basin shows the least changes in ET (0.24 mm/year), runoff (0.09 mm/year), and soil moisture (0.00001 mm/year), but the 
greatest decrease in SWE (-6.1 mm/year).

3.2.2. Seasonal variations in hydroclimate components across basins
Fig. 5 illustrates the monthly climatology of hydroclimate components for the four lake basins. SWE is considered only during the 

cold season (October to May). For air temperature, July and January are the warmest and coldest months, respectively, across all lake 
basins. The Superior basin experiences the largest seasonal differences (i.e., the differences between the highest and lowest months) 
with 32.7⁰C between 18.0◦C (July) and -14.7◦C (January) in the 1950s and 31.2⁰C in the 2000s, while the Erie basin has the smallest 
variation with 26.3⁰C between 21.9⁰C (July) and -4.4⁰C (April) in the 1950s and 26.1⁰C in the 2000s. In the case of precipitation, no 
consistent peak month was identified, although January to March typically represents the lowest precipitation for most basins. Again, 
the Superior basin shows the greatest seasonal differences, with values of 71.3 mm in the 1950s and 59.1 mm in the 2000s, while the 
Ontario and Erie basins have the least seasonal variations, with 27.2 mm and 33.4 mm in the 1950s and 2000s, respectively. Over time, 
seasonal differences in precipitation have decreased for most basins, except for the Ontario basin. For ET, July and January represent 
the highest and lowest months, similar to temperature. However, the Superior and Erie basins exhibit the smallest (72.6 mm in the 
1950s and 71.7 mm in the 2000s) and largest (101.5 mm in the 1950s and 102.3 in the 2000s) seasonal differences, respectively, which 
is the opposite of the temperature pattern. These ET seasonal differences have remained relatively stable, with changes of less than 
1 mm/month across all basins between the 1950s and 2000s.

SWE peaks in February or March and is at its lowest in October or May. The Superior basin shows the greatest monthly variations in 
SWE (330.9 cm in the 1950s and 264.8 cm in the 2000s), while the Erie basin shows the least (39.9 cm in the 1950s and 39.7 cm in the 
2000s). Recently, the seasonal differences in SWE have decreased significantly in the Superior basin, with minimal changes observed in 
the Erie basin. Runoff generally peaks in April and reaches its lowest point in September for most basins. The Ontario basin displays the 
greatest seasonal differences in runoff (43.4 mm in the 1950s and 36.2 mm in the 2000s), while the Superior basin shows the least 

Fig. 5. Historical monthly average hydroclimate variables (panels a through e) across each of the Great Lakes basins (differentiated by colors and 
symbols: Superior (SUP), Michigan-Huron (MIHU), Erie (ERI), and Ontario (ONT)). Solid lines represent monthly averages from 1951 to 1970, and 
dotted lines represent monthly averages from 2001 to 2020.
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(22.6 mm in the 1950s and 19.0 mm in the 2000s). Over time, seasonal differences in runoff have slightly declined across most basins. 
Lastly, soil moisture tends to peak in March or April and hits its lowest levels in August or September for most basins, except for the 
Superior basin, where February is the driest month. The Erie basin shows the greatest seasonal variation in soil moisture (0.06 mm in 
the 1950s and 0.05 mm in the 2000s), while the Superior basin shows the least (0.04 mm in the 1950s and 0.03 mm in the 2000s). 
Seasonal differences in soil moisture have generally decreased across all lake basins over time.

