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Abstract The occurrence, timing and development of algal blooms can be unpredictable under changing
climatic conditions. Dramatic fluctuations in algal biomass patterns occurred in Lake Taihu, with a notable
surge in blooms magnitude during 2016–2020 followed by a sudden decrease in algal biomass in the period of
2021–2023. The mechanisms underlying this variability are not well understood. Here, a process‐based model
was developed to quantify the drivers behind the transition from higher to lower algal biomass patterns. The
lower spring photosynthetically active radiation (PAR) during 2021–2023 decreased algal photosynthesis and
algal biomass. The subsequent weak phytoplankton–phosphorus (from the sediment) feedback, resulted in
decreased phosphate concentration, which in turn further reduced algal biomass. This mechanism underscores
the importance of understanding internal nutrient dynamics and the need for stricter measures to reduce external
loads to weaken the internal feedback loop between sediment phosphorus release and algal bloom outbreaks,
and further to mitigate the effects of climate change on lake ecosystems.

1. Introduction
Freshwater lakes provide essential ecological services such as water supplies, recreation, and biodiversity
(Kraemer et al., 2021). However, anthropogenic eutrophication and subsequent harmful algal blooms occurrence
have impaired these services (Backer et al., 2015; Brookes & Carey, 2011; Conley et al., 2009; Paerl et al., 2016).
Reducing external nutrient loads is a principal strategy to control eutrophication and algal blooms (Abell
et al., 2022; Linden et al., 2004). Apart from external nutrient input, internal phosphorus recycling can also in-
fluence in‐lake phosphorus availability and shape algal blooms dynamics in shallow eutrophic lakes (Qin
et al., 2023; Søndergaard et al., 2013). Furthermore, dramatic fluctuations in algal blooms may occur more
frequently in a changing climate (Christensen et al., 2006; Istvánovics et al., 2022). Thus, there is a great need to
better understand the internal and external driving mechanisms behind algal growth and proliferation.

Nutrients and meteorological conditions are important factors influencing algal biomass and cell buoyancy which
lead to blooms (Baker et al., 2000; Brookes et al., 2000; Huisman et al., 2018). Following external nutrient input
into the lake, a sequence of biogeochemical processes unfold, including uptake by algae, decomposition and
mineralization of detrital phytoplankton, sedimentation, release from sediment, etc (Cole & Likens, 1979;
Søndergaard et al., 2013). In these internal nutrient cycling processes, there are positive algae‐nutrients feedback
loops (Meerhoff et al., 2022; Qin, 2020). Specially, under favorable meteorological conditions, intense algal
blooms greatly enhance the quantity and activity of heterotrophic bacteria community, which accelerate the
decomposition and mineralization of algal detritus which make nutrients bioavailable (Eiler & Bertilsson, 2004;
Grossart et al., 2006; Tang et al., 2010). Degradation of algal detritus can also stimulate nutrients release from
sediment through changing the dissolved oxygen further accelerating nutrients cycling (Kang, Zhu, Zhu,
et al., 2023; Qin et al., 2023). These feedbacks, in turn, increase blooms magnitude and prolong bloom duration
through increasing “additional” nutrient inputs.

The management of phytoplankton is hindered by the large variability in inter‐ and intra‐annual variability of
phytoplankton population and identifying the root cause of this variability (Linden et al., 2004). The aim of this
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study is to assess how water temperature, incident light availability, total suspended solids and nutrient loading
affect the phytoplankton communities.

Lake Taihu, the third largest eutrophic freshwater lake in China, is situated in an alluvial plain of Yangtze River.
After the severe drinking water crisis in 2007 in Wuxi, the governments initiated many restoration measures to
improve water quality (Qin, 2020). The external inputs of total nitrogen and total phosphorus from surrounding
rivers start to decline, but remain at high levels (Figure S1 in Supporting Information S1). Meanwhile, algal
biomass has undergone remarkable changes in recent years and doesn't respond in a predictable way to the
variations in external loading. The algal biomass was considerably higher during 2016–2020 compared to the
preceding period from 2008 to 2015. However, following 2020, there has been a notable decline in algal blooms
intensity. Wu et al. (2022) identified that the reduced ammonia and nitrate concentrations that resulted from the
decreased nutrient load and concentrated rainfall in July–August 2021, significantly reduced the intensity of
cyanobacterial blooms. Kang, Zhu, Zou, et al. (2023) highlighted that low external phosphorus supply due to
extreme drought led to the observed decrease of algal biomass in 2022. In addition to external loading, the internal
phosphorus cycling can also influence in‐lake phosphorus availability, and support algal growth (Søndergaard
et al., 2013).

