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Abstract 

Growing concerns have emerged regarding the risks of pesticide mixtures in 

surface water ecosystems, yet the mechanisms through which human activities, 

especially land use patterns, affect these risks remain inadequately studied. This 

research presents an innovative approach, combining multi-scale land use analysis with 

pesticide risk assessment, quantifying relationships between mixed pesticide ecological 

risks and land use patterns. Findings indicate that the impacts of urban land use on 

pesticide ecological risks surpass the traditionally recognized agricultural effects, 

demonstrating significant spatial scale-dependent effects. Generalized additive model 

analysis reveals that 1−3 km and 2−3 km buffer zones represent the critical ranges 

where urban land use and cropland, respectively, have significant impacts on pesticide 

risks. Non-parametric change point analysis determined critical land use thresholds 

triggering significant ecological risk increases: 10−25% for cropland and 10−30% for 

urban areas. These discoveries provide crucial quantitative foundations for landscape 
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planning and pesticide risk management. The results not only challenge traditional 

views of agricultural activities as primary pesticide sources but also provide new 

perspectives for pesticide pollution control and water quality management in large cities. 

 

Keywords 

Pesticide pollution, mixed ecological risk, land use, ecological thresholds, landscape 

management 

 

1.  Introduction 

As a key indicator of the Anthropocene [1], pesticide pollution has emerged as a 

global environmental challenge. Most parent pesticides worldwide enter environmental 

media such as water and soil through spray drift, leaching, plant uptake, and runoff, 

leading to extensive environmental contamination [2]. Globally, 74.8% of agricultural 

land faces potential pesticide pollution risks, with a concerning 31.4% classified as 

high-risk [3-5]. Previous research has focused on analyzing sustainable pesticide use 

strategies [6-8], evaluating toxicity-based priority control lists [9, 10], and analyzing 

the spatiotemporal distribution and fate of pesticides [11, 12]. With advancing research, 

the "source tracing" of pesticides has increasingly emerged as a key research priority 

[13-15]. Investigating factors affecting pesticide risks, whether human activity elements 

or natural factors, has gradually become an important part of "source tracing" research 

and potentially yields substantial ecological benefits [15]. Nevertheless, there is limited 

research analyzing the effects of human activities on pesticide pollution, particularly 

regarding how land use planning influences pesticide transport into water bodies and 

the subsequent ecological risks to aquatic organisms. Consequently, there is a pressing 

need to quantify the influence of human activities on pesticide risks, enabling source 

control of pesticide threats to ecosystems. 

Investigation of factors affecting pesticide risks first requires assessment of the 

ecological risks caused by pesticides. Assessment of potential pesticide risks to 

ecosystem organisms typically provides guidance for pesticide control measures [16]. 

However, pesticide detection, registration, use, and traditional ecological risk 

assessments primarily focus on single active compounds [17], relying on single-species 

laboratory exposure and toxicity data [18], while real environmental exposure occurs 
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in mixtures, often presenting greater actual risks to aquatic ecosystems than estimated 

[19, 20]. It is therefore imperative to assess the ecological risks of mixed pesticide 

exposure to gain a deeper understanding of their environmental consequences. 

The quantitative assessment of mixed pesticide risks directly reflects the influence 

of various factors on pesticide risks [21, 22]. According to existing research, human 

activities, especially land use intensity, represent critical factors influencing pesticide 

exposure and ecological risks [23]. Changes in land use and land cover, which 

significantly alter Earth's energy balance and biogeochemical cycles, are major drivers 

affecting ecosystem health [24, 25]. Research [26] has shown that when forests and 

pastures are converted to farmland, soil organic carbon decreases by 24% to 59%, 

leading to soil nutrient loss and ecological function degradation. Gossner et al. [27] 

observed species from 12 trophic groups and found that increased land-use intensity 

significantly reduced the biodiversity of many different trophic groups. Pesticide 

exposure levels in intensive agricultural zones and densely populated areas 

substantially exceed those in natural landscapes such as forests and aquatic ecosystems 

[15], demonstrating that both agricultural activities and urbanization contribute to 

pesticide contamination. However, current research primarily focuses on agricultural 

activities' effects on pesticide presence and distribution in surface waters [3, 28-30], 

often neglecting urban pesticide pollution [5], from sources like urban landscaping, 

rural tourism, and fruit/vegetable cultivation areas [31]. Furthermore, active pesticide 

ingredients typically show higher concentrations in non-agricultural environments [32], 

with multiple studies reporting higher insecticide levels in U.S. urban surface waters 

than in agricultural areas [31, 33, 34]. Different land use types significantly affect 

pesticide migration and transformation in the environment [35], while rational 

watershed-level land use distribution through landscape planning offers a novel 

approach to pesticide pollution analysis [36]. Pesticide risk minimization can be 

achieved through enhanced protection of ecologically vulnerable areas and pesticide-

sensitive buffer zones, reduced land degradation risk, and improved land use efficiency 

[37, 38]. Rational land use planning can thus yield greater ecological benefits [39]. 

Currently, there is a global shortage of methods for pesticide source control through 
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landscape-scale land use pattern planning. Studies examining how pesticide ecological 

risks respond to land use patterns remain lacking [36, 40]. 

