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Abstract Global lakes are expected to witness a growing incidence of droughts under climate warming, but
the propagation from atmospheric water deficit (AWD) to lake drought, mediated by basin water deficit (BWD)
as a key intermediary, remains underexplored at the lake basin scale. This study investigated the propagation
from AWD to lake drought in 1,617 lake basins across China using a copula‐based approach. 19% of AWD
events cascaded to lake droughts via BWD, while 57% of lake droughts were traceable to antecedent AWDs.
These results underscore the significance of basin modulation in determining the responses of lake droughts to
climate variability. Notably, the propagation ability for reservoir basins was higher than that of natural lake
basins, indicating that reservoirs are more susceptible to AWDs than natural lakes. A classification framework
for China's lake basins was further proposed for lake drought management. 28% of lake basins exhibited lake
drought intensification through the AWD‐to‐BWD path, necessitating climate‐adaptive measures. 6% of lake
basins faced lake drought intensification driven by BWD with no AWD occurrence, requiring integrated lake
basin management. 18% of basins with lake drought intensification were controlled by lake‐specific
hydrological conditions, demanding localized strategies to maintain water stability. The remaining lake basins
exhibited a reduced probability of lake drought occurrence. This study provides actionable guidance to tailor
lake drought management, prioritizing climate‐vulnerable basins or lake‐specific interventions.

Plain Language Summary Although lakes cover only 3% of the global land area, they are essential
to the global hydrological and biogeochemical cycles. Recently, an increasing number of lakes have suffered
droughts under climate warming, yet the propagation from atmospheric water deficit to lake drought remains
poorly understood at large scales. Lake drought is initially triggered by an atmospheric water deficit and further
modulated by basin hydrological processes. Few studies have focused on hydrological propagation in specific
lake basins using hydrological‐hydrodynamic models, which are highly data‐intensive and time‐consuming. In
this study, we investigated the propagation chain from atmospheric water deficit to basin water deficit to lake
drought in 1,617 lake basins across China using a copula‐based approach. Then, a lake basin classification
framework for lake drought management was proposed according to the changes in this propagation chain. The
results of this study provide decision support for prioritizing lake basins requiring climate‐adaptive policies and
lake‐specific interventions.

1. Introduction
Although lakes cover only 3% of the global land area, they harbor a substantial portion of terrestrial water re-
sources, which are crucial for socio‐economic development and ecosystem sustainability (Weyhenmeyer
et al., 2024; Yao et al., 2023). In a warming climate, these functions are anticipated to be at risk from the
increasingly frequent lake drought, which is identified by combining a specific threshold with the lake water
deficit status, as indicated by a drop in water level, surface area, or storage below normal conditions (Woolway
et al., 2020). Generally, lake drought is initially triggered by an atmospheric water (precipitation) deficit, which
subsequently propagates to a lake water deficit through basin hydrological processes, and can be further inten-
sified by human water withdrawal (Cooley et al., 2021; Perales et al., 2020; Zhang, Li, et al., 2023). The
propagation from atmospheric water deficit (AWD) to lake drought reflects water shortage propagation processes
from the atmosphere to the land and from the basin to the lake, which directly affect the water availability, nutrient
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concentration, and ecological health of lakes (Saber et al., 2020; Tong et al., 2023). Yet, this important process of
atmosphere–basin–lake water shortage propagation has received little attention from limnologists, hydrologists,
meteorologists, and remote sensing scientists.

Few limnologists have investigated the propagation from AWD to lake drought in specific large lake basins and
lake basins that significantly impact local socioeconomics using hydrological models in combination with lake
hydrodynamic models (Kummu et al., 2014; Lai et al., 2013). Such a process‐based method can depict water
transfer processes in lake basins at different time scales, but exhibits two disadvantages. On one hand, this method
is highly data‐intensive, with its accuracy heavily dependent on precise lake bathymetry (Yao et al., 2018).
Despite the rapid development of remote sensing technology, retrieving underwater bathymetry remains a
challenge (Liu & Song, 2022; Luo et al., 2022). On the other hand, the lake model needs to be customized and the
computation is time‐consuming. These limitations make the method impractical for large‐scale studies. Instead,
statistical approaches can circumvent these disadvantages, including correlation analysis, machine learning, and
copula‐based approach, of which the copula‐based approach has been used to model nonlinear dependencies
between continuous hydro‐meteorological variables (Gaupp et al., 2020; Jiang et al., 2023; Qing et al., 2023). For
example, it is assumed that there is a propagation from meteorological drought to hydrological drought when the
two types of droughts co‐occurred (Zhang et al., 2017). Moreover, the copula‐based approach overcomes the
shortcoming of assessing the relationship between hydro‐meteorological extremes with few samples, making it
possible to investigate hydrological propagation relationships in lake basins with limited observational data.