The shift from higher algal biomass during 2016–2020 to lower algal biomass during 2021–2023 in Lake Taihu
presents an opportunity to explore what mechanisms are driving this shift in algal biomass. We explore this by
employing a process‐based model simulating how the phytoplankton respond to changes in water temperature,
incident light availability, total suspended solids and nutrients during the high‐algae period (2016–2020) and the
low‐algae period (2021–2023).

2. Materials and Methods
2.1. Study Site

Lake Taihu (30°55′40″–31°32′52″N, 119°52′32″–120°36′10″E) is a shallow eutrophic freshwater lake located in
the Yangtze River Delta region, China (Figure 1). The lake has a catchment area of 36,500 km2, a surface area of
2,338 km2, and a volume of 4.4 × 109 m3. The mean and maximum depth are 1.9 and 3 m, respectively. Annual
freshwater input to the lake averages 8.8× 109 m3, and the average water retention time is approximately 180 days
(Xu et al., 2015).

The Taihu basin has a complicated river network, with 117 rivers or channels connecting to the lake (Xu
et al., 2015). The main inflow rivers, such as Chendonggang, Yincungang and Xitiaoxi, originate from the

Figure 1. Location of Lake Taihu. Black circles are the main rivers connected to the lake. Red circles are for monthly
sampling sites. Red cross signs are for seasonally sampling sites. Red triangle indicates the location of The Taihu Laboratory
for Lake Ecosystem Research (TLLER).
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southwestern and western watersheds. The primary outflow is through the Taipu River in the eastern watershed.
However, the nutrients from the surrounding watersheds are mainly from the northwestern basin and transported
to the northern and northwest parts of the lake. The Taihu Basin is located in the East Asian monsoon region,
characterized by humid, hot conditions with a prevailing southeast wind in summer (Qin et al., 2021). Algal
blooms often occur and persist in the northern or northwestern regions of the lake. The northern Lake Taihu is the
focus area of investigation in this study.

2.2. Data Collection

2.2.1. Water Quality and Biological Data

Fourteen sites were monitored monthly and 18 sites were monitored seasonally (February, May, August, and
November) from 2005 by The Taihu Laboratory for Lake Ecosystem Research (TLLER). At each site, samples
were collected at 0.5 m below the surface, middle of the water column, and 0.5 m above the bottom. The water
samples were mixed to represent an integrated water column sample. The water quality and biological indicators
can be got after analyzing the water samples. Detailed analytical methods for water quality and biological in-
dicators can be found in Text S1 in Supporting Information S1 and Zhu et al. (2018). The water quality and
biological indicators used in this study included ammonium (NH4‐), nitrate (NO3‐), nitrite (NO2‐), phosphate
(PO43‐), and total suspended solids (TSS) from 2016 to 2023. The Chlorophyll a (Chla) and total phosphorus (TP)
data was collected from 2005 to 2023. These data are available at http://thl.cern.ac.cn/meta/metaData.

Annual riverine loadings of total nitrogen (TN) and TP from 2005 to 2023 were obtained from The health status
report of Taihu Lake (https://www.tba.gov.cn/). In addition, a total of 16 main rivers connected to Lake Taihu
were monitored monthly from 2016 to 2023. Among the 16 rivers, 12 rivers are inflows while the remaining are
outflows. According to the The health status report of Taihu Lake, the monitored rivers by TLLER contribute a
large proportion of the total inflow into Lake Taihu. The monitored water quality parameters of connected rivers
used in this study involved TP and PO43‐.

2.2.2. Meteorological and Hydrological Data

Water temperature (WT) and water level (WL) were monitored at 8:00, 14:00 and 20:00 every day at the end of
pier in the TLLER. WT was measured at 0.5 m below the surface. Daily incident photosynthetically active ra-
diation (PAR), wind speed (WS), and rainfall (RF) were obtained by automatic meteorological station from the
TLLER (http://thl.cern.ac.cn/meta/metaData).