3.2.3. Changes in annual and seasonal trends
In the Great Lakes basin, most hydroclimate variables exhibit increased annual magnitudes and decreased seasonality between 

1951–1970 and 2001–2020, except for precipitation and SWE (Fig. 6). Across all 121 subbasins, annual average air temperature is 
increasing monotonically with 95% confidence, with rates ranging from 0.13◦C/year to 0.25◦C/year. Higher rates are observed in the 
central and southern parts, including the western Michigan basin and the eastern Erie basin, while lower rates are observed in the 
northeastern parts of the region. Meanwhile, temperature seasonality generally decreases (Figure S4), though most changes are not 
statistically significant (only 4 out of 121 subbasins). Significant decreases are observed in the western parts of the region, including 
the Superior basin and the western Michigan basin. Although trends of precipitation magnitude increase in most areas (Figure S4), only 
one subbasin shows a statistically significant increase. There is no clear spatial pattern for the changes in annual precipitation mag-
nitudes. Similarly, changing trends in precipitation seasonality vary, with some regions showing decreases and others increases 
(Figure S4). Only 10 out of 121 subbasins show statistically significant decreases in seasonality scattered throughout the region. There 
are no consistent trends in decreasing seasonality, but some of the eastern parts of the Superior and Michigan basins have increasing 
trends. Annual average ET increases at significant rates in most subbasins (117 out of 121) between 0.28 mm/year and 1.63 mm/year. 
The spatial trends of annual ET magnitude are similar to temperature, with relatively large increases in the southern parts of the region. 
In contrast, ET seasonality decreases in most regions, with 85 subbasins showing significant monotonic decreases, particularly in the 
northwestern areas including the Georgian Bay basin. Annual SWE decreases in all subbasins, with half (63 out of 121) showing 
statistically significant decreases ranging from − 0.38 cm/day to − 5.87 cm/day. Monthly variability of SWE increases in all subbasins 
(Figure S4), with 13 showing statistically significant increases, especially in the southern regions.

Annual runoff shows increasing trends in only 17 of 121 subbasins, with statistically significant trends ranging from 0.01 mm/year 
to 2.20 mm/year. The spatial pattern of changing trends in annual runoff is not clear, but there is a relatively large increase in the 
southern part of the region (or the southeastern Michigan basin). Runoff seasonality generally decreases over time, with 17 subbasins 
showing significant trends. The southern parts of the region show decreasing seasonality in runoff, while the northern parts of the 
Superior basin show increasing seasonality, but not statistically significant levels (Figure S4). Annual soil moisture shows statistically 
significant increases in 17 subbasins, with rates ranging from 0.0005 mm/year to 0.002 mm/year, showing relatively large increases 
in the southern region. Soil moisture seasonality increases in the central regions near the northern Michigan basin and decreases in the 
southern parts (Figure S4) with 23 subbasins identified as statistically significant levels of decreasing seasonality in soil moisture. The 

Fig. 6. Rate of change in annual and seasonal trends for hydroclimate variables from 1951 to 2020 across Great Lakes subbasins. Each panel shows 
the rate of change in annual magnitude (left side) and seasonality (right side) for each variable. Statistically significant trends are color-coded on a 
relative scale, with each panel having its own distinct numeric range.
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southern part of the Great Lakes basin shows a general increase in the annual magnitude of soil moisture and a decrease in its sea-
sonality. In contrast, the northern part, particularly the Michigan basin, exhibits a mild increase in the annual magnitude of soil 
moisture and a relatively large increase in its seasonality (Figure S4).

3.3. Comparison of multidecadal changes across hydroclimate components

Fig. 7 compares changes in various hydroclimate components between the recent two decades (2001–2020) and the earliest two 
decades of the study period (1951–1970). Air temperature, SWE, and runoff change more than other variables in terms of percentage 
changes of multidecadal averages, while precipitation, ET, and soil moisture show milder changes. The four lake basins generally 
exhibit consistent patterns of increase or decrease in these components, but some of them show regional differences. The mean air 
temperature has increased by 1◦C on average for all lake basins over the most recent 20 years. The Superior basin shows the highest 
increase at 0.99◦C (34% increase), followed by the Michigan-Huron basin at 0.95◦C (15%), the Erie basin at 0.92◦C (10%), and the 
Ontario basin at 0.80◦C (10%). We counted the number of cold and warm days for 20 years (defined by the lowest and highest 10% of 
daily average temperatures) and calculated percentage change differences between the recent and past periods, which reveals an 18% 
decrease in cold days and a 26% increase in warm days on average. Mean annual precipitation has slightly increased by approximately 
2%. To investigate the changes in extreme storm events, we first identified all rainfall events by grouping daily precipitation data into 
rainfall events that have consecutive rainy days (Song et al., 2020). Then, we calculated the intensity of each rainfall event (i.e., total 
rainfall depth/number of days). We set a threshold for extreme storm events as the top 10% of rainfall intensity among all rainfall 
events identified from 1951 to 2020 and counted the number of extreme storm events each year. The number of extreme rainfall events 