Hydrology and remote sensing researchers are concerned with the dynamics of hydrological variables in lakes,
such as lake water area, storage, and depth, but the research on hydrological extremes of lakes and their con-
nections with atmospheric conditions through basin modulation remains underexplored (Cooley et al., 2021;
Pekel et al., 2016; Tong et al., 2023). For example, Yao et al. (2023) constructed time‐varying water storage in
1,972 global largest lakes from 1992 to 2020, and the relationships between lake water storage and precipitation
were only subsidiary outcomes. Xu et al. (2024) found that the projected lake expansion in the Tibetan Plateau is
primarily fueled by amplified water inputs from increased precipitation and glacier meltwater, profoundly
reshaping the hydrological connectivity of lake basins. These studies focused on the inversion techniques and
approaches of lake variables. As a crucial hydrological relationship in lake basins, the propagation from AWD to
lake drought through basin water deficit (BWD) reflects the water shortage transfer processes in atmosphere–
basin–lake systems, emphasizing the role of atmospheric forcing and basin‐scale processes in driving lake
droughts. This propagation is initiated by atmospheric forcing and modulated by basin‐ and lake‐scale processes.
Understanding such hydrological propagation mechanisms is a prerequisite for integrated lake basin management
to achieve effective drought governance (Awange et al., 2008; Soeprobowati, 2015).

In this light, this study takes 1,617 lake basins of China as an example and combines satellite products and a
copula‐based approach to: (a) analyze the spatial patterns of propagation from AWD to lake drought, (b)
investigate the temporal changes in the propagation from AWD to lake drought during the past 40 years, and (c)
propose a lake basin classification framework for effective lake drought management. The results are of great
significance for understanding the hydrological transfer mechanism in atmosphere–basin–lake systems, which are
expected to assist the lake drought management in lake basins under climate change.

2. Methods and Materials
2.1. Methods

2.1.1. Definitions of AWD, BWD, and Lake Drought

Many definitions of drought and water deficit have been proposed in previous studies, among which the standard
precipitation index (SPI) has been widely used and extended to other hydrological variables, such as river runoff,
soil moisture, groundwater levels, and lake water area (AghaKouchak et al., 2021; Guttman, 1999; McKee
et al., 1993). The SPI usually employs the Gamma distribution to calculate the cumulative probability distribution
of precipitation F(x):
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F(x) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫

x

0

tα− 1e− t/β

βαΓ(α)
dt (x> 0)

Nzero/Ntotal
(x = 0)

(1)

where x represents precipitation, α is the shape parameter, β is the scale parameter, Γ is the Gamma function, Nzero
is the number of months with zero precipitation, and Ntotal is the total number of months. F(x) is then transformed
into the standard normal distribution quantile to derive the SPI value.

Similarly, the Standard Runoff Index (SRI) and Standard lakeWater area Index (SWI) were employed to quantify
basin and lake water shortage (Shukla &Wood, 2008; Zhang et al., 2017). This study utilized 12‐month‐scale SPI,
SRI, and SWI to assess AWD, BWD, and lake drought, respectively. Lake drought was defined as SWI ≤ − 1,
while AWD and BWD were identified when SPI and SRI values fall below zero, indicating water deficit con-
ditions (McKee et al., 1993). The SWI threshold of − 1 follows standardized index conventions such as the SPI,
corresponding to one standard deviation below the mean (15.9% cumulative probability). This ensures cross‐
variable drought assessment consistency (e.g., precipitation, runoff). This study defines AWD and BWD with
thresholds of 0 (SPI ≤ 0, SRI ≤ 0), contrasting with conventional drought thresholds (SPI ≤ − 1, SRI ≤ − 1), to
fully characterize basin‐mediated water shortage propagation. Even under non‐drought atmospheric and basin
conditions (SPI > − 1, SRI > − 1), persistent AWD and BWD can trigger lake droughts through cumulative
hydrological feedbacks—a process traditional drought‐focused methods often overlook. By extending these
definitions, the approach enhances detection of AWD–BWD–lake drought dynamics in lake basins.

Moreover, the Gamma, Generalized Extreme Value (GEV), and Pearson Type III distributions were applied to fit
the precipitation, runoff, and lake water area series using L‐moment estimation, aiming to accurately characterize
the probability distributions of these variables (Wang et al., 2021; Xu et al., 2015). If a distribution passes the
Kolmogorov‐Smirnov test at the 95% confidence level, the candidate distributions are further compared using the
Bayesian Information Criterion (BIC) (Kole et al., 2007; Neath & Cavanaugh, 2012).

