
Ten‐Year Hindcast Assessment of an Improved Probabilistic
Forecast System for Cyanotoxin (Microcystins) Risk Level in
Lake Erie
Qianqian Liu1,2 , Mark D. Rowe3 , Richard P. Stumpf4 , Reagan Errera3, Casey Godwin5 ,
Justin D. Chaffin6 , Eric J. Anderson7 , and Tongyao Pu5

1Department of Physics and Physical Oceanography, University of North Carolina Wilmington, Wilmington, NC, USA,
2Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA, 3Great Lakes
Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, MI, USA, 4National
Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Silver Spring, MD, USA,
5Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA, 6Stone Laboratory and
Ohio Sea Grant, The Ohio State University, Put‐In‐Bay, OH, USA, 7Civil and Environmental Engineering, Colorado
School of Mines, Golden, CO, USA

Abstract Toxic harmful algal blooms produce public health hazards in freshwater systems around the
world. There is a need for forecast systems that can mitigate risk of public exposure to toxins. We improved an
approach to predict the spatially and temporally resolved probability of microcystins (MCs) exceeding a
threshold level (6 μg L− 1) in western Lake Erie. This approach combines a 5‐day chlorophyll‐a forecast model, a
weekly updated regression model predicting MCs from chlorophyll‐a, and an empirical relationship between
predicted MCs and observed probability of MCs exceeding the threshold calibrated over a hindcast period. We
included additional years in the database for calibration and assessment, applied an empirical bias adjustment to
the Moderate Resolution Imaging Spectroradiometer for consistency with Sentinel‐3 satellite imagery, and
applied a robust Siegel regression method. Cross‐validation showed reasonable skill over regions including
surface water, public water system plant intake sites, and bottom waters. The forecast also presented useful skill
when assessed against two intensive sampling events of Microcystis blooms in western Lake Erie in 2018 and
2019. Our results provide a comprehensive assessment of a novel method to forecast MC risk, which may be
recalibrated and applied to other systems affected by toxic cyanobacterial blooms, where a similar relationship
exists between chlorophyll and toxin concentrations at toxin levels relevant to advisory levels.

1. Introduction
Harmful Algal Blooms (HABs) are among the most severe and complex issues threatening coastal ecosystems
worldwide (Feng et al., 2024). The most frequent and severe blooms in freshwater ecosystems are caused by
cyanobacteria. Predicting cyanobacterial HABs (CHABs) and associated toxins accurately is crucial to mitigate
their effects on both the environment and public health. However, the complex association between environ-
mental factors, cyanobacteria population densities and toxin concentrations makes accurate prediction chal-
lenging (Wells et al., 2015; Zahir et al., 2024). Lake Erie, as the most productive, shallow and warm of the
Laurentian Great Lakes of North America (Figure 1), has experienced a re‐occurrence of CHABs since the early
2000s, after a period of eutrophication in the first half of the twentieth century and a period of recovery after the
passage of the Clean Water Act in the 1970s (Davis et al., 2019; De Pinto et al., 1986). In this study, by further
developing a toxin forecast system for Lake Erie, we provide an approach that may be applied to other systems
affected by toxic cyanobacterial blooms.

In Lake Erie, the most severe blooms originate in the shallow western basin, which receives runoff from a large
agricultural watershed through the Maumee River. HABs in Lake Erie are dominated byMicrocystis aeruginosa,
which produces microcystins (MCs), a class of cyclic peptides (Rinta‐Kanto and Konopko et al., 2009; Rinta‐
Kanto and Saxton et al., 2009). MCs are hepatotoxins that can threaten human health through contact with
contaminated water, drinking water, or potentially by inhalation of aerosols (Lad et al., 2022; May et al., 2018;
Olson et al., 2020). In May 2019, the United States Environmental Protection Agency (USEPA) reviewed US
state and international guidelines for advisory levels of MCs in recreational waters; advisory levels ranged from 4
to 20 μg L− 1 in various jurisdictions, and USEPA recommended an advisory level of 8 μg L− 1 for contact and
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recreational use (U.S. EPA, 2019). Meanwhile, the World Health Organization has a revised less stringent, short‐
term contact level of 24 μg L− 1 for recreational water (WHO, 2020). Western Lake Erie is a source of drinking
water to coastal communities. Treatment methods can remove toxins from drinking water, but enhanced treatment
may be needed with increasing toxin levels in source water; a multi‐barrier system is recommended to protect
drinking water from cyanotoxins, including monitoring and early warning systems (He et al., 2016).