2.3. Trend Analysis

The Chla, TSS, DIN (dissolved inorganic nitrogen, the sum of NH4‐, NO3‐, and NO2 − ) and PO43‐ concentrations
at 14 sampling sites were area‐averaged based on the Thiessen polygon method to obtain mean values in the
northern Lake Taihu. The seasonal mean WT, WS, PAR, RF, WL, TSS, DIN, and PO43‐ were calculated by
averaging the monthly or daily monitoring. The non‐parametric Mann‐Kendall test was conducted to determine
whether significant positive or negative temporal trends existed in these variables at seasonal scale from 2016 to
2023 (P < 0.05). Detailed descriptions of the Mann‐Kendall test can be found in reference (Kendall, 1975;
Mann, 1945).

2.4. The Analysis of Internal Load

The OECD eutrophication model can be used to determine whether internal phosphorus is released into the water
column to support the growth of additional algae. The model considers that the in‐lake TP concentration is mainly
determined by external loading and assumes the internal load is zero on an annual scale (Janus & Vollen-
weider, 1981). The theoretical in‐lake TP concentration is calculated as (Janus & Vollenweider, 1981):

P =
l
q
·

1
1 +

̅̅̅
τ

√ (1)

where l is areal‐specific annual phosphorus load (g·m− 2·year− 1), q indicates hydraulic load (m·year− 1), and τ is
the theoretical hydraulic residence time (year).
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There exists a significant positive correlation between TP concentration and algal biomass (indicated by Chla) in
P‐limited lakes. When the calculated theoretical phosphorus concentration is plotted against Chla, it is found that
the same theoretical phosphorus concentration might correspond to different Chla concentration. This phe-
nomenon may be attributed to the influence of internal load. Taking the years with the lowest Chla as the baseline,
algal growth during these years is sustained by external phosphorus load alongside zero or lower internal
phosphorus release. When Chla exceeds the basal level, we can assume that the corresponding year has a higher
internal load (Istvánovics et al., 2022). When Chla falls the basal level, it indicates the internal TP load is mainly
deposited during the corresponding year. The released or deposited amount of internal TP load can be estimated
from the difference between the actual and the basal Chla according to the relationship between the basal Chla and
TP values. In this study, the average Chla values betweenMay and August due to the seasonal sampling frequency
in the entire Lake Taihu were used to indicate algal biomass (corresponding to the period of algal blooms
occurrence in Lake Taihu).

2.5. Quantitative Underlying Mechanism on Algal Biomass Variation

2.5.1. Model Structure

A zero‐dimensional process‐based model is designed for simulating temporal variation of Chla and PO43‐ con-
centration. Due to the dominant role of cyanobacteria (mainly Microcystis) in the northern Lake Taihu (Text S2
and Figure S2 in Supporting Information S1), the growth characteristics of cyanobacteria (mainly Microcystis)
were mainly considered.

1. Chla simulation module

The module for simulating Chla primarily encompasses processes of algal photosynthesis, respiration, excretion,
mortality, and grazing (Bowie et al., 1985; Hipsey et al., 2011).

∂A
∂t
= (μg − lr − lp − lm − G) · A (2)

where μg is the algal photosynthetic rate (day
− 1), lr is the respiration rate (day

− 1), lp is the excretion rate (day
− 1),

lm is the mortality rate (day
− 1), and G is the algal loss grazed by zooplankton (day− 1). The specific functions of

these terms can be seen in Text S3 in Supporting Information S1.

2. Phosphate simulation module

Phosphate concentration is modeled as a function of inflow phosphate input, outflow phosphate output, uptake by
algae, decomposition and mineralization of labile organic matter (mainly from algal colonies), zooplankton‐
mediated recycling, release from sediment, and sedimentation of phosphate (Olson & Jones, 2022; Z.‐X. Zhou
et al., 2022):

∂P
∂t
= Pin − Pout − μg · A · Cp + L · A · Cp + G · A · rec + Pre − v × P (3)

where Pin is the phosphate inflow (mg·L
− 1·day− 1), Pout is the phosphate outflow (mg·L

− 1·day− 1),Cp is the ratio of
Chla to Phosphorus (mg·P/(mg·Chla)), rec is the proportion of grazed phosphate (dimensionless), Pre is the
phosphate release from the sediment (mg·L− 1 day− 1), and v is the sedimentation rate of phosphate adsorbed by
particulate matter (day− 1).