Fig. 7. Differences in average hydroclimate variables average between 2001–2020 and 1951–1970 for the Superior (S), Michigan-Huron (M), Erie 
(E), and Ontario (O) basins. Note * : Maximum SWE timing is represented as the difference in days between the two periods. For example, in the Erie 
basin, the maximum SWE timing shifted from February 7 (1951–1970) to February 15 (2001–2020), resulting in a difference of 8 days. Positive 
values indicate delayed maximum SWE timing, while negative values indicate earlier timing.
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has increased for all lake basins except for the Ontario basin.
The annual ET across the four lake basins has increased by 6% on average. Notably, ET during the cold season (November to April) 

has risen by an average of 13%, while ET during the warm season by an average of 4% increase (not shown in the figure), which is 
consistent with Fig. 6 showing the reduction of ET seasonality over time. Both the mean annual and maximum SWE has decreased by 
24% and 13%, respectively. The timing of maximum SWE has shifted, being delayed in three lake basins (e.g., from February 7 to 
February 15 in the Erie basin), while the Superior basin shows an earlier timing (from March 20 to March 9). For all lake basins 
excluding Superior, the annual average flow, high flow (95% of daily runoff), and low flow (5% of daily runoff) have increased by 
approximately 13%, 7%, and 20%, respectively. Meanwhile, the average and low flow in the Superior basin show less than 0% change 
and the high flow has decreased by about 2%. Except for the Superior basin, all three lake basins have substantial increases in flow. 
Surface soil moisture shows the least change, with less than a 2% increase across the four lake basins. Additionally, we observed that 
the southern basins, including the Erie and Ontario basins, show greater increases in soil moisture during the warm season than the 
cold season, but this was not the case for the northern basins (not shown in the figure).

3.4. Interrelationships between hydroclimate components

To investigate the annual and interannual relationships between various hydroclimate variables, we employed correlation coef-
ficient matrices for annual, cold season, and warm season averages (Fig. 8 and Figure S5). This result underscores the importance of 
considering both seasonal and regional variations when assessing the impacts of climate change on hydroclimate dynamics in the Great 
Lakes basin. Air temperature shows strong positive correlations with ET (0.49 to 0.68) and strong negative correlations with SWE 
(-0.61 to -0.45) on an annual scale (Figure S5). This pattern holds for the cold season across all four lake basins. In the warm season, the 
temperature has positive correlations with ET and negative correlations with runoff and soil moisture, except for the Erie basin, which 
shows no significant correlations with most hydrological variables. In addition, the warm season temperature has negative correlations 
with cold season SWE in the northern basins (Superior and Michigan-Huron), but not significant correlations in the southern basins 
(Erie and Ontario). The results imply that cold season temperatures consistently impact ET and SWE for all lake basins, whereas warm 
season temperatures have varied regional impacts on hydrological processes. Precipitation exhibits strong positive correlations with 
runoff (0.59 to 0.72) and soil moisture (0.64 to 0.75) for all lake basins on an annual scale (Figure S5). In addition, it shows mild 
positive correlations with ET except for the Ontario basin. In both warm and cold seasons, strong positive correlations with runoff and 
soil moisture are identified for all basins. Additionally, positive correlations between precipitation and ET are observed in the warm 
season.