Several methods have been used to monitor CHABs in Lake Erie, including satellite imagery, airborne hyper-
spectral imaging, and in‐situ grab samples to quantify CHAB abundance (Boegehold et al., 2023; Kutser, 2009;
Wynne et al., 2022). The sampling program by the National Oceanic and Atmospheric Administration (NOAA)
Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute of Great Lakes
Research (Cooperative Institute for Great Lakes Research (CIGLR)) and in western Lake Erie has been collecting
samples weekly to bi‐weekly at eight western Lake Erie stations (Figure 1) from June to September since 2008,
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Figure 1. (a) Bathymetry of western Lake Erie (in m) and locations of stations sampled by Great Lakes Environmental
Research Laboratory and Cooperative Institute for Great Lakes Research, and (b) Lake Erie Operational Forecast System
(LEOFS) model grid, based on the Finite Volume Community OceanModel (FVCOM), for the western portion of Lake Erie,
and locations of all MC data used to calibrate and assess the forecast system from 2014 to 2023 including the Ohio
Department of Health Beach sites and the public water system intake sites by Ohio EPA. Site A represents the Maumee Bay
State Park (Erie), and site B represents Kelleys Island State Park. The spatial resolution of the LEOFS (FVCOM) grid is
∼2 km in the central basin, 1.5 km in the western basin, and 0.5 km in Maumee Bay and the islands. The inset map in panel
(a) shows the location of western Lake Erie between the US states of Michigan (MI) and Ohio (OH).
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covering the peak growing season for cyanobacteria (https://accession.nodc.noaa.gov/0187718). In addition,
multiple agencies and research groups sample and report MC concentrations (based on the ELISA quantification
method) at additional locations and dates in western Lake Erie (Figure 1).

Forecast models have been used to predict CHABs biomass in Lake Erie, including the statistical forecast of
annual maximum bloom extent using the Maumee River discharge or total bioavailable phosphorus (Stumpf and
Johnson et al., 2016), and the short‐term, 5‐day, Lake Erie HAB Forecast, which predicts HAB position daily over
a 5‐day forecast horizon using a numerical model initialized from satellite imagery (Rowe et al., 2016). NOAA is
currently operating the Lake Erie HAB Forecast driven by currents from the Lake Erie Operational Forecast
System (LEOFS; Kelley et al., 2018) hydrodynamic model and Lagrangian particle dispersion model (Rowe
et al., 2016), which provides information on HAB transport and vertical mixing with buoyancy (formation of
surface scums vs. deep mixing). Recent studies have assessed alternative approaches to short‐term forecasts of
HABs in western Lake Erie (Soontiens et al., 2019; Zhou, Rowe, et al., 2023).

In contrast, few studies have focused on the forecast of HAB‐generated MCs in lakes. Even though cyanobacteria
cells are the source of MCs, predicting MC concentrations associated with HABs is challenging due to the
complex association between cyanobacteria population densities and MC concentrations. Not all strains of
Microcystis carry the full set of genes required to produce MCs (Dick et al., 2021; Yancey et al., 2022), and MC
production among the MC‐producing strains has been suggested to be controlled by interaction among tem-
perature, light levels, nitrogen availability, and environmental variables that induce oxidative stress (Hellweger
et al., 2022). The relationship between MC and chlorophyll‐a concentrations (MC:chla) is complicated by the
varying abundance of MC‐producing species and strains in the phytoplankton community (Chaffin et al., 2021).
Several studies have applied machine learning (Chan et al., 2007; Jiang et al., 2016) or mechanistic models (Bte
Sukarji et al., 2022; Recknagel et al., 2017) to forecast MCs in lakes smaller than Lake Erie, but these methods did
not include a spatial prediction. Spatial prediction is an important component of a Lake Erie forecast owing to the
spatial extent of the lake, multiple locations of interest such as drinking water intakes, and the importance of
transport by currents contributing to risk at specific locations (Rowe et al., 2016; Steffen et al., 2014). Previous
studies did not find satellite‐derived cyanobacterial abundance to be a strong predictor of the spatial distribution
of cyanobacterial toxins (Stumpf and Davis et al., 2016), although more recent studies found improved pre-
dictions of MCs from chlorophyll‐a when regression models were updated with the most recent sampling data,
and when concentration of MCs was near advisory levels (Liu et al., 2020; Qian et al., 2021).

We previously developed an approach to predict the probability of exceeding public health advisory levels of MCs
in Lake Erie's western basin (Liu et al., 2020). This approach (Figure 2) combines satellite‐derived cyanobacterial
biomass index, in‐situ chlorophyll‐a and MC concentration observations, Lake Erie HAB Forecast, and statistical
models. The forecast assumes a constant MC:chla relationship over short‐term (5‐day) periods. Previous studies
have shown that this assumption is weak at low MC and chlorophyll‐a concentrations (i.e., MC < 1.6 μg L− 1,
chlorophyll‐a < 20 μg L− 1), but may hold sufficiently to make valuable predictions at toxin concentrations near
public health advisory levels (Chaffin et al., 2021; Liu et al., 2020). The MC:chla ratio can range from 0.05 to
0.55, but most of the variation occurred at chlorophyll‐a concentrations less than 20 μg L− 1 (Chaffin et al., 2021),
therefore, a sample with a high MC:chla ratio and low chlorophyll‐a concentration has a low probability of
exceeding 6 μg L− 1. The final product of the system developed by Liu et al. (2020) was the probability of MC
concentration exceeding the toxin threshold, based on an exceedance probability model trained over a limited
period of time from 2014 to 2016. With the accumulation of observations, there is a need to extend the training
dataset to more recent years, adjust for bias between different satellite periods of record, assess alternative MC:
chla regression methods, and revise the exceedance probability function to reduce bias.