We considered phosphate releasing from sediment as a function of the gradient between sediment and water
column, the dissolved oxygen depletion coefficient and WS. Due to limited available data, we assumed the
phosphate concentration in the interstitial water of sediment had monthly variations but was constant on a yearly
scale. The monthly phosphate values in the interstitial water of sediment were adopted from S. Ding et al. (2018).
The dissolved oxygen depletion coefficient was referenced to Charlton (1980) and Genkai‐Kato and Carpen-
ter (2005). When strong winds and waves occur, the bottom sediments undergo a resuspension process, carrying
nutrients into the water column. The nutrients released from resuspension are primarily in particulate forms (Y.
Ding et al., 2011). Therefore, it was assumed that the phosphate released from the sediment during strong waves
was zero.
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⎧⎪⎪⎨

⎪⎪⎩

Pre = r · (Ps − P) · (3.80 · f (A) ·
D

50 + D
· k(T) + 0.12) WS ≤ WSC

Pre = 0 WS > WSC

(4)

where r is the coefficient of phosphate release from sediment (day− 1), PS is the phosphate concentration in the
interstitial water of sediment (mg·L− 1), f(A) = a·Ab⁄(KA + a·A

b), D is the water depth (m), k(T ) = 2(T− 4) ⁄10, and
WSC is the critical WS causing sediment suspension (m·s

− 1).

Riverine inputs of phosphorus are the main part of external phosphorus loading (Qin et al., 2021; Williams &
King, 2020). The annual riverine phosphorus input is strongly correlated with rainfall in the Taihu watershed
basin (Zhai et al., 2020). Thus, the annual TP riverine input load was allocated to each day according to the ratio of
daily RF to annual cumulative RF. We calculated the average ratio of PO43‐‐P to TP based on samples collected
from 12 inflow rivers, representing the proportion of PO43‐‐P to TP. Thus, we could obtain daily phosphate load
input.

The model was calibrated by comparing simulated Chla and PO43‐ concentration with observed values from 2016
to 2020. Subsequently, the model was validated from 2021 to 2023. The correlation coefficient (R) and relative
error (RE) were applied to evaluate the performance of the model. Based on the R and RE values, the model
performance can be classified into four categories (fair, satisfactory, good, and excellent) (Kong et al., 2023). The
detailed threshold values and assessment criteria for Chla and PO43‐ can be seen in Table S1 in Supporting In-
formation S1. The sensitivity analysis could be found in Text S4 and Figure S3 in Supporting Information S1. The
main parameters used in the model were summarized in Table S2 in Supporting Information S1.

2.5.2. Model Simulation Experiments

To determine the underlying mechanism driving the shift from the higher algal biomass between 2016 and 2020 to
the lower algal biomass between 2021 and 2023, we conducted one Control experiment and two sets of scenario
experiments using the dynamic model described above (Table 1). For the convenience of conducting scenario
experiments, we defined Stage I as high algal biomass period (2016–2020) and Stage II as low algal biomass
period (2021–2023), respectively. The Control experiment ran the model for 365 days and used the original
observed data (WT, PAR, TSS, and DIN) in Stage II as model inputs. Except for the Control experiment, the two

Table 1
Scenarios Design for Identifying Key Drivers of the Phytoplankton Biomass Dynamics

Scenario
design

Model input variable Model input/output variable

Model output
variable

WT
(°C)

PAR
(mol/m2/d)

TSS
(mg/L)

DIN
(mg/L) PO43‐ (mg/L)

Control Stage II Stage II Stage II Stage II Model output variable Chla, PO43‐

S1 Stage I Stage II Stage II Stage II Using simulated PO43‐ under the Control experiment as model input
variable

Chla

S2 Stage II Stage I Stage II Stage II Using simulated PO43‐ under the Control experiment as model input
variable

Chla

S3 Stage II Stage II Stage I Stage II Using simulated PO43‐ under the Control experiment as model input
variable

Chla

S4 Stage II Stage II Stage II Stage I Using simulated PO43‐ under the Control experiment as model input
variable

Chla

S5 Stage I Stage II Stage II Stage II Model output variable Chla, PO43‐

S6 Stage II Stage I Stage II Stage II Model output variable Chla, PO43‐

S7 Stage II Stage II Stage I Stage II Model output variable Chla, PO43‐

S8 Stage II Stage II Stage II Stage I Model output variable Chla, PO43‐

Note. Stage I is the average state of 2016–2020. Stage II is the average state of 2021–2023.
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sets of scenario experiments included four scenarios with environmental
factors changes (i.e., WT, PAR, TSS, and DIN; S1–S4/S5–S8). The differ-
ence between S1 and S5 (S2 and S6, S3 and S7, and S4 and S8) was whether
considering phosphorus simulation. This was aimed to explore the effects of
phosphorus cycling on algal biomass and its contribution to the algal biomass
decline during stage II.