ET shows mild negative correlations with SWE (-0.42 to -0.25) across the four lake basins. On an annual scale, the correlations 
between ET and both runoff and soil moisture vary by basin: they are strong in the Erie basin, mild in the Ontario and Michigan-Huron 

Fig. 8. Correlation among hydrological variables across cold and warm seasons for the four Great Lakes basins (Superior (SUP), Michigan-Huron 
(MIHU), Erie (ERI), and Ontario (ONT)). The lower-left of each subplot displays scatter plots with linear trendlines, while the upper-right shows 
statistically significant correlations (p-value < 0.05), highlighted with a blue and orange background, which shows positive and negative corre-
lations, respectively. Note: SWE estimated during the cold season is used in the correlation analysis for the warm season to explore its in-
terrelationships with warm season variables.
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basins, and not significant in the Superior basin (Figure S5). In the cold season, ET maintains weak negative correlations with SWE for 
all basins but does not show significant correlations with runoff and soil moisture. In the warm season, ET has strong correlations with 
runoff and soil moisture in the Erie basin, while these correlations are mild in the Michigan-Huron and Ontario basins and nonexistent 
in the Superior basin. The negative correlations between ET and SWE indicate that temperature increases significantly drive increased 
ET and reduced SWE across all basins. SWE has a mild positive correlation with runoff for the Superior and Michigna-Huron basins on 
an annual scale (Figure S5). There are no significant correlations between either SWE and runoff or between SWE and soil moisture for 
both warm and cold seasons in all lake basins except for the Superior basin. Notably, in the Superior basin, SWE shows higher cor-
relations with runoff in the warm season (0.42) than in the cold season (0.29). This implies that SWE significantly impacts runoff in the 
snow-dominated Superior basin for both warm and cold seasons, which is substantially different from the other basins. Runoff exhibits 
significant positive correlations with surface soil moisture across all basins during both warm and cold seasons. This indicates a close 
relationship between runoff and surface soil moisture levels. This result suggests that runoff and surface soil moisture are influenced by 
common driving factors including precipitation, temperature, and ET.

4. Discussion

4.1. Performance of hydrological simulations

We compared the performance of the hydrological simulation results with a previous model intercomparison study for the entire 
Great Lakes basin conducted by Mai et al. (2022) (see Table S1 in the Supplementary Materials). Since the model is primarily tuned for 
streamflow prediction during the 2008–2016 period (Cosgrove et al., 2024), the evaluation of other hydrological variables over the 
past 20 years highlights areas for improvement while also demonstrating the model’s capacity to represent land surface and hydro-
logical processes. The performance of runoff and SWE in this study is relatively lower than that of ET and soil moisture, which aligns 
with the accuracy observed in advanced models (or models with a similar level of complexity to WRF-Hydro) in Mai et al. (2022). 
According to the KGE criteria from Mai et al. (2022), simulated runoff, ET, SWE, and soil moisture show medium to good performance. 
Based on the PBIAS criteria (Mai et al., 2022), simulated ET using GLEAM and MODIS data is classified as excellent, while ET based on 
AmeriFlux is classified as good. Although the differences between these three reference datasets for ET are an interesting topic that has 
been widely explored in other studies (Wang et al., 2015; Khan et al., 2018; Zhang et al., 2020a; Zheng et al., 2022), this study focuses 
on long-term trends and overall model performance. Based on the comparisons with these datasets, we conclude that the simulated ET 
demonstrates good performance.