2.1.2. Calculation of Propagation Probability From AWD to Lake Drought

Within the Copula framework, we assumed a propagation from AWD to lake drought when the AWD, BWD, and
lake drought coincide in a given lake basin (Figure 1a). The concurrent probability (Pvine) of AWD, BWD, and
lake drought was estimated using a copula method based on Sklar's theorem (Sklar, 1959):

Pvine(SPI ≤ 0,SRI ≤ 0,SWI ≤ − 1) = C[FSPI(0),FSRI(0),FSWI(− 1) ] (2)

where Pvine is concurrent probability of SPI ≤ 0, SRI ≤ 0, and SWI ≤ − 1, FSPI, FSRI, and FSWI are the marginal
probability distributions of SPI, SRI, and SWI, and C → [0,1] is a copula function. Regular vine tree structures
were employed to model the complex dependencies of the SPI, SRI, and SWI (Bedford & Cooke, 2002). For each
copula pair, copula families with a single parameter of Kendall's tau were employed, including Gaussian, Clayton,
Gumbel, Frank, and Joe copulas. The maximum likelihood estimation was used to calculate the parameter for
each bivariate copula and the BIC was used to select the optimal copula model for each copula pair. Notably,
P(AWD∩LDT) in Figure 1a doesn't represent the propagation from AWD to lake drought. This is because the
basin serves as the critical intermediary linking atmospheric and lake processes. When AWD occurs, it first alters
basin hydrological dynamics—such as reducing runoff and soil moisture. These changes subsequently impact
lake hydrology through surface and subsurface flow pathways, forming a cascading atmosphere–basin–lake water
shortage response. If AWD is not accompanied by BWD, lake drought in such cases is likely dominated by
internal hydrological processes, such as excessive evaporation or anthropogenic outflow regulation.

According to the graphical relationship in Figure 1a, the conditional probability of Pvine given AWD significantly
differs from that given lake drought, indicating two critical insights: (a) not all AWDs propagate to lake droughts
due to basin‐scale buffering effects, and (b) not all lake droughts originate from AWDs (e.g., anthropogenic
withdrawals). To disentangle these dual dynamics, two probabilistic metrics were formalized:
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Patmos→lake(BWD∩LDT|AWD) =
Pvine

PAWD
(3)

Patmos|lake(AWD∩BWD|LDT) =
Pvine

PLDT
(4)

where PAWD and PLDT are the probabilities of AWD (SPI ≤ 0) and lake drought (SWI ≤ − 1), respectively,
estimated by the marginal probability distributions using the GEV. Patmos→ lake is the conditional probability of the
simultaneous occurrence of BWD and lake drought given the occurrence of AWD, representing the likelihood of
AWD propagating to lake drought via BWD. Patmos|lake is the conditional probability of the simultaneous
occurrence of AWD and BWD given the occurrence of lake drought, representing the proportion of lake drought
events linked to AWD. These two propagation probabilities were used to evaluate the propagation ability of water
shortage transfer within the atmosphere–basin–lake system. Higher values indicate stronger atmosphere–land
coupling in the lake basin.

Figure 1. (a) Venn diagram of propagation from AWD to lake drought. (b) Conceptual classification framework of lake basins based on propagation ability from AWD
to lake drought.
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Similarly, the propagation probabilities from AWD to BWD and from BWD to lake drought were estimated to
explore the water shortage transfer processes from the atmosphere to the basin and hence to the lake, calculated as
follows:

Patmos→basin(BWD|AWD) =
P(AWD∩BWD)

PAWD
(5)

Patmos|basin(AWD|BWD) =
P(AWD∩BWD)

PBWD
(6)

Pbasin→lake(LDT|BWD) =
P(BWD∩LDT)

PBWD
(7)

Pbasin|lake(BWD|LDT) =
P(BWD∩LDT)

PLDT
(8)

where PBWD is the probability of BWD (SRI ≤ 0), P(AWD∩BWD) and P(BWD∩LDT) are the concurrent
probabilities of AWD‐BWD and BWD‐lake drought, as illustrated in Figure 1a.

The changes in the propagation probabilities were calculated as the difference between the changed period 2000–
2018 and the whole period 1985–2018 (see details in the Materials). For SPI, SRI, and SWI calculations in each
period, distribution parameters fitted over the whole period were used to characterize water deficit and drought
changes. This study selected the period 1985–2018 for probabilistic model fitting to enhance analytical reliability.
Given the lower frequency of remote sensing observations during 1985–1999, the reconstructed monthly lake
water area data from this earlier period may contain greater uncertainties in capturing extreme lake drought
events. By maintaining original data standards (1985–2018), the increased effective sample size improves the
statistical representativeness of hydrological time series. The whole period better captures hydrological vari-
ability characteristics, thereby enhancing the stability of probability distribution fitting for lake water area and
reducing parameter estimation biases caused by small sample sizes.