3. Results
3.1. The Variations of Algal Biomass and Its Common Influencing
Factors

The annual mean Chla concentration showed a non‐monotonic pattern during
2016–2023 (Figure 2). The result of Pettitt test showed a tipping point occurred
in 2021 (P= 0.45, Table S3 in Supporting Information S1). During the period
of 2016–2020, the annual mean Chla concentration was 50.8 mg/m3 with a
peak Chla concentration of 229.0 mg/m3 in June 2019. During 2021–2023, the
annual mean Chla concentrationwas 33.1mg/m3. In addition, the highest Chla

concentration reached 103.5 mg/m3 in September 2021, which was lower than the peak Chla concentration during
2016–2020. Annual mean Chla concentration and the intra‐year peak Chla concentration in 2023 were both lowest
during 2016–2023.

There was seasonal variability of these environmental factors (Figure 3). While WT was increasing, the other
factors were decreasing. Furthermore, WS, TSS, DIN, and PO43‐ were decreasing significantly (P < 0.05).

Figure 4 indicated the variations of internal phosphorus load during the period of algal blooms occurrence from
2005 to 2023. Internal phosphorus releases were high across 2017, 2019, and 2020. The internal to external TP
load ratios were 68.3% in 2017, 56.5% in 2019, and 134.7% in 2020. Internal phosphorus releases were low in
2021 and 2022, in which the internal to external TP load ratios were 19.7% and 23.1%. 2008, 2014, 2015, 2016,

Figure 2. The variation of monthly average Chla concentration in northern
Lake Taihu during 2016–2023. The vertical dashed line separates the period
of 2016–2020 characterized by higher Chla concentration and the period of
2021–2023 characterized by lower Chla concentration.

Figure 3. Seasonal trends in (a) WT, (b) WS, (c) PAR, (d) RF, (e) WL, (f) TSS, (g) DIN, and (h) PO43‐. Z > 0 (or Z < 0)
indicates an increasing (or decreasing) trend. P < 0.05 (or P > 0.05) indicates the trend is significant (or not significant).
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2018, and 2023 experienced zero or lower internal phosphorus load. In other years, the internal phosphorus
cycling was mainly deposited.

3.2. Results of Model Calibration and Validation

The model reproduced well the inter‐annual and monthly variation of Chla and PO43‐ of the observations
(Figure 5). According to the model criteria, Chla was simulated with R and RE value of 0.48 and 63.2%,
respectively, showing “satisfactory” performance during the calibration period.While in the validation period, the
R and RE values were 0.78 and 65.2%, respectively, indicating “satisfactory” performance. The performances for
PO43‐ simulation were deemed “satisfactory” for the calibration period (R: 0.48 and RE: 64.7%) and fair for the
validation period (R: 0.49 and RE: 87.4%).

3.3. The Variations of Internal Phosphorus Cycling

From 2016 to 2020, the variation of the weekly in‐lake PO43‐ concentration was significantly correlated with the
amount of internal PO43‐ cycling (Figure 6b, R2= 0.55, P< 0.05). Meanwhile, the correlation coefficient between
the variation of weekly in‐lake PO43‐ concentration and the inflow PO43‐ was lower (Figure 6a, R2 = 0.001,
P > 0.05). During the period of 2021–2023, the correlation between the variation of weekly in‐lake PO43‐

Figure 4. (a) The relationship between mean Chla concentration in May and August and the theoretical in‐lake TP
concentration, (b) the long‐term changes of internal to external TP load ratios. In (a), blue circles indicate years with zero or
low internal TP load according to model assumption, red circles indicate years of high internal TP releases, black circles
indicate years in which internal loads are mainly deposited, blue line is linear regression for the years with zero or low
internal TP load.

Figure 5. Comparison between observed and simulated (a) Chla and (b) PO43− concentrations. The black dots are observed
values. The red lines represent simulated values. The blue area indicates the calibration period. The yellow area indicates the
validation period.
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concentration and the inflow PO43‐ (Figure 6c, R2 = 0.12, P < 0.05) was lower than the correlation between the
variations of weekly in‐lake PO43‐ concentration and the amount of internal PO43‐ cycling (Figure 6d, R2 = 0.59,
P < 0.05). During 2016–2020, the R2 of multiple linear regression was 0.72 (P < 0.05). The standardized co-
efficients of internal PO43‐ cycling and inflow PO43‐ were 0.96 and 0.48. During 2021–2023, the R2 of multiple
linear regression was 0.83 (P < 0.05). The standardized coefficients of internal PO43‐ cycling and inflow PO43‐

were 0.86 and 0.50.