The simulated runoff and soil moisture meet the criteria for good performance as defined by PBIAS in Mai et al. (2022), while 
simulated SWE is classified between good and medium performance. We identified underestimations in simulated SWE, runoff, and 
soil moisture, with PBIAS values of − 24 %, − 13 %, and − 17 %, respectively (Fig. 3). Given the significant role snow processes play in 
the hydrology of the Great Lakes basin, the underestimation of SWE affects the accuracy of simulated runoff and soil moisture. One 
possible reason for this underestimation is the inaccurate representation of snow processes in the model, which in turn affects 
snowmelt contributions to spring runoff and soil moisture (Shin et al., 2024). This study employed the calibrated parameter sets from 
NWMv2.1, which focused on tuning 14 model parameters to improve streamflow accuracy (Cosgrove et al., 2024). These parameters, 
related to soil, runoff, groundwater, vegetation, and snow processes, are crucial in WRF-Hydro, and studies have explored their 
sensitivities in modeling outputs (Yucel et al., 2015; Lahmers et al., 2019). However, only one parameter–specifically, the melt factor 
for the snow depletion curve–was considered for snow dynamics, which may contribute to the underestimation of modeling results in 
this study. Previous studies emphasize the importance of fine-tuning snow albedo schemes, such as optimizing snow depth, age, and 
minimum and maximum albedo, to enhance the accuracy of snow process simulations (Abolafia-Rosenzweig et al., 2022; Liu et al., 
2022; Shin et al., 2024). Future studies should consider these factors to improve model performance. Another source of potential bias 
in the model results is the choice of input data, particularly the atmospheric forcing dataset, ERA5. This dataset differs from the one 
used for model calibration and contains biases compared to station-based observations (Table S2). ERA5 data is drier and warmer than 
station-based observations by 3.6 mm/year and 0.4◦C, respectively, while the overall patterns are consistent (e.g., the average biases 
for monthly precipitation and temperature are -1% and 8% with corresponding average KGE values of 0.7 and 0.9) (Table S2). These 
biases likely contribute to the discrepancies in the simulation results.

To address the potential impacts of ERA5 on the hydrologic simulations, we compared the performance of the runoff simulations in 
this study with other studies using NWMv2.1, which incorporates AORC. Although detailed calibration and validation results (e.g., 
goodness-of-fit values) are not readily available, Cosgrove et al. (2024) reported that the median absolute bias for NWMv2.1 
streamflow simulations is less than 20%, based on USGS streamflow datasets from approximately 10,000 stations across the United 
States for the period from 2013 to 2016. Additionally, Orendorf et al. (In Review, via personal communication) evaluated NWMv2.1 
streamflow outputs for the period from 1979 to 2020, using a total of 157 USGS and WSC streamflow gauges across the Great Lakes 
basin, and found that the median KGE for the four lake basins (Superior, Michigan-Huron, Erie, and Ontario) ranged from 0.3 to 0.6. 
Despite differences in spatial and temporal coverage, these results are consistent with this study, where the median bias and KGE for 
runoff simulations are -16% and 0.5, respectively (Fig. 3). Given that NWMv2.1 is primarily designed for streamflow simulation, the 
evaluation of other hydrological outputs has been limited. These findings suggest that the level of accuracy in runoff simulations using 
ERA5 is comparable to that using AORC. We chose to use ERA5 due to its longer data period (available from 1940, compared to 1979 
for AORC) and its well-documented reliability in the literature (AORC, by contrast, is a customized dataset specifically used for NWM 
calibration). However, ERA5 has high uncertainties during the earlier period (1950s to 1970s) due to the scarcity of in-situ datasets 
(Bell et al., 2021). In this study, we analyzed ERA5 air temperature and precipitation trends from 1960 to 2020 using station-based 
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measurements and found that overall trends are in good agreement (Table S2). The updated version of ERA5 is currently in devel-
opment to improve accuracy for early periods and is expected to be released in the near future (Bell et al., 2021). Future studies would 
benefit from incorporating these improvements into the land surface hydrological modeling.