2.1.3. Lake Basin Classification for Lake Drought Management

This study proposes a novel lake basin classification framework for lake drought management based on water
shortage propagation within the atmosphere–basin–lake system. Lake basins are classified into three groups with
six subtypes through a three‐tiered decision process (Figure 1b). This process evaluates directional consistency of
the changes in propagation probabilities (e.g., Patmos→ lake and Patmos|lake) in each lake basin.

1. Group 1 (Atmosphere–Basin–Lake Linkage): a lake basin is assigned to Type I (increased propagation ability
from AWD to lake drought via BWD) if both Patmos→ lake and Patmos|lake exceed certain thresholds (set 0.1 and
0.3 in this study, respectively), and exhibit positive changes. Conversely, if both probabilities show negative
changes, it is classified as Type II (decreased propagation ability from AWD to lake drought via BWD). This
group highlights atmospheric forcing mediated through basin processes.

2. Group 2 (Basin–Lake Linkage): Unclassified lake basins are re‐evaluated using the Pbasin→ lake and Pbasin|lake.
Type III (increased propagation ability from BWD to lake drought) or Type IV (decreased propagation ability
from BWD to lake drought) is assigned based on positive or negative changes. This group emphasizes basin‐
regulated propagation independent of AWD.

3. Group 3 (Lake‐Dominant Dynamics): Remaining lake basins are classified as Type V (increased lake drought)
or Type VI (decreased lake drought) based on changes in PLDT. Lake drought dynamics here are governed by
lake‐specific factors (e.g., evaporation, outflow regulation) without BWD.

This classification framework delineates AWD–BWD–lake drought propagation pathways (Figure 1b), providing
a decision‐support tool for prioritizing lake basins requiring climate‐adaptive policies (e.g., Type I) versus lake‐
specific interventions (e.g., Type V).

2.2. Materials

The lake data of China were obtained from the HydroLAKES dataset (Messager et al., 2016). 1,617 lakes were
chosen to investigate the propagation from AWD to lake droughts subject to the following selection criteria. First,
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the basin area is larger than 100 km2 and the lake area is larger than 1 km2 to ensure a hydrological propagation
from the basin to the lake. Second, the marginal distribution of each variable passes the Kolmogorov‐Smirnov test
at the 95% confidence level. Third, the PAWD, PBWD and PLDT are greater than 0.01 (return period of one‐hundred‐
year) for the probability below this threshold might lead to unreliable results. The area of selected lakes ranges
from 1 to 4,267 km2, with a total coverage of 55,255 km2, accounting for 56.8% of China's total lake area. The
basin area ranges from 100 to 657,165 km2. This study did not adopt pre‐defined sub‐basins from HydroBASINS
due to their inconsistency with actual lake drainage boundaries. Instead, an automated watershed delineation
approach was employed to independently extract the basin area for each lake by treating the lake pour point as the
basin outlet (Xie et al., 2022). This refined delineation accurately characterizes the hydro‐connectivity topology
of the lake and its basin, providing reliable geographic units to investigate the hydrological transport processes in
the atmosphere–basin–lake system. The ratio of basin area to lake area ranges from 1.3 to 341,802. The selected
1,617 lakes were classified as natural lakes and reservoirs according to a comprehensive reservoir dataset (CRD)
of China released by Song et al. (2022b). For a certain lake of HydroLAKES, the boundaries of HydroLAKES and
CRD overlapped first. When the overlapping area exceeded 70% of HydroLAKES, the lake type was assigned as
reservoirs. The other lakes were assigned to natural lakes. Finally, 882 natural lakes and 735 reservoirs were
classified, accounting for 83% and 17% of the total area of selected lakes, respectively (Figure 2). All the lakes
were categorized into six zones according to the geographical division of China, including Yunnan‐Guizhou
Plateau (YGP), Tibetan Plateau (TP), Uygur Autonomous Region (UAR), Inner Mongolia Plateau (IMP),
Northeast Plains and Mountains (NEPM), and Eastern Plains (EP).

