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A B S T R A C T

Snow algae, microscopic organisms thriving in snow-covered environments, significantly affect snow albedo and 
broader climatic processes. This study introduces the Algae Presence Index (API), a novel spectral tool using 
Sentinel-2 multispectral imagery to detect and classify red and green algae on King George Island, Antarctica. 
From 2019 to 2023, we analyzed temporal and spatial variations in algae presence during austral summers and 
observed corresponding reductions in surface albedo, demonstrating how algal blooms influence snowmelt. 
Green algae showed a stronger albedo reduction (up to 8.46 %) compared to red algae (5.33 %), emphasizing 
their greater role in accelerating snowmelt. The API outperformed traditional indices, such as the red/green band 
ratio and Red-Green Normalized Difference. It eliminated spectral overlap and accurately distinguished algae 
types from algae-free snow. These findings underscore the critical role of snow algae in climate feedback 
mechanisms and highlight the importance of monitoring their growth during Antarctic warming. This meth
odology provides a robust framework for assessing algae impacts on the cryosphere, with important implications 
for climate models and conservation.

1. Introduction

Snow algae are microscopic organisms that thrive in snow-covered 
environments, significantly impacting the albedo and reflectance prop
erties of the snow. These algae not only alter the spectral characteristics 
of snow but also play a crucial role in broader ecological and climatic 
processes. Antarctica is an isolated and largely unexplored area vital to 
the global climate system. Snow algal blooms in Antarctica were first 
documented during expeditions conducted in the 1950s and 1960s. A 
single snow algal bloom, covering areas of hundreds of square meters, 
positions snow algae as potentially one of the region's most significant 
photosynthetic primary producers. They also influence nutrient avail
ability for downstream terrestrial and marine ecosystems (Gray et al., 
2020). Furthermore, snow algae serve as a crucial food source for 
various microorganisms and invertebrates, creating a foundational 
element of the Antarctic food web and influencing the overall 

biodiversity in these extreme environments. These algal blooms 
contribute significantly to nutrient cycling by releasing organic carbon 
and other nutrients as they decompose. They are then utilized by other 
microorganisms and invertebrates, creating a dynamic and inter
connected ecosystem (Convey, 2011; Convey et al., 2014).

Over the past 50 years, Antarctica has warmed significantly (Turner 
et al., 2005) and is one of the fastest-warming areas on Earth (Hansen 
et al., 2010; Steig et al., 2009; Vaughan et al., 2003). Warming in 
Antarctica has already exceeded 1.5 ◦C over pre-industrial temperatures 
(Turner et al., 2005), and current Intergovernmental Panel on Climate 
Change (IPCC) projections indicate further global increases (Masson- 
Delmotte et al., 2019). Due to current climate change, Antarctic 
warming has caused significant ice retreat and sea level rise, impacting 
both society and the global environment. These climatic changes influ
ence the region's vegetation against natural decadal temperature vari
ability (Convey, 2011; Convey et al., 2014). Due to this warming, the 
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available area for plant colonization in Antarctica will likely increase 
threefold (J. R. Lee et al., 2017). This rising temperature will likely in
crease snowmelt, potentially affecting red and green snow algal blooms, 
which are sensitive to light, water, and temperature (Hoham and 
Remias, 2020; Khan et al., 2021; Rivas et al., 2016). As temperatures 
rise, snow melts, providing the water necessary for algae to grow. These 
algae reduce the albedo by absorbing light, which in turn increases 
temperature and causes further snowmelt. This process creates a cyclic 
feedback mechanism. Accurate snow algae detection and mapping are 
essential for understanding their effects on snowmelt dynamics, climate 
feedback mechanisms, and their implications for Sustainable Develop
ment Goals (SDGs), particularly Goal 13 (Climate Action).

Remote sensing technologies, particularly high-resolution satellite 
imagery, have proven essential for accurately detecting and mapping 
snow algal blooms. These technologies allow scientists to monitor red 
and green snow algae growth and distribution throughout the Antarctic 
summer, providing essential data on their extent and biomass (Gray 
et al., 2021). Advancements in remote sensing technologies, especially 
with high-resolution Sentinel-2 multispectral imagery, have improved 
the ability to detect and classify snow algae and impurities, helping to 
better understand their spatial distribution and impact on snow albedo 
during the Antarctic summer (Huovinen et al., 2018). Additionally, 
recent studies, such as Di Mauro et al. (2024), have explored alternative 
indices for detecting snow algae, offering valuable insights into 
improving detection accuracy and differentiation between algae and 
other snow impurities. Furthermore, detailed spectral analysis has 
revealed that snow algae can be effectively identified and monitored by 
their unique spectral signatures in the visible and near-infrared regions, 
allowing for accurate differentiation between algal blooms and other 
surface features (Hashim et al., 2016). The remote sensing-based 
monitoring of snow algae aligns with SDG 13 (Climate Action) by 
improving our understanding of how biological processes in polar re
gions contribute to climate feedback mechanisms. The presence of 
chlorophyll and various accessory pigments, such as carotenoids in snow 
algae, contribute to their distinct spectral signatures, as these pigments 
absorb light in the blue and red regions while reflecting green light, 
facilitating their identification and monitoring through remote sensing 
techniques (Huovinen et al., 2018).

Due to their unique pigment compositions, red and green algae also 
exhibit distinct spectral reflectance properties. Green algae contain 
chlorophylls a and b, which reflect more in the green band, providing a 
higher reflectance. On the other hand, red algae contain phycobilipro
teins such as phycoerythrin, which absorb light maximally at wave
lengths around 495 nm, 539 nm, and 565 nm. This absorption leads to 
distinct spectral features, particularly lower reflectance around the 495 
nm (blue-green) and 539–565 nm (green-yellow) regions and higher 
absorption in these bands compared to surrounding wavelengths 
(Bernard et al., 1992; Malairaj et al., 2016; Ulagesan et al., 2021). These 
properties can be captured by integrating the reflectance values from the 
blue, green, red, NIR, and SWIR bands, effectively highlighting the 
presence of algae based on their unique spectral signatures. Traditional 
indices like the Red/Green band ratio and RGND are limited by their 
reliance on narrow spectral ranges, leading to overlap between algae, 
snow, and other impurities such as vegetation or dust. They fail to 
capture key physical changes in the snowpack, such as moisture increase 
and grain size alteration, which affect reflectance in NIR and SWIR 
bands. These limitations reduce detection accuracy and hinder differ
entiation between algae types. The proposed API overcomes these 
challenges by integrating multiple spectral bands and normalization, 
providing more robust and precise algae detection under varying 
conditions.