3.4. Model Scenario Analysis

Among the three meteorological factors (WT, PAR, and TSS), PAR had the greatest impact on the decline of algal
biomass in 2021–2023 (Figures 7b and 7d). The phytoplankton community showed a later initiation and shorter
duration of blooms, defined as Chla concentration exceeding 40 mg/m3, under the scenario S2 where PAR
changes and the PO43‐ concentration remained the same as the Control experiment when compared to the scenario
S6 where PAR changes and the PO43‐ concentration changes based on PAR and phytoplankton abundance.
Meanwhile, the mean Chla concentration under S2 and S6 increased 74.5% and 130.4%, respectively, relative to
the Control experiment (Figure 7e).

The mean Chla concentration in the scenario S1 of WT alteration and PO43‐ concentration same as the Control
experiment exhibited a 8.3% decrease compared to the Control experiment. While under the scenario S5 of WT
changes and PO43‐ changes based on WT and phytoplankton abundance, there was a 17.8% decrease in com-
parison to the Control experiment. The mean Chla concentration in the scenario S3 where TSS changes and PO43‐

same as the Control experiment and the scenario S7 where TSS changes and PO43‐ changes based on TSS and
phytoplankton abundance decreased by 24.1% and 29.8%, respectively, compared to the Control experiment.

Figure 6. The relationship between (a) the change of in‐lake phosphate concentration and the inflow of phosphate on a weekly
scale from 2016 to 2020, (b) the change of in‐lake phosphate concentration and the amount of internal phosphate cycling on a
weekly scale from 2016 to 2020, (c) the change of in‐lake phosphate concentration and the inflow of phosphate on a weekly
scale from 2021 to 2023, (d) the change of the in‐lake phosphate concentration and the amount of internal phosphate cycling
on a weekly scale from 2021 to 2023. The red lines are the regression lines.
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Under the scenario S4 where DIN changes and PO43‐ same as the Control experiment and the scenario S8 where
DIN changes and PO43‐ changes based on DIN and phytoplankton abundance, the mean Chla concentration were
19.7% and 26.0% greater than the Control experiment, respectively.

4. Discussion
4.1. The Underlying Mechanism Behind Algal Biomass Variation

PAR serves as the primary energy source for photoautotrophic organisms controlling both the rate of growth and
the maximum yield when shading occurs (Rastogi et al., 2014). The average monthly incident PAR (except
January and December) for 2021–2023 was lower than the average monthly PAR for 2016–2020 (Figure S4 in
Supporting Information S1), leading to lower algal photosynthetic rate and lower algal biomass in 2021–2023 (the
Control experiment and S2 in Figure 7b). In addition, the phosphate concentration in the water column was also
indirectly influenced by the lower PAR. The phosphate concentration under the Control experiment was 21.2%
lower than the phosphate concentration under the scenario S6 where PAR changes and the phosphate concen-
tration changes based on PAR and phytoplankton abundance. The lower PAR weakened the positive feedback
loop between algae and internal phosphorus cycling. Algae could affect internal nutrient cycling through positive
feedback (Cottingham et al., 2015). After the decay of algae, labile organic detritus would be abundant (Cran-
well, 1979). The algal detritus can be decomposed by heterotrophic bacteria in the water column, thereby
depleting dissolved oxygen and stimulating releasing nutrients from sediment into the water column (Buchan

Figure 7. Temporal variations of phosphate and Chla concentrations under the Control experiment and different scenarios (a–d) and the mean change in Chla for
different scenarios (e). S1: the scenario where WT changes but PO43‐ same as Control, S2: the scenario where PAR changes but PO43‐ same as Control, S3: the scenario
where TSS changes but PO43‐ same as Control, S4: the scenario where DIN changes but PO43‐ same as Control, S5: the scenario where WT changes and PO43‐ changes
based on WT and phytoplankton abundance, S6: the scenario where PAR changes and PO43‐ changes based on PAR and phytoplankton abundance, S7: the scenario where
TSS changes and PO43‐ changes based on TSS and phytoplankton abundance, S8: the scenario where DIN changes and PO43‐ changes based on DIN and phytoplankton
abundance.
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et al., 2014). When the algal biomass decreases, the released phosphorus from sediment also reduces, in turn,
affecting algal growth.