Based on these scientific issues, this study proposes a novel approach combining 

multi-scale land use analysis with pesticide risk assessment. Response relationships 

between land use patterns and mixed pesticide ecological risks are established across 

different buffer zones, employing generalized additive models (GAM) and non-

parametric change point analysis (nCPA) to quantitatively identify key scales and 

thresholds. Beijing, covering 16,410 square kilometers with 21.5 million inhabitants, 

ranks as the world's eighth-largest megacity [23]. Beijing exhibits substantial spatial 

heterogeneity in population density, varying from hundreds to over 20,000 people per 

square kilometer from suburbs to downtown, with significant variations in human 

disturbances, activity frequency, and complex land use patterns [23, 41]. These complex 

land use patterns and marked spatial heterogeneity provide an ideal platform for 

examining landscape effects on pesticide pollution. 

The study aims to: (1) Quantify ecological risk levels and spatial distribution 

patterns of pesticide mixtures in megacity surface waters; (2) Identify and validate 

mechanisms by which urban and agricultural land use influence pesticide ecological 

risks; (3) Establish the critical buffer zone ranges and threshold levels of land use that 

influence pesticide risks. This research will provide a scientific basis for challenging 

traditional agriculture-centric views of pesticide pollution while introducing new 

approaches to landscape planning-based pesticide risk management. Other cities may 

optimize the distribution and proportions of impervious surfaces, cropland, forests, and 

grasslands based on their development objectives, or modify buffer zone extents 

according to current land use type proportions and pesticide risk status, to implement 

source-based pesticide risk control. Research innovations include: the first exploration 

of spatial response mechanisms between land use and mixed pesticide risks at megacity 

scale; introduction of buffer zone-based risk assessment methodology; and 

quantification of critical land use thresholds triggering significant ecological risk 

increases. 

2.  Material and method 
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2.1.  Study area and collection of samples 

Beijing exhibits substantial spatial heterogeneity in population density, with 

significant variations in human disturbances, including land use patterns. Between 1992 

and 2008, more than half of agricultural land was converted to urban and industrial use 

[41], with urbanization reaching 86.6% by 2019 [42]. Intensive human activities have 

resulted in significant pesticide contamination of surface waters [43]. Additionally, 

Beijing has complex water systems including rivers and large reservoirs, with water 

quality issues becoming increasingly prominent due to extensive groundwater 

extraction, rapid population growth, and fast socioeconomic development [44, 45]. 

Beijing thus presents an ideal area for investigating pesticide sources, distribution 

patterns, and risk variations [23]. 

To investigate pesticide concentrations, spatiotemporal distribution characteristics, 

ecological risks, and their driving factors in the surface waters of rivers, lakes, and 

reservoirs across Beijing, two surface water sampling events were carried out. Sampling 

occurred in November 2020 (dry season) and April 2021 (normal season), for the 

following reasons: (i) it coincided with the end of one crop growing season and the 

beginning of another, making it ideal for assessing the extent of pesticide effects on 

organisms; (ii) no insecticides were used in the short term, which facilitated the 

identification of insecticide types that are frequently found in the environment, as they 

exhibit accumulation and persistence characteristics. As illustrated in Figure 1(b), a 

total of 60 sampling points were established, and specific details on sampling methods 

and sample pretreatment can be found in Text S1.2. 

2.2.  Chemical analysis 

Reference standards and internal standards for 49 target compounds across 4 

categories were obtained from Alta Scientific Co. Ltd (Tianjin, China) (refer to Text 

S1.1 and Table S2 in the supplementary materials). Analysis was performed using 

Waters ACQUITY liquid chromatograph and Xevo T-QS triple quadrupole mass 

spectrometer (ESI-MS/MS, Waters Co., Milford, MA, USA), following prior studies 

conducted by the research group [23, 46, 47]. Emerging pollutants were ranked by their 

ecological risks to aquatic organisms, with neonicotinoid (NEOs) and organophosphate 
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pesticides (OPPs) ranking among the highest. This study therefore focused on 

measuring concentrations of 9 NEOs, 14 OPPs, 15 triazine pesticides (TPs), and 11 

carbamate pesticides (CAs). Chromatography-grade organic solvents were obtained 

from Thermo Fisher Scientific (USA). Chromatographic grade formic acid was 

purchased from Sigma-Aldrich (St. Louis, Missouri). Milli-Q water was generated by 

a Milli-Q system (Millipore, Bedford, USA). Analyzed compounds are listed in Table 

S1, while analytical methods and instrumental details are provided in Table S2. Details 

of quality assurance and quality control measures can be found in Text S1.4 and Table 

S3. 

2.3.  Ecological risk assessment 

Experimental values and predictions were obtained from the ECOSAR model [46, 

48]. The principles for screening toxicity data are provided in Text S3. When several 

experimental values are available, the minimum value is chosen to ensure that all 

potential risk substances are included [49]. Toxicity Units (TU) were employed to 

assess the potential ecological risks posed by each pesticide and mixed pesticides to 

aquatic organisms in urban surface waters [47], with the formula as follows: 

𝑇𝑈 = 𝐶
𝑃𝑁𝐸𝐶𝑠⁄

(1) 

 

In this context, the predicted no effect concentration (PNEC) is defined as the 

minimum toxicity threshold for the most sensitive group of species, indicated by 

chronic risk thresholds (CRT). C represents the concentration of the pollutant, including 

the average concentration. The formula for calculating the risk of mixed pesticides [47] 

at each sampling point is as follows： 

𝑇𝑈𝑠𝑥 =
∑ 𝑇𝑈𝐶𝑅𝑇𝑖
𝑛
𝑖=1

𝑖

(2) 