This study aims to address the limitations of existing methods by 
providing a more precise spectral signature of algae presence in snow, 
accounting for variations in algae concentration and type. This inno
vative use of multi-spectral data will improve the accuracy of algae 
detection and differentiation, offering a clearer understanding of the 

distribution and impact of snow algae in Antarctica. The specific aims of 
this study are to (1) develop a novel Algae Presence Index (API) to 
accurately detect and differentiate between algal blooms and other 
snow-covered surfaces, (2) classify algae into two categories (red and 
green) based on their spectral differences, supported by field data, and 
(3) investigate the albedo response of different algae, specifically red 
and green algae. Understanding this process will help determine which 
type of algae absorbs more light, leading to increased temperatures and 
causing snowmelt. This study improves our understanding of snow algae 
dynamics and their impact on the Antarctic ecosystem, aiding broader 
climate change research and mitigation efforts.

1.1. Study area

King George Island (KGI) (Fig. 1), the largest of the South Shetland 
Islands (SSI), is located within the SSI archipelago at the northern tip of 
the Antarctic Peninsula (M. J. Lee et al., 2008). This island is a signifi
cant research site, hosting eight permanent research stations and 
numerous seasonal huts and camps. Approximately 90 % of the island's 
1250 km2 surface is glaciated, consisting of several interconnected ice 
caps with pronounced outlet glaciers (Rückamp et al., 2011). The 
highest point on the island exceeds 720 m at a central dome. The 
northern coast features gentle slopes, while the southern coast has 
steeper slopes and fjord-like inlets. Two smaller icefields, Warzawa and 
Krakow, with elevations up to 400 m, fringe the main ice cap. The 
climate on KGI varies significantly with the seasons. Air temperatures 
often rise above freezing in summer, and this trend can also occur in 
spring and autumn. However, surface melting is rare in winter. These 
temperature fluctuations greatly influence the glacial and snowpack 
dynamics on the island.

The field data used in this study were originally collected by Khan 
et al. (Khan et al., 2021) in January 2018 and later made available on
line. Field observations were conducted at two specific sites on KGI in 
January 2018. The first site was located near Fildes/Mx Bay, between 
the Chilean Prof. Julio Escudero Station and the Chinese Great Wall 
Station, approximately 200 m above mean high tide. This site experi
enced slightly less wildlife traffic than the second site. The second site 
was situated in Collins Bay, adjacent to Collins Glacier, approximately 
100 m above mean high tide, and saw more frequent activity from seals, 
penguins, and other birds. Both sites were characterized by flat, low- 
sloping southeast-facing beaches. During the field observations, 
weather conditions varied between the two sites: Fildes/Mx Bay was 
uniformly cloudy, while Collins Bay had clear skies. For the spectral 
albedo data acquisition and snow algae sampling, optically thick 
snowpacks (greater than 30 cm) were prioritized to minimize the impact 
of the underlying ground on spectral albedo. Sampling locations were 
chosen based on relatively clean snow with no visible snow algae 
(control site), green snow algae, and red snow algae. At each site, du
plicates of each snow type were measured using a spectrometer. All 
samples were collected around noon local Chilean time to ensure the 
seasonal snowpack received the most incoming solar radiation. Snow 
depth was measured at each observation site and reported to the nearest 
centimeter if less than one meter.

2. Materials and methods

2.1. Datasets

The research utilized Sentinel-2 Surface Reflectance data from the 
European Space Agency's Copernicus program, accessed through Google 
Earth Engine (GEE), to analyze and classify the presence of algae over 
KGI during the austral summer (October–March) for each year from 
2019 to 2023. The dataset was filtered to include images that covered 
the study area and had less than 10 % cloud cover, ensuring high-quality 
observations. A cloud masking function was applied to each image to 
remove pixels affected by clouds and shadows, using the ‘QA60’ band, 
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which contains cloud and shadow information. The analysis focused on 
five spectral bands: blue (B2), green (B3), red (B4), near-infrared (B8), 
and shortwave Infrared 1 (B11) to create the API as displayed in Table 1, 
selected for their sensitivity to vegetation and algae characteristics. The 
inclusion of the red, near-infrared (NIR), and shortwave infrared 
(SWIR1) bands likely leverages algae's high chlorophyll absorption in 
the red spectrum and its influence on snow reflectance in the NIR range, 
which is typically elevated in clean snow but reduced in algae-affected 
areas (Painter et al., 2001). The SWIR1 band, sensitive to snowpack 
liquid content, captures changes induced by algae-related snowmelt, 
further distinguishing algae-covered from clean snow (Hannula and 
Pulliainen, 2019; Picard et al., 2022). Together, these bands enhance 
detection by emphasizing the contrast between algae and non-algae 

areas. On the other hand, the blue and green bands add sensitivity to 
chlorophyll and carotenoid absorption, which are prominent in algae 
and further aid in differentiating algae types based on their pigmenta
tion (Khan et al., 2021). This targeted use of specific spectral ranges is 
critical for identifying algae presence and type reliably.

API was calculated for each image by combining these bands. This 
enhanced the spectral signals of algae and helped differentiate them 
from the surrounding environment. The filtered and masked images 
were processed to produce a median composite for the austral summers 
(October 1 – March 31) of 2019–2020, 2020–2021, 2021–2022, and 
2022–2023, reducing temporal variability and enhancing the clarity of 
spatial patterns. Median composites were selected to minimize the 
impact of outliers, such as cloud contamination and sensor noise, which 
can distort the analysis. Unlike the mean, the median is more robust to 
extreme values, providing a more reliable representation of algae pres
ence and albedo changes, especially in areas with frequent cloud cover. 
This approach leveraged GEE's capabilities for handling large-scale 
geospatial data efficiently, facilitating detailed and reliable analysis of 
the spectral information relevant to the study area (Ghosh et al., 2022). 
In KGI, the red/green (R/G) band ratio, algae presence index (API), red- 
green normalized difference (RGND), normalized difference vegetation 
index (NDVI), and albedo were calculated, with details provided in 
Table 2 below.

Fig. 1. Study area: King George Island, Antarctica. (a) Location within the Antarctic Peninsula. (b) Key geographical features. (c) Topography and field sites (Collins 
and Fildes).