4.2. Regional hot spots and spatial variability of hydroclimate trends

For the changes in annual magnitudes, the southern regions emerge as hotspots for increases in air temperature, ET, runoff, and soil 
moisture, while the northern regions are hotspots for decreases in SWE (Fig. 6). The significant increase in temperature across all 
subbasins, particularly in the central and southern parts, highlights the region’s vulnerability to climate warming. In contrast, no 
hotspots were detected for precipitation, with only one subbasin showing a significant trend in annual precipitation magnitude. The 
absence of statistically significant precipitation changes in most subbasins underscores the complexity of precipitation patterns and 
their response to climate change in the Great Lakes region (Hayhoe et al., 2010; d’Orgeville et al., 2014; Zhang et al., 2020b). The 
widespread decrease in SWE, particularly in the northern regions, indicates a reduced snowpack, which may affect water availability 
during the melt season. The strong spatial correlation between temperature, ET, and SWE suggests that rising temperatures are driving 
higher ET rates and lower SWE rates, particularly in the southern regions. Regarding seasonality trends, most hydroclimate variables 
do not exhibit statistically significant changes, except for ET. In the case of ET, the northern parts of the region show relatively large 
decreases in seasonality compared to the southern parts. Temperature shows the least variation in seasonality among all hydroclimate 
variables. No consistent spatial trend is observed for precipitation seasonality. However, in the case of SWE, runoff, and soil moisture, a 
few subbasins in the southern regions show significant seasonality changes, with increases in SWE and decreases in runoff and soil 
moisture.

In the Great Lakes system, water flows from the northernmost, upstream region, the Superior basin, through the interconnected 
Michigan-Huron basin, eventually reaching the southern, downstream regions of the Erie and Ontario basins. Hydrological regimes 
differ substantially between these upstream and downstream areas, leading to distinct changing patterns in runoff and soil moisture 
(Fig. 7 and Figure S4). In the downstream region, rainfall-runoff relationships dominate, whereas in the upstream region, snow 
significantly influences runoff variability, soil moisture, and aquifer recharge (Grant et al., 2004; Maurer and Bowling, 2014). For 
instance, the upstream region exhibits decreasing runoff magnitude and increasing seasonality, while the downstream region shows 
the opposite. Similar trends are observed in soil moisture, showing increasing annual magnitudes and decreasing seasonality from 
upstream to downstream. These findings suggest that historical runoff and soil moisture trends are diverging between upstream and 
downstream regions, potentially influencing future hydrological patterns in the Great Lakes basin.

Overall, the Great Lakes basin is undergoing significant shifts in hydroclimate variables, including notable increases in temperature 
and ET and decreases in SWE. These changes are not uniform across the basin, a trend consistent with findings from studies across the 
world (Feng et al., 2013; Vano et al., 2015; Konapala et al., 2020; Wang et al., 2023). Konapala et al. (2020) project that the Great Lakes 
region, characterized by high precipitation and low seasonality regime, will experience increased annual magnitude of evaporation 
with decreased seasonality, which aligns with our results. However, Konapala et al. (2020) also found that precipitation is projected to 
increase both annual magnitude and seasonality, while these patterns were not evident in our long-term historical trends analysis. Both 
historical and future ET trends show a clear and consistent direction, unlike the more variable precipitation trends. This discrepancy is 
likely stemming from the substantial uncertainties in precipitation estimates across global climate models (Song et al., 2020). The 
distinct spatial patterns in both magnitude and seasonality emphasize the need for region-specific studies and adaptive management 
strategies (e.g., a series of regional studies about the Great Lakes basin; Fry et al., 2014; Gaborit et al., 2017; Mai et al., 2021; 2022).

4.3. Drivers of hydroclimate trends

The analysis of multidecadal hydroclimate trends in the Great Lakes basin reveals a complex and interconnected system, where 
changes in air temperature, precipitation, ET, SWE, runoff, and soil moisture are driven by regional climate dynamics. These trends not 
only highlight shifts in individual hydroclimate components but also illustrate how these components interact and influence one 
another. Understanding the magnitude and variability of these trends, as well as their broader implications, is critical for developing 
adaptive strategies for water management, ecosystem conservation, and climate resilience both within the Great Lakes basin and in 
other regions with similar climatic conditions.