 

Where TUSx denotes the chronic combined risk of compound i at the sampling 

point. Prior research categorized TU results into three levels: TUSx ＜ 0.1 indicates 

that the risk is negligible, 0.1 < TUSx ≤ 1 indicates low risk, 1 < TUSx ≤ 10 indicates a 

moderate risk, and TUSx > 10 indicates high risk. 
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2.4.  Land use data acquisition and processing 

Land use data were extracted from the 2019  China land cover dataset (CLCD) 

with a spatial resolution of 30 meters, provided by Wuhan University [50]. As 

illustrated in Figure 1b. Land use types include arable land (e.g., rice paddies and dry 

fields), forests, grasslands, water bodies (e.g., rivers, ponds, and reservoirs), impervious 

surfaces (e.g., residential, industrial, and mining areas), and unused land (e.g., deserts, 

wetlands, and bare land). Circular buffer zones of 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5, 3, 5, and 

10 kilometers were established around each sampling point using ArcGIS 10.8, to 

extract land use type data for these buffers (Table S9), along with the specific area 

proportions of different land use types, which reflect the spatial layout of land types 

within the various buffer scales. 

2.5.  Statistical analysis 

One-way ANOVA was employed to assess significant differences among variables. 

The Kolmogorov-Smirnov D statistical test was applied to check the distribution of 

pesticide residual concentrations in water. T-tests were utilized to compare two 

independent samples. For comparisons involving more than two independent samples, 

one-way ANOVA was applied. Pearson's correlation test was used to assess the linear 

relationship between two variables. All the statistical analyses were performed using R 

(version 4.2.3). The significance level for statistical tests (p-value) was established at 

0.05. Spearman's correlation coefficient was used to compute the linear correlation 

between the mixed ecological risks of pesticides and the proportions of land use types. 

First, Box-Cox transformations were applied to the areas of arable land and impervious 

surfaces, along with the ecological risk data, to analyze the interactions between the 

two influencing factors. Positive Matrix Factorization (PMF) was applied to identify 

and characterize the principal sources of pesticide contributions. GAM was used to 

establish the relationship between explanatory variables and response variables across 

different buffer scales. GAM is a non-linear additive regression model for the response 

variable Y [51], expressed as follows [52, 

53]:

𝑔(𝐸(𝑌𝑖)) = 𝛼 +𝑠1(𝑋1,𝑖)+𝑠2(𝑋2,𝑖)+⋯+𝑠𝑝(𝑋𝑝,𝑖)
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(3) 

Where Yi denotes the mixed ecological risk TUSx at the i-th sampling point, Xi is 

the explanatory variable for the i-th sampling point, p indicates the total number of 

explanatory variables (corresponding to the number of buffer scales), α represents the 

model intercept, s(·) is the smoothing function applied to the explanatory variable X 

(capturing non-linear relationships). g(·) is a link function; in this study, an identity link 

function was utilized. The model evaluation was conducted using sample size (n), 

explained variance (R²), and minimized generalized cross-validation scores. The 

"mgcv" and "ggplot2" in R (version 4.2.3) were utilized, and the results are shown in 

Table S10. 

2.6.  Ecological threshold derivation 

Ecological thresholds were derived by identifying change points in environmental 

parameters and landscape metrics using nonparametric change-point analysis (nCPA) 

[54-56]. Initially, observations from multiple sampling points were ordered along a 

gradient, a threshold or sudden change in the statistical attributes of the dependent 

variable occurs in the relationship between the explanatory variables and response 

variables, enabling the identification of change points along the landscape metric 

gradient that lead to shifts in ecological risk [57]. Let y1, y2,…, yn , denote the sequence 

of ecological risk variables observed along the landscape metric gradient, with the 

nCPA calculation method given as follows: 

𝐷 = ∑ (𝑦𝑘 − 𝜇)2𝑚
𝑘=1

(4) 

Where D represents the deviation, m is the sample size, and μ is the average of the 

m observations yk. 

Let i be the interval point between the two groups. The deviation redundancy ∆i is 

calculated using Equation (5), and ∆i for each possible change point t (1 ≤ t ≤ n) is 

always greater than or equal to 0. The value of i that reaches the maximum ∆i is 

identified as the change point t. 

∆𝑖 = 𝐷 − (𝐷≤𝑖 + 𝐷>𝑖)

(5) 
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Where D、D≤i and D>i represent the deviations for the data sets y1, y2,…, yn、y1, 

y2…yi and yi+1…yn, respectively. 

In general, actual observational data are limited; thus, nCPA is combined with the 

bootstrap method to estimate the frequency distribution of change points [58]. As a 

result, this research emphasizes the examination of changes in arable land and 

impervious surfaces. We used the bootstrap method to extract random samples of 1,000 

pesticide mixture risk parameters and key landscape indicator datasets to compute the 

probabilities of change point occurrences using nCPA. All analyses were conducted in 

R (version 4.2.3) using the "dplyr", "changepoint" and "boot" packages. 

3.  Result 

3.1.  Seasonal and spatial changes in pesticide concentrations and ecological risks 

A total of 48 pesticide compounds were identified in Beijing's surface waters. 