Table 1 
Characteristics of the bands of Sentinel-2 used for calculating API, red/green 
band ratio, RGND, albedo, and NDVI.

Band number Central λ (nm) Resolution (m) Characteristics

2 490 10 Blue
3 560 10 Green
4 665 10 Red
8 842 10 NIR
11 1610 20 SWIR1
12 2190 20 SWIR2
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2.2. Field data

The API, R/G band ratio, and RGND were applied to spectral data 
sourced from (Khan et al., 2021) research on spectral albedo, accessed 
via the US Antarctic Data Center (Dataset ID 601412, accessed 03 March 
2024). In their study, Khan et al. collected surface spectra of red and 
green snow algae from two sites on King George Island and one on 
Nelson Island in January 2018. The research focused on optically thick 
snowpacks to minimize ground impact on spectral albedo. Sampling 
included control sites with clean snow and green, red, and mixed-phase 
algae areas. Spectral reflectance was measured using an ASD FieldSpec® 
4 hyperspectral spectroradiometer, covering 350–2500 nm wave
lengths. The measurements, taken in triplicate around noon to capture 
peak solar radiation, involved downwelling and upwelling planar irra
diance. A total of 24 measurement sites across three locations were 
selected, avoiding areas with snowmelt ponding. The field data points, 
representing red algae, green algae, and algae-free snow, were utilized 
in this study.

2.3. Algae presence index (API) calculation

The API is a novel spectral index developed to detect and quantify 
the presence of algae on snow-covered surfaces using remote sensing 
data. This index enhances the contrast between clean snow and algae- 
infested snow by leveraging the distinct reflectance characteristics of 
snow and algae across various spectral bands. Snow algae contain 
chlorophyll and various accessory pigments, such as carotenoids, which 
contribute to their unique spectral signatures. These pigments absorb 
light primarily in the blue (430–450 nm) and red (640–680 nm) regions, 
leading to reduced reflectance in these bands for algae-covered snow. In 
green algae, chlorophylls a and b reflect more light in the green band 
(500–570 nm) since chlorophyll absorbs less green light, making green 
algae more detectable in this band. Conversely, red algae contain 
additional pigments, such as phycobiliproteins like phycoerythrin, 
which absorb light at wavelengths around 495 nm, 539 nm, and 565 nm. 
This absorption results in lower reflectance in the blue-green and green- 
yellow regions, creating distinct spectral features that enable the iden
tification of red and green algae based on their unique spectral prop
erties (Bernard et al., 1992; Gray et al., 2021; Huovinen et al., 2018; 
Ulagesan et al., 2021).

In addition to pigment absorption, the presence of algae induces 
physical changes in the snowpack that further impact reflectance across 
multiple spectral bands. Algae absorb sunlight, which accelerates snow 
melting and increases the snow's liquid water content. Since water ab
sorbs more light in the near-infrared (NIR) and shortwave infrared 
(SWIR) regions, this increased moisture reduces reflectance in the NIR 
and SWIR bands. Furthermore, as snow melts, the snow grain size in
creases, causing less efficient light scattering, particularly in the NIR 
band, leading to a further decrease in reflectance. These physical 
changes, combined with the pigment-induced spectral signatures, result 
in an overall darker snow surface across multiple bands.

The API integrates reflectance values from the blue, green, red, NIR, 
and SWIR1 bands, effectively capturing the unique spectral character
istics of algae-covered snow. By combining both pigment absorption 
effects and the broader physical modifications caused by algae, the API 
provides a robust means of distinguishing algae-covered snow from 
clean snow and also helps in distinguishing green and red algae in 
remote sensing applications. The formula for the API is given by: 

API =
(RED + SWIR + NIR) − (BLUE + GREEN)

(BLUE + GREEN + RED + SWIR1 + NIR)
(1) 

The formula comprises three key components: the combination of 
the red, near-infrared (NIR), and shortwave infrared (SWIR1) bands; the 
combination of the blue and green bands; and a normalization factor. 
Each component plays a specific role in enhancing the index's sensitivity 
to algae presence. The first component, represented by the combination 
of the red, NIR, and SWIR1 bands, captures the overall reduction in 
reflectance caused by algae (Fig. 2). The red band, which typically shows 
moderate reflectance for clean snow, is sensitive to chlorophyll in algae. 
Chlorophyll absorbs red light, resulting in a significant reduction in 
reflectance when algae are present. This makes the red band a critical 
indicator of algal presence. The NIR band generally exhibits high 
reflectance for clean snow due to snow crystals' strong light scattering. 
However, algae cause a reduction in NIR reflectance by changing the 
physical properties of the snow, such as increasing grain size and 
moisture content through algae-induced melting. The SWIR1 band is 
highly sensitive to the liquid water content in the snowpack. While clean 
snow generally reflects moderately in this band, algae-induced melting 
increases water content, causing a drop in SWIR1 reflectance. The 
combined use of these three bands allows the API to effectively measure 
the overall darkening of snow due to algae, providing a strong indicator 
of their presence across a broad spectral range.

The second component of the formula, which combines the blue and 
green bands, is important for differentiating between clean snow and 
algae-infested snow. In the blue band, clean snow reflects strongly due 
to efficient light scattering by snow crystals. The presence of algae 
significantly reduces reflectance in this band because pigments such as 
chlorophyll and carotenoids strongly absorb blue light. This reduction is 
one of the most sensitive indicators of algae presence. The green band 
adds further contrast because different types of algae exhibit varying 
reflectance behaviors in this band. Green algae, rich in chlorophyll, 
reflect more green light, whereas red algae, which contain more carot
enoids like astaxanthin, absorb more green light. The combination of the 
blue and green bands captures these unique spectral characteristics and 
enhances the index's sensitivity to the presence of different types of 
algae. This differential behavior in the blue and green bands allows the 
API to better distinguish algae-covered snow from clean snow.

The subtraction of the blue and green bands from the red, NIR, and 
SWIR1 bands effectively amplifies the contrast between clean snow and 
algae-infested snow. The sum of the blue and green bands is typically 
high for clean snow due to high reflectance, while the sum of the red, 
NIR, and SWIR1 bands is moderate. This results in a lower API value. In 

Table 2 
Algorithms and satellite bands used to calculate API, R/G, NDVI, and albedo.