Surface air temperature trends have exhibited the most significant changes across the Great Lakes basin, with more rapid warming 
observed in the last two decades (2001–2020) compared to the 1950s (1951–1970) (Fig. 7). These air temperature trends closely align 
with long-term trends in lake surface water temperature over a similar period (1979–2021), showing significant increases of 0.4⁰C to 
0.6⁰C per decade, which are consistent with our findings (Cannon et al., 2024). The increase in warm days and the decrease in cold days 
highlight the region’s vulnerability to climate warming. These temperature-driven changes are driving shifts in hydrologic processes, 
particularly influencing ET and SWE throughout the year, while runoff and soil moisture primarily during the warm season (Fig. 8). 
Warmer temperatures increase atmospheric moisture demand, leading to higher ET rates, which, in turn, reduce soil moisture and limit 
runoff generation. This effect is especially pronounced in the warm season when increased evaporative losses deplete surface and 
subsurface water storage, amplifying seasonal drought risk and altering the timing and magnitude of streamflow. During the cold 
season, rising temperatures negatively impact SWE by reducing snow accumulation and accelerating melt processes. In the northern 
basins, temperatures in the warm season are further linked to reduced cold season SWE, potentially due to delayed snowfall onset, 
increased rain-on-snow events, and alterations in soil freeze-thaw dynamics (Rixen et al., 2022).

While annual precipitation has only slightly increased across the region, the frequency and intensity of extreme rainfall events have 
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increased, especially during the fall and winter seasons (Figure S3). This pattern suggests that while the total amount of precipitation 
remains relatively stable, its distribution and intensity are shifting. Extreme storm events, particularly in the southern basins, pose a 
growing risk to infrastructure and water management systems. These findings align with broader trends of increasing extreme weather 
events globally (Hayhoe et al., 2010; d’Orgeville et al., 2014).

4.4. Interrelationships between hydrologic processes

ET has increased across the Great Lakes basin, with a more pronounced increase during the cold season (Fig. 7). The relatively 
strong correlation between temperature and ET, particularly during the cold season (Fig. 8), emphasizes the role of temperature as a 
key driver of changes in ET, which is discussed in the previous section. Although the increase in ET is smaller than the percentage 
increase in temperature, it exceeds the changes in precipitation, suggesting that temperature will have a more significant influence on 
ET on a multidecadal scale. However, ET is not solely influenced by temperature; it is also affected by factors such as solar radiation, 
humidity, and wind speed (Lofgren et al., 2011).

SWE has decreased significantly across the basin, with the timing of maximum SWE shifting in all lake basins. The Superior basin, in 
particular, shows an earlier melt of snowpack, while other basins show delayed snowmelt. The declining snowpack is a clear signal of 
climate change impact on cold season hydrology, as warmer winters reduce snow accumulation and shift the timing of snowmelt. The 
reduction in snowpack and altered timing of snowmelt have direct consequences for spring runoff and water availability during the 
growing season. Regions dependent on snowmelt for water supplies, including agricultural and urban areas, may face water shortages 
as the timing and volume of snowmelt change. This trend is particularly concerning for other cold regions, such as the Himalayas 
(Maurer et al., 2019), the Alps (Carrer et al., 2023), and the Rocky Mountains (Wieder et al., 2022), where declining snowpack can 
disrupt water supplies for billions of people.

Runoff has increased in all basins except the Superior basin, where little to no change was observed. The Superior basin, with its 
colder climate and prolonged ice cover, experiences later snowmelt compared to the southern basins due to delayed warming and 
insulation from the ice, leading to less runoff variability compared to basins with warmer climates (Fig. 5e). Higher high-flow events 
increase flood risks, while increased low-flow events can exacerbate droughts. Regions with similar rainfall and snow dynamics may 
experience similar shifts in runoff patterns, calling for more adaptive water management strategies that account for increased vari-
ability in flow regimes.