During dry and normal seasons, total pesticide concentrations ranged from 

73.17−3412.95 ng/L and 45.17−4211.79 ng/L, with respective mean values of 566.76 

and 704.77 ng/L. Dinotefuran exhibited notably higher concentrations compared to 

other pesticides, ranging from 0.04−2169.37 ng/L and 0−2628.38 ng/L in dry and 

normal seasons, respectively (with mean values of 272.75 and 349.97 ng/L). Seasonal 

variations in pesticide concentrations were evaluated using independent sample t-tests, 

while spatial distribution patterns were analyzed using Kruskal-Wallis one-way 

analysis of variance. The results (Table S5) demonstrate significant spatial variations 

(p < 0.05) in total concentrations and levels of NEOs, TPs, and CAs (Figure 1c and 1d). 

Conversely, OPPs exhibited significant seasonal variations but showed no significant 

spatial distribution differences. Mean pesticide concentrations in eastern and southern 

Beijing (Tongzhou, Chaoyang, and Changping districts) during dry and normal seasons 

(2113.90 and 2451.74 ng/L, respectively) were fourteen times higher than those in 

western and northern regions (Miyun and Huairou districts: 146.45 and 175.57 ng/L, 

respectively). The primary distinction between these regions lies in the intensity of 

human activities, with results indicating that both during dry and normal seasons, 

densely populated areas exhibited higher pesticide concentrations and detection 

frequencies, whereas regions with extensive forest coverage or mountainous areas 
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typically showed lower detection levels. Pesticide composition distributions across 

different sampling locations in Beijing (including southeastern Tongzhou, Daxing, and 

Chaoyang districts, and western/northern Yanqing, Huairou, and Miyun districts) were 

matched with regional crop patterns to determine source attribution, with PMF analysis 

revealing distinct compositional differences among source factors (Table S8). The 

model results indicate that grain crops, fruit and vegetable crops, and other crops 

constitute the primary contributing sources of pesticides. Detection variations across 

different land use types directly demonstrate the influence of spatially heterogeneous 

human activities on pesticide contamination. 

As illustrated in Figure 2, mixed risk TUSx values ranged from 0.17 to 14.37 during 

the dry season, with 32% of sampling sites showing elevated risk levels, and from 0.13 

to 24.04 during the normal season, with 35% of sampling sites showing elevated risk 

levels. Significant spatial variations in TUSx were observed across sampling locations 

(p < 0.05), with high-risk sites predominantly concentrated in urban clusters and 

southeastern regions characterized by intensive agricultural activities. These findings 

clearly demonstrate the contributions of agricultural activities and urbanization to 

elevated ecological risk levels. To assess risks associated with different pesticide types, 

TUSx values were calculated for four pesticide categories, as shown in Figure S2. NEOs 

exhibited the highest ecological risk, with TUSx values ranging from 0 to 78.85 and 0 

to 136.86 in the dry and normal seasons, respectively, followed by OPPs with TUSx 

values of 0.55 to 2.47 and 0.24 to 3.40 in dry and normal seasons. These findings 

demonstrate that NEOs and OPPs are the primary contributors to mixed ecological risks 

from pesticides in surface waters. 

3.2.  Relationship between land use patterns and ecological risks 

Previous research has established that pesticide ecological risks correlate with 

natural climatic conditions, human land use patterns, pesticide physicochemical 

properties, and emission factors, with human land use exerting the predominant positive 

influence on ecological risks [23]. We conducted further analysis to examine the 

relationships between various land use types and pesticide ecological risks. The land 

use types were classified into Cropland, Forest, Shrub, Grassland, Water, Barren, and 
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Impervious surfaces, and we analyzed Spearman correlation coefficients between 

mixed ecological risks and individual pesticide ecological risks with different land use 

types across multiple buffer zones (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0, and 10.0 

km). The results (Figure S4 and Table S7) indicate significant positive correlations 

between TUSx and both cropland and impervious surfaces, with correlation coefficients 

ranging from 0.04 to 0.61 and 0.20 to 0.72, respectively, across different buffer zones. 

This directly demonstrates the substantial contribution of both cropland and urban area 

proportions to ecological risk. Conversely, forests and grasslands exhibited significant 

negative correlations with TUSx, with correlation coefficients ranging from −0.79 to 

−0.44 and −0.78 to −0.23, respectively, demonstrating their significant mitigating effect 

on pesticide-related ecological risks to aquatic organisms. 

Furthermore, the results reveal that across all buffer zones, correlation coefficients 

between impervious surfaces and TUSx consistently exceeded those between cropland 

and TUSx at corresponding scales. To elucidate the relationship between these two 

influential factors and identify the primary driver of mixed pesticide risks, we 

conducted interaction and individual effect analyses on TUSx, cropland, and impervious 

surface data, as presented in Table 1. Cropland and impervious surfaces demonstrated 

synergistic effects with highly significant interactions (p < 0.001), with the interaction 

term exhibiting a positive influence on TUSx. The synergistic effect of cropland and 

impervious surfaces reduces the proportion of forests and grasslands, potentially 

intensifying surface runoff and facilitating the convergence of complex pesticide 

mixtures in surface water, thereby exacerbating mixed pesticide contamination [59]. 