Index 
name(s)

Algorithm Sentinel bands Criteria Refs

API (Red + Swir1 + NIR)–(Blue + Green)
(Blue + Green + Red + Swir1 + NIR)

B2, B3, B4, B8, 
B11

Red = 0.00 ≤ API ≤ 0.01 
Green = 0.05 ≤ API ≤ 0.07

This study

R/G Red
Green

B4, B3 R/G > 1.02 red algae (Di Mauro et al., 2024; Takeuchi et al., 2006)

RGND (Red − Green)
(Red + Green)

B4, B3 Not specified (empirical 
threshold needed)

(Di Mauro et al., 2015; Engstrom et al., 2022; 
Ganey et al., 2017; Huovinen et al., 2018)

NDVI (Nir − Red)
(Nir + Red)

B4, B8 Scale 0–1 (Townshend and Justice, 1986)

Albedo
0.356 * Blue +0.130 * Red +0.373 * NIR + 0.085 * SWIR1 +
0.072 * SWIR2–0.0018

B2, B4, B8, 
B11, B12 Scale 0–1 (Guo et al., 2020)
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contrast, for snow with algae, the sum of the blue and green bands is 
significantly lower due to reduced blue reflectance and variable green 
reflectance, while the sum of the red, NIR, and SWIR1 bands is also 
reduced but remains comparatively higher, leading to a higher API 
value. This differential allows for the effective distinction between algae 
and clean snow.

The normalization factor (third component) in the formula, repre
sented by the sum of all five bands (blue, green, red, NIR, and SWIR1), 
ensures that the API accounts for overall variability in snow reflectance 
due to factors other than algae, such as snow cover, snow type, and 
environmental conditions. This normalization reduces the influence of 
these external factors, making the API robust and consistent across 
different snow types and settings. The API can be used for algae detec
tion across various regions and periods by providing a standardized 
measure, enhancing its utility in remote sensing applications.

The API formula effectively utilizes the differential spectral behavior 
of snow and algae across visible and infrared bands to detect and 
quantify algae presence. By leveraging the contrasting reflectance 
properties and normalizing the index, the API provides a robust and 
reliable method for remote sensing applications in the environmental 
monitoring of snow-covered regions.

2.4. Algae classification

A threshold-based clustering approach, informed by field data, was 
used to classify green and red algae in satellite images. Field reflectance 
values for red and green algae were analyzed, identifying distinct 
spectral ranges for each algae type. Specifically, red algae API values 
were clustered between 0.0018 and 0.0169, while green algae were 
clustered within the range of 0.0596 to 0.0733. These thresholds were 
applied to satellite imagery, facilitating an accurate and efficient clas
sification of algae types. Similar field-based approaches have been 
effectively used in remote sensing studies to map and classify snow 
impurities and biological communities. Takeuchi et al. (2006) utilized 
field reflectance data to derive a band ratio threshold, distinguishing red 
snow algae from clean snow on the Harding Icefield based on SPOT 
satellite imagery. Ganey et al. (2017) also employed spectral data to 
establish a normalized difference index for estimating microbial 

abundance, applying it to satellite data to map red algae on an Alaskan 
icefield. Additionally, Di Mauro et al. (2015) applied thresholds derived 
from ground-based spectral measurements to estimate the concentration 
of mineral dust in the European Alps, showing the utility of threshold- 
based clustering in remote sensing of snow-covered surfaces. These 
studies validate our use of empirically derived thresholds for algae 
classification, highlighting the robustness of threshold-based clustering 
in identifying snow algae.

2.5. Mann–Whitney U test analysis

To assess the statistical significance of differences in index values 
among the three snow surface conditions (Green Algae, Red Algae, and 
Algae-Free Snow), the Mann–Whitney U test was applied (Yang et al., 
2022). This non-parametric test was chosen due to its robustness in 
comparing independent samples that may not follow a normal distri
bution. Pairwise comparisons were conducted for each index—RGND, 
Red/Green Band Ratio, and API—to determine whether the differences 
between groups were statistically significant. The significance levels 
were categorized as follows: p < 0.05 (*) and p < 0.01 (**), with non- 
significant results denoted as “n.s.”. The test results are visualized 
using box plots to illustrate the distribution and variability of each index 
under different snow surface conditions.

2.6. Impact of green and red algae on albedo

Albedo, which represents the reflectivity of a surface, is affected by 
the presence of algae, as their unique spectral properties lead to lower 
reflectance (Cook et al., 2017a). Green algae, rich in chlorophyll, and 
red algae, which contain phycobiliproteins, influence the albedo in 
distinct ways due to their differential interaction with light. For this 
study, albedo was calculated based on reflectance values from a set of 
spectral bands: Blue (B2), Red (B4), Near-Infrared (B8), and Shortwave 
Infrared (B11, B12). The formula used for albedo calculation (Feng et al., 
2023) was derived from the weighted combination of these bands, based 
on their relationship to the reflectance characteristics of snow-covered 
surfaces. 

Fig. 2. Spectral reflectance for clean and algae-infested snow across NIR, RED, SWIR1, BLUE, and GREEN bands. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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Albedo = 0.356* Blue+0.130* Red+0.373* NIR+ 0.085* SWIR1
+0.072* SWIR2–0.0018

(2) 

The reflectance values for these bands were extracted from the sat
ellite images corresponding to each study period (austral summers from 
2019–2020 to 2022–2023). To reduce temporal variability caused by 
cloud cover and atmospheric conditions, median composites were 
generated for each year (Flood, 2013; White et al., 2014). This approach 
helped create more consistent and reliable albedo values for snow sur
faces in the study region, ensuring that the results accurately represent 
surface reflectivity across different periods. The percentage difference in 
albedo between red and green algae was computed to quantify the dif
ferential impact of green and red algae on surface albedo. The calcula
tion involved subtracting the mean albedo of green algae from the mean 
albedo of red algae, dividing the result by the mean albedo of red algae, 
and then multiplying by 100: 

Percentage Difference=
(

Mean Albedored − Mean AlbedoGreen

Mean Albedored

)

×100

(3) 

This approach provides a standardized metric for comparing the ef
fects of different algae types on surface reflectance properties, enabling a 
clearer understanding of their influence on albedo reduction.