The monthly lake water area from 1985 to 2018 was reconstructed by Zhao et al. (2022), using a robust image
enhancement algorithm based on the dynamic Landsat‐based global surface water dataset and the static
HydroLAKES boundaries. The data spanned from 1985 to 2018, that is, the whole observation period. The
period from 2000 to 2018 was considered as the changed period due to intensified human activities and high‐
frequency satellite observations. The precipitation and runoff (sum of surface and subsurface runoffs) of each
lake basin were obtained from the Inter‐Sectoral Impact Model Intercomparison Project phase 3a (ISIMIP3a)
(Frieler et al., 2024). Runoff from five terrestrial hydrology models was employed, including four global hy-
drological models (GHMs; CWatM, H08, HydroPy, and WaterGAP2‐2e) and one global land surface model
(MIROC‐INTEG‐LAND). The spatial resolution of ISIMIP data is 0.5° × 0.5°. The population and Gross
Domestic Product (GDP) datasets of China in 2015 with a resolution of 1 km × 1 km were employed to estimate
the impacts of propagation from AWD to lake drought on socioeconomic systems (Wang &Wang, 2022a; Wang

Figure 2. Sketch map of the selected lakes. The points are the lake outlets in their basins.
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&Wang, 2022b). The land use dataset of China in 2015 with a resolution of 1 km × 1 km was used to analyze the
impacts of different land use types on the propagation. A lake basin was classified as cropland‐, forest‐, or
grassland‐dominated if any single land cover type exceeded 50% of its total area. In addition, lake basins with
>10% residential land cover was categorized as residential‐influenced, reflecting urbanization impacts on water
shortage propagation.

3. Results
3.1. Distributions of Propagation Probabilities From AWD to Lake Drought

The propagation probabilities from AWD to lake drought calculated from the five terrestrial hydrology models
were first compared (Figure S1 in Supporting Information S1). Equations 3 and 4 demonstrate that differences in
propagation probabilities between models primarily stem from Pvine variations, that is, the concurrent probability
of AWD, BWD, and lake drought. Figure S1 in Supporting Information S1 shows that the Pvine from different
models correlates well, with Pearson correlation coefficients exceeding 0.78. Therefore, it is reasonable to use the
average values from the five models to reduce uncertainties in propagation probability calculations. Figures 3a
and 3b show the spatial distributions of propagation probabilities from AWD to lake drought in China's lake
basins. Generally, high propagation probabilities mainly occurred in the Tibetan Plateau and the low values
occurred in Northwestern China. The Patmos→ lake averaged from the selected lake basins was 0.19 ± 0.06 (one
standard deviation), meaning that 19% of AWDs propagated to lake droughts at the national scale. The Patmos|lake

averaged from the selected lake basins was 0.57 ± 0.15, meaning that 57% of lake droughts were related to
AWDs. The Patmos|lake values were larger than Patmos→ lake because the PLDT values were smaller than the PAWD.
Among the six lake zones, the high propagation probabilities occurred in the TP and YGP zones during
1985–2018, as shown by blue bars in Figures 4a and 4b. The high propagation probabilities in these two zones are
primarily driven by intense land‐atmosphere coupling characteristic of high‐altitude regions, where strong

Figure 3. Spatial distributions of propagation probabilities (a) Patmos→ lake and (b) Patmos|lake from AWD to lake drought in China. Changes in (c) Patmos→ lake and
(d) Patmos|lake, calculated as the difference between each variable during 2000–2018 and 1985–2018. The points are the lake outlets of lake basins. The inner and outer
rings of the donut represent the proportions of the lake number and area to the total values, respectively.
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interactions between surface hydrology and atmospheric dynamics amplify water shortage transmission to lakes
(Long et al., 2014; Yang et al., 2025; Zhu et al., 2023).

It is worth noting that reservoir basins exhibited higher propagation probabilities compared to natural lake basins
during 1985–2018, indicating their greater susceptibility to AWDs (Figure 4c). This divergence primarily stems
from contrasting hydrological regulation mechanisms: reservoirs experience accelerated water level fluctuations
due to anthropogenic controls (e.g., irrigation releases, hydropeaking), which degrade their natural buffering
capacity against AWDs, while natural lakes maintain gradual water level dynamics through delayed groundwater
recharge and snowmelt‐dominated hydrological cycles, with wetland ecosystems further attenuating water
shortage propagation signals (Hughes et al., 2012; Xi et al., 2021). In addition, land use patterns in lake basins also
influence the propagation probabilities from AWD to lake drought. As shown in Figure 5, the forest‐dominated
lake basins exhibit the highest drought propagation probability, followed by cropland‐ and grassland‐dominated
lake basins, while residential‐influenced lake basins show the lowest probability. This difference arises from
distinct hydrological regulation mechanisms across ecosystems: the strong evapotranspiration from forest can-
opies and soil moisture depletion caused by deep root systems intensifies the cascading transmission of atmo-
spheric water shortage to soil and lake systems at the annual scale (Peterson et al., 2021; Yang et al., 2017). In
contrast, cropland irrigation and grasslands' shallow water retention partially mitigates drought signal accumu-
lation, creating moderate buffering effects. Conversely, impervious surfaces in residential areas promote rapid
runoff generation, and artificial drainage systems disrupt natural hydrological connectivity, thereby weakening
AWD–BWD–lake drought cascading effects (Rachunok & Fletcher, 2023; Salvadore et al., 2015).