The individual effect analysis revealed that impervious surfaces exerted a more 

significant influence on TUSx than cropland (p < 0.001). Thus, synthesizing the results 

from both interaction and individual effect analyses, while cropland and impervious 

surfaces demonstrate synergistic effects, impervious surfaces exert a stronger influence 

on mixed risks. 
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Table 1 Individual effects of arable land and impervious surfaces on ecological risk along with 

interaction analysis 

 Estimate   Std. Error    t value      P(>|t|) 

(Intercept) −2.472 0.232 −10.642 <0.001 

Cropland 0.190 0.051 2.156 <0.050 

Impervious 0.420 0.053 7.901 <0.001 

Cropland: Impervious 

(synergistic) 
0.098 0.023 —— <0.001 

 

3.3.  Scale-dependent effects of land use on ecological risks 

The impact of cropland and impervious surfaces on mixed risks varies depending 

on buffer zone extent. Spearman correlation coefficients for both factors showed 

minimal variation at buffer zones of 0.1−0.5 km (Table S7); thus, we focused on buffer 

zones of 1−5 km to more precisely evaluate the scale-dependent effects of land use on 

ecological risks. GAM was fitted using mixed risks (TUSx) during dry and normal 

seasons at various sampling points as response variables, with cropland and impervious 

surface proportions at different buffer scales serving as explanatory variables. We 

analyzed the nonlinear influence of land use on TUSx at optimal scales. Fitting results 

shown in Figure 3a and 3c indicate that when cropland served as the explanatory 

variable, mixed ecological risks exhibited minimal variation with increasing cropland 

proportion at buffer zones of 1.0 km and 1.5 km. 

Within 2−3 km buffer zones, nonlinear relationships emerged, with significant 

increases in mixed ecological risks occurring after cropland proportion exceeded 40% 

in 2 km zones, while at 2.5 km zones, dry and normal seasons demonstrated decreasing 

and slightly increasing trends, respectively. TUSx showed sudden increases or decreases 

when cropland proportion exceeded 60%, indicating instability in mixed risks at this 

buffer zone range. Beyond the 5 km buffer zone, increased impervious surface 

proportion resulted in stable or decreased TUSx trends. Figures 3b and 3d illustrate the 

response of TUSx to impervious surface proportion, demonstrating nonlinear 

relationships across all buffer zone scales. TUSx exhibited significant fluctuations 

across broader ranges (1−3 km); within 1 km buffer zones, it showed gradual decreases 

with increasing impervious surface proportion; at 3 km buffer zones, dry and normal 
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periods demonstrated increasing and increasing-then-decreasing trends respectively; at 

5 km buffer zones, TUSx either maintained stable or decreasing trends with increasing 

impervious surface proportion. Significant changes in fitting trends between TUSx and 

both cropland and impervious surface area occurred within 2−3 km and 1−3 km buffer 

zones, respectively, while TUSx showed minimal variation and gradual increases within 

1 km and approaching 5 km buffer zones. Thus, the 2−3 km and 1−3 km ranges 

represent the critical scale ranges for the impacts of cropland and impervious surface 

area on mixed risks, respectively, with differing trends between dry and normal seasons 

suggesting seasonal influences on scale effects. Land use planning strategies must 

account for critical buffer zones vulnerable to human land use impacts, enabling the 

achievement of desired ecological benefits cost-effectively. 

3.4.  Analysis of change points for key land use types impacting mixed ecological 

risk 

The goal of human land use planning is to reduce mixed pesticide risks. 

Consequently, this study examined threshold values where relationships between mixed 

risks and human land use proportions undergo sudden changes. Drawing from GAM 

results and Spearman correlation coefficients (Table S7 and S10), we utilized cropland 

and impervious surface areas at the 2 km buffer zone scale to determine ecological risk 

transition thresholds. Figure 4 illustrates the distribution of mixed ecological risk 

change points along gradients of cropland and impervious surfaces, derived from 1000 

bootstrap simulations using the nCPA method. From a risk assessment standpoint, 

cumulative distribution plots provide direct probability estimates of sudden risk 

changes. Key interval values for mixed risk transitions correspond to cropland area 

proportions of 22−25% (Figure 4a and 4c). With cropland proportions below 22%, 

cumulative mixed risk remains under 60% and increases gradually; when cropland 

proportion exceeds 30%, the cumulative probability of sudden mixed risk increase 

surpasses 90%. The critical threshold range for impervious surface proportion 

triggering mixed pesticide risk transitions is 25−30% (Figure 4b and 4d); beyond 

approximately 35% impervious surface coverage, the cumulative probability of sudden 

mixed risk increase reaches 100% across all seasons. Furthermore, mixed risk remains 
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at low or negligible levels when cropland or impervious surface proportions are below 

10%. 

4.  Discussion 

4.1.  Temporal and spatial dynamics of pesticide contamination in metropolitan 

river systems 

Pesticides are prevalent in cities worldwide [60]. A review of 228 pesticides 

monitored in global urban rainwater revealed 85 frequently detected compounds, with 

diuron, simazine, atrazine, metolachlor, and 2,4-D as the top five. These pesticides 

showed median concentrations below 100 ng/L but high detection frequencies [4]. 

Analysis of rainwater samples across 17 U.S. states revealed concentrations of widely 

used agricultural herbicide atrazine and insecticides imidacloprid and fipronil typically 

ranging from 3 to 300 ng/L [60]. The spatial variation in pesticide contamination 

correlates strongly with the intensity of regional human activities [61], potentially 

explaining spatial differences in pesticide ecological risks. 