3. Results

3.1. Spectral analysis based on field data

Fig. 3 illustrates the Red/Green band ratio (left) and RGND (red- 
green normalized difference) (right) values for two snow conditions: 
‘Algae’ and ‘Algae-free snow.’ The median Red/Green ratio for algae- 
containing snow is 0.993, compared to 0.951 for algae-free snow. The 
algae-containing snow group displays higher variability, with an inter
quartile range from 0.909 to 1.067 and whiskers extending from 0.842 
to 1.194, indicating a broader distribution. Conversely, the algae-free 
snow exhibits a narrower interquartile range between 0.918 and 
0.961, with whiskers from 0.927 to 0.969, reflecting more consistent 
values. Notably, there is overlap between 0.951 and 0.960, suggesting 
that the red/green ratio may not sufficiently distinguish between the 
two conditions, underscoring the need for more robust indices. The 
median RGND value for algae-free snow is − 0.021, with an interquartile 
range from − 0.027 to − 0.017 and whiskers from − 0.036 to − 0.013, 
indicating a limited spread. In contrast, algae-containing snow has a 
median RGND value of 0.003, with an interquartile range from − 0.037 

to 0.033 and whiskers from − 0.081 to 0.076, indicating greater vari
ability. While the RGND values for algae-containing snow are more 
diverse, overlap between the two categories persists. This highlights the 
need for a more effective index, such as the newly developed API, which 
shows no overlap and provides better differentiation, as discussed in 
subsequent sections.

Fig. 4 (left) illustrates API values plotted against their index, with 
blue crosses indicating regular data points and red crosses representing 
outliers. The majority of the data points display a gradual upward trend; 
however, two outliers at higher indices, with precise values of 0.328 and 
0.624, deviate significantly from the general pattern. These outliers 
were detected using the interquartile range (IQR) method, as they 
exceed 1.5 times the IQR from the quartiles, and were removed to pre
vent their influence from skewing subsequent analyses. Fig. 4 (right) 
shows the API values for ‘Algae-free snow’ and ‘Algae-containing snow,’ 
clearly distinguishing the two groups. The API values for algae-free snow 
are consistently negative, with a median of − 0.121 and an interquartile 
range between − 0.138 and − 0.116, indicating limited variability and 
short whiskers that show minimal deviation. In contrast, algae- 
containing snow exhibits a broader distribution, with a median API 
value of 0.022, an interquartile range from − 0.038 to 0.063, and 
whiskers extending further, reflecting greater variability. This spread 
may correspond to differences in algae concentration or pigmentation 
across samples. The plot demonstrates a clear separation between the 
two conditions, with no overlap, highlighting the API's superior effec
tiveness in distinguishing between algae-containing and algae-free snow 
compared to the red/green ratio and RGND values.

The box plots presented in Fig. 5 illustrate the results of the Man
n–Whitney U test, which assessed the statistical significance of differ
ences in RGND, red/green ratio, and API values among different 
conditions: Green Algae, Algae-Free Snow, and Red Algae. For RGND 
values (a), the analysis reveals significant differences between Green 
Algae and both Algae-Free Snow and Red Algae conditions, with p- 
values less than 0.01 (**). However, no significant difference was 
observed between Red Algae and Algae-Free Snow (denoted by “n.s.” for 
not significant). In the Red/Green ratio (b), significant differences were 
observed between Green Algae and both Algae-Free Snow and Red Algae 
(p-value <0.01, **), but there was no significant difference between Red 
Algae and Algae-Free Snow. Despite containing chlorophyll, Green algae 
exhibit values lower than snow in both the RGND and red/green band 
ratio indices, similar to other vegetation that also contains chlorophyll. 
This similarity suggests that these indices may not effectively distinguish 
green algae from snow or other chlorophyll-containing impurities and 
vegetation, due to the broad spectral overlap.

Fig. 3. Red/Green band ratio (left) and RGND values (right) by snow condition. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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For the API values (c), a significant difference was found between 
Algae-Free Snow and both Red Algae and Green Algae, with p-values less 
than 0.01 (**). Additionally, a significant difference was observed 

between Red Algae and Green Algae, with a p-value less than 0.05 (*). 
These results suggest that the API index is highly effective in dis
tinguishing between the three conditions, highlighting its potential as a 

Fig. 4. API data points with outliers (left) and API values for algae and algae-free snow conditions (right).

Fig. 5. Boxplot distributions of RGND, Red/Green Band Ratio, and API values for green algae, red algae, and algae-free snow. (a) RGND, (b) Red/Green Band Ratio, 
and (c) API values. Statistical significance is indicated by ** (p < 0.01), * (p < 0.05), and n.s. (not significant). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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reliable tool for differentiating between algae and algae-free snow in 
remote sensing applications. Specifically, the API is capable of clearly 
separating Green Algae and Red Algae from Algae-Free Snow, and it also 
reveals differences between the two types of algae, providing a finer 
level of detail for snow algae detection.

3.2. Spatial and temporal analysis of snow algae and albedo dynamics

The API across the four austral summer seasons (2019–2023) shows 
significant temporal and spatial variations in snow algae presence 
(Fig. 6). During the austral summer of 2019–2020, widespread and 
relatively uniform algae coverage with high API values indicated 
favorable environmental conditions for algae growth, likely linked to 
higher temperatures and sufficient snowmelt. In contrast, the 
2020–2021 season exhibited a patchier distribution of algae, with high 
API values confined to specific areas. This uneven distribution is due to 
masked out pixels caused by cloud cover, leading to the mapping of 

algae only over the available pixels. The 2021–2022 season showed a 
notable decline in overall algae presence, as evidenced by predomi
nantly lower API values, possibly due to less favorable climatic condi
tions, such as lower temperatures or reduced snowmelt. The 2022–2023 
season demonstrated a partial recovery in algae presence; however, the 
maximum API values remained lower than in previous years, suggesting 
that environmental conditions had improved compared to the prior 
season but were still less favorable than during 2019–2020. Multiple 
environmental factors, including temperature changes, snowmelt dy
namics, and nutrient availability, likely drive these temporal variations 
in algae presence.