Of all the hydroclimate variables analyzed, soil moisture exhibits the least change across the four lake basins. This suggests that 
surface soil moisture is less sensitive to climatic changes compared to other hydroclimate variables, which is also observed in Mao and 
Cherkauer (2009). The relative stability of soil moisture reflects the complex interactions between precipitation, temperature, and land 
use. However, regional differences exist, with southern basins showing greater increases in soil moisture during the warm season 
compared to northern basins. This result is aligned with a previous study (Erler et al., 2019), which investigated the main driver of 
seasonal soil moisture changes in the southern part of the Great Lakes basin. Soil moisture is a critical factor for agriculture and 
ecosystem health, and even small changes could have cascading effects on land use and water availability. While soil moisture has 
remained relatively stable, localized changes in precipitation patterns, land use, and temperature could lead to more variability in the 
future.

The trends observed in the Great Lakes basin may manifest in other areas with similar hydroclimate dynamics, such as temperate 
and polar regions across the globe. The interplay between warming temperatures, changing precipitation patterns, and declining 
snowpack is likely to affect water availability, flood risk, and ecosystem dynamics in these regions. For instance, the decreasing 
snowpack and altered runoff timing in the Great Lakes basin mirror trends observed in the European Alps, the Rocky Mountains, and 
the Himalayas, where similar hydroclimate challenges are emerging (Maurer et al., 2019; Wieder et al., 2022; Carrer et al., 2023). As 
extreme weather events, including intense rainfall and heatwaves, become more frequent worldwide, regions will need to adapt their 
infrastructure and water management practices to handle increased variability. This includes redesigning flood control measures, 
investing in irrigation efficiency, and developing strategies to cope with earlier snowmelt and reduced water availability during critical 
growing seasons.

5. Conclusions

This study comprehensively analyzes the long-term hydroclimate changes across the Great Lakes basin from 1951 to 2020. Overall, 
the Great Lakes basin is undergoing significant shifts in hydroclimate variables; notable increases in air temperature, ET, and runoff 
(particularly low flow), and decreases in SWE. Significant spatial and temporal variations are also identified within the region. In the 
northernmost region, the Superior basin, runoff, and soil moisture exhibit decreasing magnitude with increasing seasonality, whereas 
the southern regions (Erie and Ontario basins) display the opposite trend. Notably, the Erie basin showed the most substantial changes 
in annual magnitude for hydroclimate components, albeit with only minor shifts in seasonality, while the Superior basin experienced 
minor changes in annual magnitude but the most pronounced decrease in SWE.

This study acknowledges factors that may influence the results, including biases in the early period of the reanalysis dataset and 
challenges in accurately representing the snow process in the land surface model. Extensive evaluations were conducted using various 
references such as in-situ measurements, satellite-based products, and literature. Though the overall patterns in the input data and 
model outputs demonstrate good agreement with these references supporting their use for long-term trend analysis, the inherent 
uncertainties could influence the results. Therefore, we recommend that future studies utilize updated reanalysis datasets and further 
refine the land surface modeling schemes.

S. Shin et al.                                                                                                                                                                                                            Journal of Hydrology: Regional Studies 59 (2025) 102347 

14 



The findings of this study emphasize the need for region-specific studies and adaptive management approaches when assessing the 
impacts of climate change on hydroclimate dynamics. This long-term analysis of hydroclimate trends provides valuable references for 
understanding historical changes and offers critical implications for future conditions. These insights highlight the complexity and 
regional variability of hydroclimate interactions in the Great Lakes basin, emphasizing the need for localized studies and tailored 
management approaches.
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obtained from the National Land Cover Database (NLCD) produced by USGS (https://www.mrlc.gov/), and that for the Canadian 
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produced by Boston University (https://www.umb.edu/spectralmass/terra-aqua-modis/). The soil data for the United States portion 
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(USDA) (http://websoilsurvey.nrcs.usda.gov/) and that for the Canadian portion was obtained from the Food and Agriculture Or-
ganization (FAO) Soil Map of the World (FAO/UNESCO 1971). The WRF-Hydro modeling outputs can be downloaded in the University 
of Michigan - Deep Blue Data (https://doi.org/10.7302/wkd1-nb64).
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