Significant spatial variations were observed in TUSx and mixed ecological risks of 

NEOs, TPs and CAs, though seasonal variations were less pronounced. The overall 

mixed ecological risk exhibits a gradient pattern, increasing from west and north to 

southeast, with high-risk areas concentrated in the southeastern region, likely 

attributable to variations in land use patterns. Land use type variations affect the 

differential risks that pesticides pose to aquatic organisms. The southeastern region of 

Beijing features concentrated residential and commercial areas bordered by cropland 

[62], characterized by intense human activity [63], resulting in high pesticide inputs 

that significantly impact the health of river and lake ecosystems. These findings are 

consistent with the research of Ana et al. [64], which indicates that the spatial 

distribution of pesticide is primarily influenced by regional human activities, including 

agricultural production and urban usage, where land use changes driven by intensive 

human activity increase pollutant inputs, potentially degrading water quality and 

elevating ecological risks [65, 66]. The western and northern regions of Beijing, 

characterized by high forest coverage [67] and minimal human interference, experience 

lower pesticide inputs, while forest vegetation's ability to absorb and purify pollutants 

further reduces pesticide outputs in these areas [68, 69]. 

Jo
ur

na
l P

re
-p

ro
of



Crop types also indirectly influence ecological risks, with pesticide types, 

application methods, quantities, and frequencies varying by crop type. Differences in 

pesticide utilization rates among crops lead to varying ecological risks and spatial 

distribution patterns. Beijing's local statistical yearbook (Table S8) shows crop planting 

area proportions in descending order: grain crops > fruits and vegetables > other crops. 

PMF model was applied to analyze sources of two frequently detected pesticides (NEOs 

and OPPs) at high concentrations, as illustrated in Figure S3. Contribution rates of each 

pesticide type were matched with crop planting areas to generate Table S8, and analysis 

of major crops in different regions revealed primary sources of ecological risks across 

areas. In southeastern Beijing, where vegetable cultivation predominates, commonly 

used pesticides include NEOs (chlorantraniliprole, thiacloprid, and clothianidin) [11, 

70] and OPPs (fenthion, methamidophos, and dimethoate) [71, 72], contributing to 

elevated ecological risks. 

Seasonal and spatial variations in pesticide concentrations and ecological risks 

may also be attributed to physicochemical properties and application patterns. Most 

OPPs, being highly water-soluble, demonstrate strong migration and transformation 

capabilities in environmental waters through "discharge-redistribution-diffusion" 

processes [73], resulting in minimal spatial distribution variations. Studies on pesticide 

poisoning epidemiology [74] reveal distinct seasonal patterns in OPPs use, with 

increased usage correlating with higher summer and autumn pest pressures [74], 

partially explaining elevated mean ecological risks during autumn and winter (dry 

season).This results in varying ecological risks among pesticides. CAs show higher 

mixed risks in spring (normal season) than in the dry season, likely due to application 

timing, as research indicates seed-period pesticide applications result in significantly 

higher surface water concentrations during spring and autumn compared to summer and 

winter [75]. 

4.2.  Key land use types driving pesticide risk 

The influence of impervious surfaces on pesticide ecological risks surpasses that 

of agricultural land, challenging conventional wisdom. Traditional perspectives 

consider human activities, particularly large-scale intensive agriculture, as primary 
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pesticide contributors [76]. This study reveals that agricultural land's contribution to 

surface water pesticides is less significant than expected, similar to findings from 

neonicotinoid studies in the Yangtze River Basin showing higher pesticide 

concentrations in urban versus rural areas [70]. Similar conclusions were reached by 

Gilliom [77] and Stone [78], indicating that pesticide persistence and surface water 

entry potential largely depend on pesticide type, usage quantity, timing, and soil 

characteristics [35, 79]. Agricultural pesticide usage follows fixed patterns with marked 

seasonal variations, peaking during spring and summer growing seasons compared to 

autumn and winter [80]. Large soil areas retain pesticides, enabling long-term diffusion 

and biochemical interactions with soil organic matter [81, 82], promoting pesticide 

degradation and reducing water contamination. Neonicotinoid compounds, for instance, 

with long soil half-lives (50−545 days) and Koc of 56−225 L/kg, demonstrate high 

leaching potential [83]. 

The emergence of cities as zones of pesticide exposure and ecological risk 

potentially constitutes a global concern [84]. The expansion of urban and residential 

development leads to increased pesticide use in both quantity and variety within public 

facilities [30]. Substantial quantities of diverse pesticides are used in park landscaping, 

roadside vegetation management, residential greening, and non-agricultural 

applications such as disinfection, pest control, and construction materials [85]. 

Research suggests urban pesticide levels may correlate with economic development 

[86]. The rapid expansion of urban landscaping, a crucial component of urban 

development, typically results in increased government investment and consequently 

higher pesticide usage. Compounding the problem, many urban pesticide applicators 

lack professional training. As a result, insecticides are often overused for weed control 

[87]. Unlike seasonal agricultural applications, year-round urban landscaping 

maintenance leads to excessive pesticide use to maintain long-term pest control efficacy. 

Urban pesticide contributions to rivers are linked to urban surfaces and drainage 

systems. High proportions of impervious surfaces lead to rapid surface runoff formation 

with simplified hydrological pathways and minimal transmission losses [88], directing 

pesticides into water bodies or initial rainfall retention facilities [89]. However, many 
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densely populated and rural areas lack proper initial rainfall collection infrastructure, 

ultimately leading to discharge into surface waters. A study [4] reviewing 116 

publications revealed pesticides as the predominant organic compounds in urban 

rainwater, constituting 36.3% of all detected organic substances. Furthermore, even 

when surface runoff reaches treatment facilities, technical limitations prevent urban 

wastewater treatment plants from reducing pesticide concentrations below risk 

thresholds prior to discharge [90, 91], potentially making these facilities point sources 

of pesticide pollution. Urban wastewater treatment plants may even serve as point 

sources of pesticide pollution. 