The maps (Fig. 7) illustrate the spatial distribution of red and green 
algae on King George Island, Antarctic Peninsula, over four austral 
summer seasons: 2019–2020, 2020–2021, 2021–2022, and 2022–2023. 
During the 2019–2020 season, red algae exhibited widespread coverage, 
particularly in the central and southern regions, while green algae were 
mainly concentrated in the southern areas of KGI. During the 

Fig. 6. Spatio-temporal variations in API across King George Island from October 2019 to March 2023, showing changes in API distribution and intensity. (a) Oct 
2019–Mar 2020, (b) Oct 2020–Mar 2021, (c) Oct 2021–Mar 2022, and (d) Oct 2022–Mar 2023.
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2020–2021 season, red and green algae were mainly observed along the 
borders, as many pixels were masked due to cloud cover. This resulted in 
mapping algae only within the available cloud-free areas. The 
2021–2022 season showed a notable decline in overall algae presence as 
compared to 2019–2020, with red algae forming smaller clusters and 
green algae becoming more dispersed. By the 2022–2023 season, green 
algae coverage expanded significantly, suggesting a recovery and more 
favorable growth conditions, while red algae remained confined to a few 
isolated areas. These results highlight the substantial interannual vari
ability in snow algae distribution. The year-to-year changes emphasize 
the sensitivity of snow algae to climatic conditions and their role as 
indicators of ecosystem health in polar regions.

Fig. 8 illustrates albedo changes over four distinct periods from 2019 
to 2023. During the first period (Oct 2019 – Mar 2020), the albedo map 
highlights high values throughout most of the study area, with the 
classified algae map (Fig. 7) revealing widespread distribution of red 

and green algae. The southern region, in particular, showed a notable 
presence of algae, which coincided with areas of reduced albedo, indi
cating that algae significantly impacted the lowering of snow surface 
reflectance. In the second period (Oct 2020 – Mar 2021), the data 
coverage was limited, as cloud cover masked most pixels. This limitation 
made it challenging to analyze algae presence and albedo variations 
effectively, resulting in less detailed observations during this period. The 
third period (Oct 2021 – Mar 2022) shows a recovery of algae, with 
substantial red and green algae coverage across the southern and central 
regions. This increase in algae presence corresponds to marked re
ductions in albedo values, supporting the idea that algae contribute to 
decreased surface reflectance and potentially accelerated snowmelt in 
these areas. In the final period (Oct 2022 – Mar 2023), the maps show a 
decrease in the extent of red algae, while green algae maintained a 
significant presence. This reduction in red algae coverage is accompa
nied by a partial recovery of high albedo regions. However, low albedo 

Fig. 7. Spatial distribution of red and green algae on King George Island, Antarctic Peninsula, during four austral summer seasons: (a) 2019–2020, (b) 2020–2021, 
(c) 2021–2022, and (d) 2022–2023. The maps highlight interannual variations in the extent of red and green algal cover. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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areas persisted, suggesting that even lower algae densities can continue 
to affect snow surface properties. Overall, these observations underscore 
an inverse relationship between algae coverage and surface albedo: 
periods with extensive algae presence align with noticeable decreases in 
albedo, impacting the region's snowmelt dynamics. Table 3 further 

illustrates the year-to-year variations in algae coverage and proportions, 
highlighting the temporal changes in the abundance of red and green 
algae on King George Island from 2019 to 2023.

Based on the observations, the analysis of the relationship between 
algae presence and albedo reveals distinct patterns across different pe
riods. During the 2019–2020 period, the mean albedo of surfaces 
covered by green algae was approximately 8.46 % lower than those 
covered by red algae, indicating that green algae have a more pro
nounced effect on reducing surface reflectance. This difference is likely 
due to the higher absorption properties of green algae, which can 
contribute to accelerated snowmelt in regions with significant green 
algae coverage. In the 2021–2022 period, the mean albedo values show 
a similar trend, where green algae-covered surfaces exhibit a mean al
bedo approximately 5.33 % lower than red algae. This reduction in al
bedo is consistent with the algae presence observed in this period, 
suggesting that extensive algal growth can significantly alter the snow 
surface energy balance and influence the rate of snowmelt. However, the 

Fig. 8. Spatial distribution of albedo on King George Island, Antarctic Peninsula, during four austral summer seasons: (a) 2019–2020, (b) 2020–2021, (c) 2021–2022, 
and (d) 2022–2023. The maps highlight interannual variations in albedo distribution and intensity.

Table 3 
Annual coverage (sq km) and percentage of red and green algae on King George 
Island from 2019 to 2023, showing variations in total algal extent and individual 
contributions of red and green algae over the years.

Year Red Algae (sq. 
km)

Green Algae 
(sq. km)

Total 
Algae 
(sq. km)

Red 
Algae 
(%)

Green 
Algae 
(%)

2019–2020 289.99 94.89 384.88 12.36 4.04
2020–2021 14.12 15.00 29.12 0.60 0.63
2021–2022 130.00 65.92 195.92 5.54 2.81
2022–2023 101.9575762 186.8267976 288.77 4.34 7.96
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2022–2023 period shows a smaller difference between the mean albedo 
values of red and green algae, with green algae only 2.18 % lower than 
red algae. This observation could indicate a change in algae dynamics or 
environmental conditions that limited the influence of green algae on 
surface reflectance. Overall, the results highlight the varying impact of 
different algae types on albedo and suggest that monitoring algae 
presence is crucial for understanding snowmelt and energy balance in 
snow-covered regions.

3.3. Visual comparison of algae and vegetation

It is also important to highlight that the API also demonstrated an 
effective ability to distinguish between algae and vegetation, as evident 
in Fig. 9. The visual analysis of algae and vegetation maps for four 
austral summer seasons confirms that algae pixels (in green) do not 
overlap with vegetation pixels (in pink), which were identified using 
NDVI values greater than 0.01. This verification underscores the 

effectiveness of the API in accurately distinguishing algae from vegeta
tion. This differentiation is crucial for more accurate ecological and 
environmental assessments, particularly when analyzing seasonal and 
inter-annual variability in snow-algae presence.