The propagation processes were further disentangled by comparing propagation probabilities from the atmo-
sphere to the basin and from the basin to the lake (Figures 6a and 6b). About 87% of AWDs converted to BWDs
whereas only 21% of BWDs converted to lake droughts, indicating that AWDs strongly influenced BWDs,

Figure 4. Propagation probabilities (a) Patmos→ lake, and (b) Patmos|lake from AWD to lake drought for the six lake zones during 1985–2018 and 2000–2018. The black bar
is one standard deviation. Comparison of propagation probabilities between natural lakes and reservoirs (c) from 1985 to 2018 and (d) from 2000 to 2018. On each box,
the central mark is the median, the square is the average, the edges of the box are the 25th and 75th percentiles, and the whiskers are the most extreme values.

Water Resources Research 10.1029/2024WR039641

ZHANG ET AL. 8 of 16

 19447973, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
039641 by N

anjing Institution O
f G

eo &
 L

im
nology, W

iley O
nline L

ibrary on [06/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



whereas BWDs had a weaker influence on lake droughts at the annual scale. To reduce the impact of different
water deficit thresholds of the atmosphere, the basin, and the lake, we set these three thresholds to the same value
of − 1 (Figures 6c and 6d). The propagation probabilities from AWD to BWD (Patmos→ basin, Patmos|basin) were
(0.70 ± 0.14, 0.72 ± 0.14), whereas the propagation probabilities from BWD to lake drought (Pbasin→ lake,
Pbasin|lake) were (0.30 ± 0.14, 0.27 ± 0.13). The results confirm that the propagation from AWD to BWD is
robust, whereas the propagation from BWD to lake drought is significantly weaker, reflecting the complexity of
lake drought dynamics.

3.2. Changes in Propagation Probabilities From AWD to Lake Drought

Figures 3c and 3d show the changes in Patmos→ lake and Patmos|lake in lake basins across China during 2000–2018
compared with 1985–2018. The changes in these two propagation probabilities had distinct regional character-
istics. The positive values occurred in Northeast China and the south of 30–31°N, whereas the negative values
occurred in the Tibetan Plateau and the plains of the Yellow, Huai, and Hai rivers. Although the spatial patterns of
changes in Patmos→ lake and Patmos|lake are similar, the correlation coefficient between them is only 0.28, which is
caused by the low relationship between PAWD and PLDT (Figure S2 in Supporting Information S1). The changes in
PLDT explained 81% of the changes in Patmos→ lake and the changes in PAWD explained 22% of the changes in
Patmos|lake (Figure S3 in Supporting Information S1). For the six zones, the changes in the propagation probabilities
increased in the IMP, NEPM, EP, and YGP zones, indicating widespread enhanced propagation ability from
AWD to lake drought in lake basins over the eastern regions of China (Figures 4a and 4b). In addition, the changes
in propagation probabilities for the reservoir basins increased, indicating that the propagation from AWD to lake
drought was enhanced for the reservoir basins (Figure 4d).

Figure 5. Propagation probabilities (a) Patmos→ lake, and (b) Patmos|lake from AWD to lake drought for different land use types
during 1985–2018. On each box, the central mark is the median, the square is the average, the edges of the box are the 25th
and 75th percentiles, and the whiskers are the most extreme values.
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3.3. Lake Basin Classification for Lake Drought Management

The selected lake basins were classified into three groups with six subtypes based on our proposed framework
(Figure 7a). 28% of the selected lake basins belonged to Type I, mainly located in northeast China and the middle‐
lower reaches of the Yangtze River. The propagation ability from AWD to lake drought in these lake basins
increased, resulting in a risk of lake shrinkage. Specifically, the lake basins in northeast China need to be alert to
the risk of water scarcity, and the lake basins in the middle‐lower reaches of the Yangtze River need to be alert to
the crisis of ecosystem degradation (Cai et al., 2016; Li et al., 2024). These lake basins require an urgent response
to address the adverse effects of climate change. Notably, Type I accounts for 33% (by number) of reservoir basins
and 25% (by number) of natural lake basins (Figure 8), confirming that reservoirs are more susceptible to AWDs
than natural lakes. 25% of the selected lake basins belong to Type II, which were mainly located in the Tibetan
Plateau and the plains of the Yellow, Huai, and Hai rivers. The propagation ability from AWD to lake drought in
these lake basins decreased. Taking the Tibetan Plateau as an example, lake basins in this region have mainly
faced the problem of lake expansion in recent years (Xu et al., 2024). The propagation chain of Type I and Type II
lake basins was AWD− BWD− lake drought. The increased (Type III) and decreased (Type IV) propagation
ability from BWD to lake drought accounted for small proportions of the selected lake basins. Lake droughts of
these two types were mainly related to BWDs, indicating that integrated lake basin management would be
effective. The propagation chain of Type III and Type IV was non‐AWD− BWD− lake drought. 18% and 19% of
the selected lake basins belonged to Type V and Type VI, respectively. These lake basins were widely distributed
throughout China. Drought changes in these lakes were predominantly governed by lake‐specific hydrological
conditions rather than basin‐scale processes. These lake basins need to pay more attention to the impact of human
activities or natural changes on the lakes themselves, as the basins' influence on lakes is limited.