The outcomes of our scenario simulation revealed the decoupling of algal biomass and sediment P release mainly
drived the attenuation of cyanobacterial blooms in this large shallow and eutrophic system. The simulated Chla
concentration under the scenario where PAR changes but PO43‐ same as the Control experiment revealed that not
only a lower peak Chla concentration but also a shorter duration of Chla concentration exceeding 40 mg/m3

compared to the scenario where PAR changes and PO43‐ changes based on PAR and phytoplankton abundance.
This mechanism also partly explained why phosphate concentration in the water column declined in the period of
2021–2023. In low algal biomass period (2021–2023), there was zero or low internal load in 2021, 2022 and 2023
(Figure 4), which also illustrated the weakened algae‐phosphorus feedback loop. In contrast to 2021–2023, the
positive feedback loop was strengthened in 2016–2020 induced by other meteorological factors. Previous
findings in Lake Taihu also demonstrate that severe algal blooms in 2017 can be partly attributed to intense
internal nutrient cycling (Pan et al., 2024; Qin et al., 2021; Xu et al., 2021).

During the low algal biomass period (i.e., 2021–2023), the role played by the internal phosphorus cycling could
also be emphasized by the small difference between the results of the scenario experiment in which the mean
external load during 2021–2023 was replaced with the mean external load during 2016–2020 and the results of the
Control experiment (Figure S5 in Supporting Information S1). During the high algal biomass period (i.e., 2016–
2020), the changes in in‐lake phosphate concentration depended more on the amount of internal phosphate
cycling, not on the external input (Figures 6a and 6b). This result further validates the conclusion that significant
fluctuations in the internal phosphorus cycling can profoundly influence in‐lake phosphorus concentration in
eutrophic lakes (Doan et al., 2018; Wang et al., 2019).

During winter and spring, WT is a key limiting factor influencing algal proliferation in eutrophic lakes through
affecting enzyme activity (Deng et al., 2014). There was little difference between the simulated Chla value under
the Control experiment, S1, and S5 from January to May (Figures 7b and 7d). This occured due to the meanWT in
winter from 2016 to 2023 is 7.5°C–9.4°C which were all above the threshold of cyanobacteria starting to grow
(Qin et al., 2021) and relatively little algal biomass in initially. During summer, the mean WT exceeds 29°C in
Taihu, suggesting WT isn't the primary limiting factor for algal growth (Lürling et al., 2013). The rapid growth of
phytoplankton in summer months requires considerable nutrients. In July, the simulated Chla value under the
scenario S1 where WT changes but PO43‐ same as the Control experiment started to be closer to the Control
experiment, while the simulated Chla value under the scenario S5 WT changes and PO43‐ changes based on WT
and phytoplankton abundance was lower than that under the Control experiment (Figures 7b and 7d). This
phenomenon indicated the lower WT during 2016–2020 compared to that during 2021–2023 reduced the amount
of nutrients formed by the decomposition and mineralization of phytoplankton and releasing from sediment,
further decreased Chla value. This is supported by the conclusion that the high growth rates promoted by high
summer temperatures require a high supply of nutrients to support the growth and avoid nutrient limitation
(Havens et al., 2001).

On a seasonal scale, WS showed a significantly decreasing trend during the study period. While in 2023, the
annual mean WS was 1.8 m/s, which was the lowest mean WS over the period from 2016 to 2023. In the
extremely shallow Lake Taihu, WS can significantly influence TSS concentration (Y. Zhou et al., 2018).
Therefore, the reduction in TSS concentration caused by decreased WS decreased underwater light attenuation,
enhanced algal photosynthesis, and increased algal biomass (the Control experiment, S3, and S6 in Figure 7). The
decrease in WS can also enhance water column stability and exacerbate hypoxic condition at the lake bottom,
which is conducive for releasing nutrients into overlying water and exacerbation of eutrophication (Ranjbar
et al., 2022).

The in situ nutrient addition experiments conducted in Meiliang Bay of Lake Taihu indicate nitrogen and
phosphorus co‐limitation occurs during summer and autumn (Xu et al., 2015). The significant decrease in DIN
concentration reduced algal biomass during 2021–2023 (the Control experiment, S4, and S8 in Figure 7). The
significant decrease in nitrogen concentration can be attributed to both a reduction in external nitrogen load and
high denitrification (Harrison et al., 2009). In addition, the mean Chla concentration under the scenario S8 that
DIN changes and PO43‐ changes based on DIN and phytoplankton abundance was higher than the scenario S4
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where DIN changes but PO43‐ same as the Control experiment, which further underscored the effects of positive
algae‐phosphorus feedback loop.