4. Discussion

This study introduces the Algae Presence Index (API), which en
hances the understanding of snow algae dynamics on King George Is
land, Antarctica. The findings contribute to SDG 13 (Climate Action) by 
emphasizing the critical role that biological factors, such as snow algae, 
play in influencing snowmelt and the surface energy balance in the 
Antarctic Peninsula. The API provides a significant improvement over 
traditional methods like the red/green band ratio and RGND in detecting 
and classifying both red and green snow algae. By integrating spectral 
bands sensitive to algae-specific pigments and snow moisture content, 
the API offers a more accurate and reliable classification of algae. Unlike 

Fig. 9. Spatial distribution of algae (green) and vegetation (pink) on King George Island during four austral summer seasons: (a) 2019–2020, (b) 2020–2021, (c) 
2021–2022, and (d) 2022–2023. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the red/green band ratio and RGND, which rely solely on the reflectance 
difference between the red and green bands, the API also incorporates 
near-infrared (NIR) and shortwave infrared (SWIR1) bands. These 
additional bands enhance the detection capability of the API by 
capturing variations in chlorophyll content, algal pigmentation, and 
snow moisture factors essential for distinguishing algae from other im
purities in the snow (Di Mauro et al., 2015; Ganey et al., 2017; Ouma 
et al., 2020). The red/green ratio and RGND are limited by their narrow 
spectral focus, which restricts their ability to capture the full variability 
in algae pigmentation and concentration, thus increasing the likelihood 
of misclassification, particularly when distinguishing green algae from 
algae-free snow. This study demonstrates that the API, with its broader 
spectral range, reduces this overlap and improves algae classification 
accuracy. In contrast, the API's advanced formula integrates multiple 
spectral bands and applies normalization, enhancing its capacity to 
maximize contrast and accurately differentiate algae from clean snow. 
This approach minimizes the impact of external factors like snow grain 
size, moisture content, or mixed impurities, which can skew simpler 
indices like the red/green ratio and RGND. Snow grain size and asso
ciated snowpack properties significantly influence snow albedo by 
modifying the snow surface reflectivity. Flanner et al. (2007) illustrated 
that increased snow grain sizes reduce albedo due to enhanced ab
sorption, particularly within the near-infrared spectrum. Similarly, 
Skiles et al. (2018) emphasized that albedo reduction is amplified by a 
grain-size feedback mechanism, whereby the presence of light- 
absorbing particles accelerates grain growth, indirectly enhancing 
snow surface darkening. These findings highlight the challenge of 
differentiating biological factors, like snow algae, from physical factors 
affecting snow reflectance. This complexity underscores the advantage 
of the API's broader spectral approach over traditional indices, which 
are more prone to confounding factors. By improving snow algae 
monitoring, the API supports SDG 15, aiding the conservation of polar 
ecosystems.

Spectral data analysis from Sentinel-2  satellite imagery has revealed 
detailed patterns in the spatial distribution and intensity of snow algae 
blooms, along with their significant impact on surface albedo across 
multiple austral summer seasons. Previous studies (Khan et al., 2021) 
have shown that snow algae are highly sensitive to environmental fac
tors such as light, moisture, and temperature. They become active as 
snow begins to melt, releasing essential nutrients. The results demon
strate that snow algae, particularly green algae, significantly reduce 
snow surface reflectance, thereby accelerating snowmelt. Consistently 
higher API values for green algae compared to red algae indicate their 
greater absorption of solar radiation, leading to a more substantial 
impact on albedo reduction.

Green algae reduce albedo more significantly than red algae, pri
marily due to their pigment composition and light absorption efficiency. 
Green algae are rich in chlorophylls a and b, which are highly effective 
in absorbing light, particularly in the blue (430–450 nm) and red 
(640–680 nm) regions of the spectrum enabling them to play a more 
prominent role in energy dynamics (Pereira, 2018). This enhanced 
pigment efficiency results in stronger absorption of solar radiation, 
leading to a greater reduction in snow surface reflectance compared to 
red algae. In contrast, red algae contain pigments like astaxanthin, 
which absorb light primarily in the green and yellow wavelengths, 
making them less efficient at absorbing light in the blue and red regions. 
As a result, red algae have a comparatively lower impact on snow 
darkening, as their absorption spectrum is narrower compared to green 
algae.

This finding is consistent with previous studies showing that the 
chlorophyll content in green algae absorbs solar energy more efficiently 
than the pigments in red algae, such as phycoerythrin, as measured in 
laboratory-based absorption spectra (Lutz et al., 2016; Takeuchi et al., 
2006). Red algae adapt to low-light environments by modifying their 
phycobilisome composition, which enhances light-harvesting efficiency 
in specific spectral regions, particularly within mesophotic zones where 

light is scarce (Voerman et al., 2022). However, despite these adapta
tions, red algae are still less efficient in utilizing the full range of 
available sunlight compared to green algae.

Additionally, green algae often form dense blooms with high cell 
concentrations, which enhances their collective capacity to absorb solar 
radiation and reduce surface reflectance. This higher biomass density 
contributes to a more substantial decrease in snow albedo compared to 
red algae, which typically exhibit lower biomass densities. Thus, while 
the primary factor for green algae is their superior pigment efficiency, 
their denser blooms further amplify their ability to reduce albedo.

The spatial and temporal analysis reveals an inverse relationship 
between algae presence and albedo, with extensive algae coverage, such 
as during the 2019–2020 austral summer, leading to significantly 
reduced albedo on King George Island (Fig. 10). Green algae, with 
higher absorption properties, have a greater impact on surface reflec
tance than red algae and algae-free snow. This albedo reduction en
hances solar radiation absorption, accelerating snowmelt and creating 
conditions that support further algae growth, reinforcing the cycle. 
These findings align with previous studies linking albedo reduction to 
enhanced solar energy absorption, such as Healy and Khan (2023), who 
observed the significant role of snow algae blooms in accelerating 
snowmelt in other regions, with broader implications for accelerating 
the loss of ice cover as the Antarctic Peninsula continues to warm. The 
observed albedo differences (5–8 %) between algae types underscore the 
critical role of algae composition in snowmelt dynamics and emphasize 
the importance of monitoring algal blooms to better understand their 
impact on the cryosphere. Remote sensing-based detection and classi
fication of snow algae enhance our understanding of cryosphere dy
namics and support SDG 13 by providing data to improve climate 
models and inform mitigation strategies.

Our findings align with studies highlighting the impact of biological 
factors, such as algae, on snow albedo and snowmelt dynamics (Almela 
et al., 2023; Engstrom and Quarmby, 2023). While this study provides 
valuable insights into snow algae dynamics on King George Island, the 
temporal range of 2019–2023 may limit the detection of long-term 
trends. Although previous research has highlighted the seasonal 
impact of snow algae on albedo reduction (e.g., Lutz et al., 2016; 
Takeuchi et al., 2006), extending the temporal scope of the API analysis 
would provide a more comprehensive understanding of algae dynamics 
over multiple years, capturing interannual variability and offering in
sights into the long-term effects of algae on snowmelt and albedo 
reduction under changing climatic conditions.