Figure 6. Propagation probabilities (a) from AWD to BWD and (b) from BWD to lake drought. (c)–(d) are similar to (a)–(b),
but the water deficit thresholds of the atmosphere, the basin, and the lake were set to the same value of − 1, that is, SPI ≤ − 1,
SRI ≤ − 1, and SWI ≤ − 1.
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4. Discussion
4.1. Implications for Lake Drought Management

Although integrated lake basin management toward effective water governance has been advocated in many
countries and organizations, this issue has not received sufficient attention in global water policies (Avra-
moski, 2004; Cheng & You, 2019; Soeprobowati, 2015). China has proposed integrated lake basin management
since 2017, named “a holistic approach to conserving mountains, rivers, forests, farmlands, lakes, and grasslands”

Figure 7. (a) Lake basin classification across China. The inner and outer rings of the donut represent the proportions of the lake number and area of each type to the total
values, respectively. (b) Types for the top 10 largest natural lakes and reservoirs according to the water area of the selected lake basins. The water area of the natural
lakes and reservoirs from top to bottom decreases.
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(Cheng & You, 2019; Kong et al., 2019). According to our proposed lake basin classification framework, this
study divided lake basins into three groups with six subtypes based on natural physical process of water shortage
propagation in the atmosphere− basin− lake system, which provides new insights into effectively managing lake
droughts in China.

Lake droughts in Type I lake basins were aggravated by AWD variations, reminding the decision‐makers to be
aware of lake shrinkage risks caused by atmospheric and runoff deficits. Figure 9 shows that Type I lake basins
influenced 21% of the national land area, 16% of the population, and 13% of the GDP. In other words, the strong
human interventions reflected by the population and GDPmight also exacerbate the crisis of lake drought, such as
irrigation, domestic water use, and reservoir operation (Apurv & Cai, 2021; Zhang et al., 2018). For example,
Poyang Lake (Type I; Figure 7b), the largest freshwater lake in China, experienced record‐breaking droughts in
the summer of 2022 due to abnormal atmospheric precipitation (Zhang, Xue, & Xia, 2023). The operation of the
Three Gorges Dam (TGD) exacerbated this drought, as it down‐cut river channel and decreased runoff of the
mainstream Yangtze River (Lai et al., 2014). Although the TGD has a function of drought alleviation, its
regulation effect on this drought was limited due to the water released before the flood season. In addition, there
are very high‐density reservoirs in the Poyang Lake basin, but their main functions are flood control, power
generation, and irrigation. It is necessary to strengthen the medium‐ and long‐term hydrological forecasting
capabilities for rivers and lakes and improve the regulating function of reservoirs during drought. From broader
geophysical and climatic perspectives, reduced lake area and water storage may weaken evaporative cooling
effects, thereby exacerbating regional heatwaves and altering local hydrological cycles (Fan et al., 2024; Wang
et al., 2024). Such feedbacks could amplify atmosphere–land interactions, particularly in densely populated
basins where human activities intersect with natural processes (Woolway et al., 2018). However, current Earth
system models often oversimplify these coupled dynamics, limiting their capacity to predict cascading hydro-
climatic impacts.

Figure 8. Classification heatmaps of the proportions of the lake number of each type to the total values for (a) natural lake
basins and (b) reservoir basins. (c) And (d) are similar to (a) and (b), but for the proportions of lake area of each type to the
total values.
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Compared to Type I lake basins, lake drought caused by AWD has been
mitigated in Type II lake basins. Most of these lake basins are in the TP zone,
where drought mitigation is primarily attributed to the increased precipitation
resulting from climate warming (Xu et al., 2024). Lake drought management
in these basins can be temporarily de‐prioritized. However, the risk of lake
shrinking in the other lake basins is still high. For instance, PLDT in Bosten
Lake (Type II; Figure 7b), the largest freshwater lake in Northwest China,
increased from 0.14 in 1985–2018 to 0.22 in 2000–2018, reflecting decoupled
atmospheric forcing and heightened anthropogenic impacts. The management
strategy for these lake basins aligns with that of Type V lake basins, as lake
droughts in Type V are predominantly governed by lake‐specific hydrological
conditions, including precipitation, evaporation, outflow regulation, and
consumptive water use, rather than basin‐scale processes. Hulun Lake,
Hungtze Lake, and Gaoyou Lake belonged to this type (Figure 7b). Drought
changes in these three lakes were mainly affected by human activities, and it
is urgent to prevent water quality deterioration and ecosystem degradation
(Cui & Li, 2016; Huang et al., 2023). In addition, attention should be paid to
the drought changes in the Miyun Reservoir, which is the water destination