4.2. Model Uncertainty Analysis

The model developed in our study is a process‐based model, which has been calibrated and validated, thus, it can
be used to predict future algal blooms trend and it is applicable to other similar lake systems. However, the model
built in this study has a number of simplifications that may be improved in the future. We didn't specifically
address the conversion process from algal debris to organophosphate to phosphate, instead consider the process of
conversion from algal debris to phosphate (Olson & Jones, 2022). This assumption is based on some biochemical
processes of the organic matter decomposition associated with microorganism metabolism remain unclear. The
biochemical process from organophosphate to phosphate can be impacted by meteorological conditions, such as
temperature (Malmaeus et al., 2006). Thus, the simplified processes in our study may introduce some uncertainty
to the model results, although there is good validation of the model (Figure 5). Due to the overwhelming
dominance of cyanobacteria (mainly Microcystis) in the northern Lake Taihu, we mainly considered the growth
characteristics of cyanobacteria (Text S2 and Figure S2 in Supporting Information S1). However, the abundance
of cyanobacteria decreased in 2023 compared to other years, which might impair model's performance in 2023. In
future studies, we would consider the changes in dominant algal species when developing the model.

4.3. Implications

Understanding the complex interplay of multiple stressors and their impacts on algal biomass is important and has
been demonstrated to be the primary cause of the shift in lakes from a clear water state to a turbid phytoplankton
dominated state (Abell et al., 2022; Ibelings et al., 2007; Kong et al., 2023). After the drinking water crisis inWuxi
in 2007, the government implemented strict lake restoration measures to improve the water quality of Lake Taihu
(Qin, 2020). According to The Health Status Report of Taihu Lake, the TP load from rivers around Lake Taihu
decreased from 2,208 tons in 2008 to 1,400 tons in 2023. The reduction of external TP load into the lake partially
decreased phosphorus concentration, yet in‐lake phosphorus dynamics were also influenced by internal phos-
phorus cycling. The continual accumulation of lake sediment from the alluvial plain catchment promotes the
release of nutrients from sediment into water column (Ding et al., 2018; Qin et al., 2019). Therefore, we would
anticipate a lag between external load reduction and water quality improvement in eutrophic lakes (Carleton &
Lee, 2023; Qin, 2020). In changing climate conditions, this lag may be occasional covered because of large
variations in meteorological factors. The resilience of eutrophic lakes to increased climate warming predicted
under all IPCC scenarios relies on local efforts to reduce nutrient loading and cyanobacterial abundance
(Meerhoff et al., 2022). In the context of irreversible climate change, stricter measures for controlling the external
load input remain the single most important option to mitigate the effects of climate change on this lake ecosystem
(Paerl et al., 2016).

5. Conclusions
Following severe algal blooms during 2016–2020, the algal blooms significantly decreased in the period 2021–
2023 in Lake Taihu, China (Figure 2). While earlier studies have explored the impact of physio‐chemical factors
on the decreased algal biomass (Kang, Zhu, Zou, et al., 2023; Wu et al., 2022), they have not explicitly quantified
the influence of internal phosphorus cycling. Through the established process‐based model, it is evident that
lower PAR and decoupling of the algae‐phosphorus interaction induced by lower PAR could be implicated as a
major driver of the decline in algal biomass during 2021–2023 in Lake Taihu. This conclusion highlights stricter
measures are needed to reduce external loads to weaken this interaction, and further to mitigate the effects of
climate change on eutrophic lake ecosystems.
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Data Availability Statement
The meteorological and water quality data in Lake Taihu are from the Taihu Laboratory for Lake Ecosystem
Research (TLLER), Chinese Academy of Sciences which is available at http://thl.cern.ac.cn/meta/metaData.
Annual riverine loadings of total nitrogen (TN) and total phosphorous (TP) were obtained from “The health status
report of Taihu Lake” (https://www.tba.gov.cn/). The two websites can be translated into English by the Google
Translate plugin in Chrome or the Google Translate site for translation. The full details about the methods can be
found in the main text and Supporting Information S1. The data set used in this study is accessible on Zenodo
(https://doi.org/10.5281/zenodo.15294905) (Pan & Qin, 2025).
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