Additionally, the distribution of pesticides in urban areas is influenced by their 

physicochemical properties; for instance, NEO pesticides easily transfer to surface 

water via runoff or rainfall erosion due to their low volatility and high water solubility 

[92]. Urban surface runoff, typically rich in organic matter [61], facilitates the 

adsorption and transport of hydrophobic and lipophilic pesticides [93], leading to a 

broader spectrum of pesticides originating from urban areas. 

4.3.  Scale-dependent effects and optimal buffer zones for risk management 

The distance of buffer zones directly impacts pesticide migration and 

transformation, consequently affecting water quality and ecological systems [69, 94]. 

Within the buffer zone scale, the critical influence ranges for mixed ecological risks 

extend 2−3 km for cropland and 1−3 km for impervious. Consistent with previous 

findings, Ma et al. [95] found that organic matter content in water bodies significantly 

increased with expanding cropland area within 1 km and 2 km buffer zones. Shi et al. 

[96] conducted a meta-analysis on global landscape changes and water quality, 

concluding that agricultural land exerts the greatest influence on water quality at the 

catchment scale and in buffer zones exceeding 2 km. The critical scale range for 

landscape changes affecting water quality and aquatic ecological risks within 

watersheds is thus 2 km. Research indicates that buffer zones serve crucial functions in 

pollution migration, material cycling, and hydrological regulation [97]. Dense buffer 

zone vegetation captures or slows pollutant transport in runoff, restricting sediment-

bound insecticides from reaching off-site surface waters [69, 98]. The relationship 
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between different landscape structures, ecological conditions, and pesticide risks should 

be carefully considered. Rational land use planning, particularly in buffer zones, 

combined with the controlled use of highly toxic, persistent pesticides within the 

turning point range of buffers, can achieve optimal ecological benefits cost-effectively. 

Sustainable agricultural systems [99] and strategic pesticide use [100], are also key 

components in this process. Previous studies[39] indicate that maintaining or restoring 

natural habitats at the periphery of human activity areas reduces pollution risks, while 

buffer zones can offset production benefits through biodiversity-mediated advantages 

without compromising crop yields. These findings offer valuable insights for rational 

buffer zone planning and watershed ecological protection [23, 101]. 

4.4.  Impact of ecological risk thresholds on urban planning and agricultural 

management 

The proportion of land used for human activities, particularly when cropland 

exceeds 25% or urban areas exceed 30%, substantially influences ecological risks in 

the context of landscape planning. This corresponds with previous findings, including 

those of Eduard et al. [102], which demonstrated a positive correlation between 

agricultural land use and Regulatory Acceptable Concentration exceedances, with the 

frequency of violations increasing when watershed agricultural land use surpasses 28%. 

Source management, encompassing pesticide use restrictions and landscape planning, 

remains paramount in reducing pesticide ecological risks [76]. Voluntarily reducing 

pesticide use while maintaining agricultural productivity and quality of life proves 

challenging. Source management should prioritize land use planning to reduce negative 

impacts on agriculture and production, as land use ratios influence pesticide exposure 

processes, pollution, decomposition, and transformation, resulting in concerning 

exposure scenarios [84]. Lower proportions of human land use correlate with reduced 

ecological risks, potentially linked to landscape complexity. Studies [40] indicate that 

increased landscape complexity promotes biodiversity and natural pest enemy diversity, 

leading to reduced pesticide requirements. Land use planning should maintain 

landscape structural complexity, consistent with Laura et al. [102] findings on 

functional vegetation diversity, considering richness, evenness, and divergence of 
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functional vegetation to enhance ecosystem resilience against pollution. 

Moreover, it's essential to determine critical threshold ranges for agricultural and 

urban land proportions affecting mixed pesticide risks. Identifying key vulnerable areas 

and their extent [76], conducting detailed and frequent field surveys to track 

spatiotemporal variations in pesticide-related environmental risks, and implementing 

targeted mitigation measures can efficiently address complex ecological issues [16, 

103]. The protection of key areas and surface water ecosystems should be maximized 

through strategic planning of agricultural development patterns and locations. 

Furthermore, scientifically organizing land use, adjusting the scale of agricultural 

operations [104], and establishing sustainable agricultural systems [105] represent 

forward-thinking initiatives. It is recommended to establish a comprehensive national 

database for future research, categorizing watersheds by crop types, functional 

vegetation, and land use classifications [76], and to implement online monitoring 

systems for real-time, high-precision tracking of pesticide application and exposure, 

thereby effectively mitigating pesticide impacts. The findings of this study offer 

guidance for future mitigation of aquatic pesticide risks and sustainable agricultural 

system development. 

Urban environmental management requires comprehensive consideration of urban 

distribution, cropland preservation boundaries, ecological planning, and watershed 

management. The strategic arrangement of cropland and urban areas is crucial; 

reducing urban density and agricultural intensification can contribute to more optimal 

land utilization. According to land use sensitivity thresholds, implementing ecological 

buffer zones around agricultural lands enables precise control of pesticide pollution, 

especially buffer zones with functionally diverse vegetation, which more effectively 

enhance landscape ecological functions. This study's findings offer guidance for 

alleviating pesticide risks in urban surface waters and advancing the sustainable 

development of agricultural systems. 