region of the central South− to− NorthWater Diversion project (Long et al., 2020). Although the water area of this
reservoir has been recovered since 2015 due to theWater Diversion project, climate‐driven risks require proactive
mitigation (Zheng et al., 2016) (Figure S4 in Supporting Information S1).

4.2. Limitations

The lake water area data used in this study have limitations that require future improvements. These data were
reconstructed from remote sensing imagery (Zhao, 2021). Pre‐2000 Landsat images suffered from low obser-
vation frequency and contamination by clouds, cloud shadows, and terrain shadows, resulting in substantial data
gaps (Pekel et al., 2016; Vicente‐Serrano et al., 2008). These gaps may underestimate lake hydrological fluc-
tuations, such as rapid expansion following intense precipitation events. For example, Zhao and Gao (2018)
demonstrated that correcting contaminated images for 6,817 global reservoirs (1984–2015) increased estimated
reservoir surface area from 1.73 × 105 km2 to 3.94 × 105 km2. In addition, the lake water area extraction relies on
the buffered HydroLAKES database's static water body boundaries, but climate warming‐driven lake expansion
and basin reorganization have caused significant water area changes in high‐altitude regions like the Qinghai‐
Tibet Plateau (Liu et al., 2021; Vacherat et al., 2018; Xu et al., 2024), potentially introducing inaccuracies in
maximum lake water area estimates for these reorganized basins. Up to now, most lake modules in ecological,
hydrological, water quality, and Earth system models parameterize lakes as static entities with fixed sizes (Frieler
et al., 2024; Müller Schmied et al., 2023). This oversimplification severely constrains predictive capabilities for
future evolution trends of large‐scale hydrological processes in lake basins.

Second, the study analyzed the propagation from AWD to lake drought using SPI and SWI over the same 12‐
month period, potentially underestimating the complexity of water shortage propagation in atmosphere–basin–
lake systems (Sattar et al., 2019; Yang et al., 2024). We calculated correlation coefficients between SPI and
SWI with lags of 1–12 months. Results show a maximum average correlation of 0.29 (Figure S5 in Supporting
Information S1), explaining only 8% of SWI variability. This indicates that lagged effects were weak compared to
dominant drivers like groundwater recharge and human activities. At annual or multi‐year scales, SWI‐SPI lagged
relationships are masked by interacting hydrological processes (e.g., vegetation transpiration delays, irrigation
withdrawals), which may generate spurious correlations (Peterson et al., 2021). This study used a probability
statistical method focused on annual‐scale analysis to avoid overinterpreting noise‐driven signals, providing a
robust framework for lake drought assessment.

Third, the lake basin classification did not consider the lake outflow due to the lack of observation records. The
lake outflow is influenced by the hydrological conditions of the river where the lake flows, which cannot be
ignored in some lake basins. Taking Poyang Lake, flowing into the Yangtze River, as an example, the decrease in
water level of the Yangtze River leads to an increase in lake outflow and hence aggravates lake drought (Zhang
et al., 2017). Exploring lake outflow dynamics through an integrated framework combining Earth system
models, high‐resolution river network topology, and lake bathymetry would advance understanding of how

Figure 9. Proportions of area, population, and GDP affected by different lake
basin types relative to national totals.
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climate–land–human interactions modulate water shortage propagation in atmosphere–basin–lake systems
(Baydaroğlu et al., 2023; Shen, 2018). This study emphasizes the water transfer processes from the atmosphere to
the basin and to the lake, so a tentative classification was conducted toward this objective. More classifications
can be designed toward different goals.

5. Conclusions
This study investigated the propagation from AWD to lake drought in 1,617 lake basins of China and proposed a
novel lake basin classification framework for lake drought management for the first time. This study emphasized
the water shortage propagation from the atmosphere to the basin and to the lake, highlighting the importance of
simultaneously addressing the adverse effects of climate change and strengthening lake management. The finding
of this study extends current hydrological research of lakes, providing new insight into coping with lake drought
under climate change.
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