Algae further contribute to the planet's equilibrium through carbon 
sequestration (Onyeaka et al., 2021). During photosynthesis, they 
absorb atmospheric CO2 and incorporate it into their biomass, which can 
remain stored if buried by snow, ice, or submerged in water (Ushasri 
et al., 2023). This natural carbon sink helps reduce greenhouse gas 
concentrations, aiding in global temperature regulation. By modifying 
surface reflectivity and acting as carbon sinks, algae exemplify how 
nature balances its systems—mitigating warming effects while sup
porting essential biological cycles. However, their activities also interact 
with the albedo feedback loop, where reduced albedo accelerates 
snowmelt, exposing darker surfaces and amplifying warming in polar 
and high-altitude regions, with consequences for global sea-level rise 
(Niu et al., 2020; Williamson et al., 2020). This intricate interplay 
highlights algae's dual role in sustaining ecological processes while 
influencing local and global climate patterns. As highlighted by (Cook 
et al., 2017b), snow algae accelerate snowmelt through bio-albedo ef
fects and contribute to complex feedbacks involving snowpack proper
ties and light-absorbing impurities. These direct and indirect 
interactions emphasize the need to integrate biological-cryospheric 
processes into climate models to better represent their impact on 
regional melt dynamics and cryosphere-climate feedbacks.

Furthermore, the API's potential for improving the understanding of 
snow algae dynamics presents an opportunity to address broader climate 
action goals. To strengthen the practical applications and SDG 13 
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(Climate Action) linkages, we propose integrating the Algae Presence 
Index (API) into a standardized Antarctic monitoring framework. This 
framework could be adopted by international initiatives such as the 
Antarctic Treaty Consultative Meeting (ATCM) or the International 
Polar Year (IPY) to systematically track algal blooms and their climatic 
impacts. By leveraging Sentinel-2's frequent revisit cycle, the API could 
provide near-real-time maps of algal distribution, enabling policy
makers to prioritize regions for conservation and assess compliance with 
environmental protocols under the Antarctic Treaty System. Such data 
would also enhance the Climate Change Response Work Programme of 
the Committee for Environmental Protection (CEP), offering actionable 
insights into how algal-driven albedo reductions accelerate ice 
retreat—a critical input for refining IPCC climate projections.

4.1. Limitations and future outlook

The spatial resolution of Sentinel-2 imagery limits the detection of 
small algae patches. Atmospheric corrections may introduce un
certainties, especially in variable weather conditions. While the cloud- 
masking algorithm effectively removes most cloud-contaminated 
pixels, some residual cloud effects may remain, particularly in areas 
with frequent cloud cover. Moreover, the API thresholds in this study 
were derived from field data collected in January 2018, which may not 
capture spectral variability across years or regions. Future work should 
include multi-season and multi-site field campaigns to improve the 
robustness and generalizability of algae classification. Additionally, this 
study did not assess the uncertainty associated with API performance 
under varying sensor conditions and atmospheric influences, which 
should be addressed in future work. Additionally, while the API effec
tively distinguishes algae from clean snow and vegetation, its ability to 
separate algae from other darkening agents like dust or black carbon was 
not explicitly addressed. Integrating additional field spectra or hyper
spectral data could enhance discrimination between biological and non- 
biological snow impurities. While this study focused on threshold-based 
classification due to limited field data, future work should consider 
machine learning approaches to capture a broader range of algae types 
based on their distinct spectral signatures and compare their perfor
mance to the API using metrics such as overall accuracy, Kappa coeffi
cient, confusion matrices, and ROC curves, once sufficient labeled data 

are available. While this study qualitatively explored the impact of algae 
on snow albedo, future research should integrate snow physics data, 
including snow density, grain size, and liquid water content, to establish 
quantitative relationships between these parameters and the API. 
Regression models and sensitivity tests can be used to explore these 
connections. Moreover, radiative transfer models (e.g., SNICAR) could 
be applied to simulate the impacts of algae on snow albedo more pre
cisely and validate the observed relationships.

5. Conclusion

This study builds on past research by providing new insights into the 
spectral differences in Antarctic snow impacted by red and green algae. 
A novel Algae Presence Index (API) was developed and applied to map 
the Antarctic Peninsula's red and green snow algae. Monitoring and 
mapping these albedo-reducing algae are particularly challenging due to 
the region's cloud cover. Despite this, the API enabled precise detection 
and classification of snow algae on King George Island using Sentinel-2 
satellite imagery. Across four austral summers (2019–2023), spatial 
analysis revealed that green algae consistently had a stronger impact on 
reducing albedo than red algae. For instance, during the 2019–2020 
season, green algae reduced albedo by 8.46 %, while red algae caused a 
5.33 % reduction. Over the study period, algae coverage varied, peaking 
in 2022–2023 at 288.77 km2.

As temperatures in the Antarctic Peninsula continue to rise, the 
growth of snow algae is likely to increase, which in turn could further 
reduce surface albedo, amplifying snowmelt through a positive feedback 
loop. Warmer conditions create favorable environments for more 
extensive algae blooms, leading to greater absorption of solar radiation 
and accelerating melt rates. This feedback mechanism should be 
considered in climate models, as it could significantly influence snow
melt dynamics and contribute to ice edge retreat in coastal Antarctic 
regions. Additionally, an extended algae bloom season may already be 
occurring due to persistent warmer temperatures, further enhancing the 
impact of algae on the cryosphere. These findings enhance the under
standing of snow algae's role in the Antarctic and point to the impor
tance of continuous monitoring and refined detection methods, 
particularly in light of future warming scenarios. Future research should 
explore snow algae's broader ecological and carbon cycling 

Fig. 10. Feedback between algae presence, albedo, and temperature. Green and red algae reduce albedo, increasing temperature and snowmelt, while algae-free 
snow retains higher albedo. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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implications, with potential links to net primary productivity (NPP) and 
biogeochemical processes. The API developed here could also be 
adapted for algorithms that track algae blooms' spatial and temporal 
variability, contributing valuable data to global climate models and 
helping to predict changes in the Antarctic cryosphere under ongoing 
climate change. Future studies could leverage data from SDGSAT-1 to 
enhance the accuracy and temporal resolution of snow algae moni
toring, further supporting the achievement of SDG targets related to 
climate change and environmental protection.
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