4.5.  Limitation 

The pollution caused by pesticide mixtures represents a global challenge, creating 

complex toxic effects on non-target organisms through mixture exposure. This study 
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focused solely on additive effects, excluding synergistic and other interactions. While 

this study examined buffer zone land use impacts on aquatic pesticide ecological risks, 

future research could explore additional factors such as water catchments, upstream 

environments, river morphology, soil types, and topography. In addition to total 

cropland and urban area proportions, future studies could analyze how patch sizes of 

different land use types in landscape planning influence ecological risks. Notably, this 

study's sampling was limited to two consecutive seasons and water periods, excluding 

flood season data. Future research could examine ecological risk responses to land use 

during periods of heavy rainfall. 

 

5.  Conclusions 

This research presents an innovative analysis of relationships between multi-scale 

land use and pesticide ecological risks, uncovering spatial distribution patterns and 

driving mechanisms in megacity surface waters. The findings demonstrate that urban 

land use surpasses agricultural land in contributing to pesticide ecological risks within 

megacities, exhibiting significant spatial scale-dependent effects. The driving factors of 

pesticide risk highlight the urgent need to address the impact of land use, particularly 

urban land use, on pesticide exposure. Urban green belts, industrial and construction 

areas, residential areas, and farmlands all contribute to pesticide exposure and 

transformation. The identified buffer zone ranges and land use thresholds underscore 

the positive role of vegetated buffer strips around watersheds in mitigating aquatic 

pesticide risks and highlight the necessity of rational urban and agricultural planning. 

To achieve urban sustainability and healthy watershed ecosystem development, land 

use planning and urban ecological construction can be modified according to urban 

development goals, economic circumstances, ecological conditions, and natural 

environmental factors. For instance: (1) expanding forest and grassland coverage within 

buffer zones surrounding areas of intensive pesticide use and high urban density; (2) 

employing climate-smart tools [106] to evaluate interactions between climate change 

and land use, as well as extending buffer zones in regions experiencing intense 

precipitation and high runoff; (3) following organic agriculture-oriented urban 
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development principles, transitioning selected agricultural lands to organic production 

while maintaining crop productivity [15]. This research offers quantitative guidance for 

landscape planning and pesticide risk management. 

Future research directions should include: (1) detailed analysis of pesticide sources, 

transformation processes, and ecological effects in urban environments; (2) 

development of landscape pattern-based pesticide risk early warning models to inform 

urban planning decisions; (3) establishment of long-term monitoring networks to 

evaluate land use change impacts on pesticide risks in the context of climate change.  

 

 

Glossary 

Names Abbreviations 

generalized additive models GAM 

non-parametric change point analysis  nCPA 

Neonicotinoid pesticides  NEOs 

Organophosphate pesticides OPPs 

Triazine pesticides TPs 

Carbamate pesticides CAs 

Toxicity Units  TU 

Predicted no effect concentration PNEC 

Chronic risk thresholds CRT 

Positive matrix factorization PMF 
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Graphical abstract: 

 

 

 

Figure 1 (Color) Sampling locations in Beijing and the spatiotemporal distribution of pesticide 

concentrations (a) Geographical location of Beijing (b) Distribution of land use types in Beijing 

(c) Total pesticide concentration in the dry season (d) Total pesticide concentration in the normal 

season 
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Figure 2 (Color) Characteristics of mixed ecological risk distribution (a) Dry season, (b) Normal 

season 

 

 

Figure 3 (Color) Residual plots of estimated smoothing functions for land use types and mixed risks 

in GAM across multiple scales. Dashed lines indicate the 95% confidence intervals for the estimated 

curves. The vertical bars at the bottom represent the density of data points within the specified range. 

The vertical axis labels for the smoothing functions include the names of the corresponding 

explanatory variables and the edf values (effective degrees of freedom), (a) cropland, dry season, 

(b) impervious, dry season, (c) cropland, normal season, (d) impervious, normal season. For instance, 

s (radius_1000, 1) denotes the smoothing function for arable land and mixed risk with a 1000 m 

buffer, where the edf value is 1. 
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Figure 4 (Color) Frequency counts and cumulative frequencies of change points in mixed risk as 

related to arable and impervious area proportions. The bar chart illustrates frequency counts, and 

the dotted line graph represents cumulative frequencies. 

 

 

Environmental Implication： 

This study reveals that urban land use contributes more significantly to pesticide ecological risks 

than agriculture in megacity surface waters, challenging traditional perspectives. We identified 

critical land use thresholds (10-25% for cropland, 10-30% for urban areas) and buffer zones (2-3km 

for cropland, 1-3km for urban areas) where pesticide risks increase dramatically. These quantitative 

benchmarks provide essential guidance for urban planning and environmental management, 

demonstrating that landscape optimization can effectively reduce pesticide risks in aquatic 

ecosystems, offering a novel approach to pollution control in rapidly urbanizing regions worldwide. 
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Highlights  

⚫ Urban land use surpasses agricultural impacts on pesticide risks in megacity waters 

⚫ Critical buffer zones (1−3 km) identified for land use effects on pesticide risks 

⚫ Land use thresholds (22−25% cropland, 25−30% urban) trigger elevated 

ecological risks 

⚫ Quantitative multi-dimensional model enables landscape-based pesticide 

management 
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