The forecast was calibrated using a multi‐year hindcast period, requiring consistent satellite data. However,
various satellites, including the Medium Resolution Imaging Spectrometer (MERIS) from 2002 to 2011 (Rowe
et al., 2016; Wynne & Stumpf, 2015), Moderate Resolution Imaging Spectroradiometer (MODIS) from 2012 to
2016, and Sentinel‐3 with Ocean Land Color Instrument (OLCI) sensor from 2017 to the present, have been used
to detect HABs in Lake Erie. After MERIS was discontinued in 2012, MODIS sensors, while noisy and less
sensitive, were the only suitable option (Wynne et al., 2013) until OLCI. To ensure consistency between different
satellite data, empirical bias adjustment is needed for MODIS data (with details shown in the Supporting
Information S1).
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In this study, we enhanced the probabilistic MC forecast by extending the training dataset to cover 2014 to 2023,
testing different regression methods, bias‐adjusting MODIS data used, and revising the exceedance probability.
We also offered a more comprehensive assessment of the MC risk forecast in Lake Erie, an approach that may
apply to other regions affected by HABs after recalibration with local data.

2. Materials and Methods
2.1. Predictive Model

The probabilistic MC forecast system for Lake Erie (Liu et al., 2020) produces the probability of the MC con-
centration exceeding a threshold concentration of MCs in the western basin of Lake Erie (Figure 2). The system
builds on the Lake Erie HAB Forecast system (M1 in Figure 2) to predict the CHAB chlorophyll‐a concentration
and movement (D1), initialized from satellite‐derived CHAB concentration. The satellite‐derived CHAB con-
centration was from MODIS imagery from 2014 to 2016 and OLCI imagery during and after 2017. Future
forecast applications will use OLCI. Potential bias would be introduced in D1 by calibrating the model using
MODIS for part of the calibration hindcast period and making forecasts using OLCI. To bias‐adjust MODIS for
consistency with OLCI images, we used paired MODIS and OLCI images on the same days in 2017 to develop a
regression model (a hockey stick relationship) relating cyanobcaterial index (CI) by MODIS (CIMODIS) to CI by
OLCI (CIOLCI). The regression model generated by the comparison was used to bias‐adjust MODIS for the
initialization of HAB Forecast runs during the training years. Please see the Supporting Information S1 for
detailed information about the generation of the hockey stick relationship.

The predicted CHAB chlorophyll‐a concentration is then converted into MC concentration (D2) through a
regression model (M2). The original forecast system (Liu et al., 2020) employed a least squares linear regression
of MC concentration on chlorophyll‐a concentration, using observations from the most recent sampling event
(M2 in Figure 2). By updating the MC:chla relationship weekly, the model accounts for the varying toxin content
of the phytoplankton community (Chaffin et al., 2021; Liu et al., 2020; Qian et al., 2021). The number of paired

Figure 2. The structure of the probabilistic toxin forecast model, modified from Liu et al. (2020). The Lake Erie Operational
Forecast System provides forecasted currents and vertical turbulent diffusivity in Lake Erie. Model components (M1,2,3)
and model‐produced data (D1,2) are labeled for reference in the text.
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samples of MC and chlorophyll‐a varies throughout the season due to the sampling program; the average number
of pairs is 10 per week. To enhance the model, we employed a “robust” Siegel Regression technique using the R
package RobustLinearReg (R Core Team, 2021; Theil, 1992). The Siegel regression method is based on the
median of slopes between all data pairs. In contrast with the least squares linear regression, Siegel regression is
less sensitive to outliers. In our assessments, Siegel regression produced slightly greater overall skill than the
similar Thiel‐Sen regression method, and was less sensitive to outliers than least squares regression. For brevity,
we only report results for Siegel regression.

Uncertainties introduced by M1 and M2 in Figure 2 are expressed as probability (D3) through a statistical model
(M3), which is based on modeled and observed MC matchups from a hindcast period. For the hindcast assess-
ment, we used an extensive data set of MC observations from multiple agencies and researchers, covering all
HAB‐affected areas of Lake Erie (Figure 1). To reduce bias introduced by assuming probability approaches unity
at high predictedMC values (Liu et al., 2020; their Figure 11), we replaced the polynomial fit in M3 in the original
forecast system with a spline fit using the R‐package smooth.spline. We further assumed that the probability does
not increase beyond that of the highest binned interval at higher predictedMC values for which observations were
too limited to calculate a proportion.

2.2. In‐Situ Observations

To develop the MC:chla regression (Figure 2, M2), we used paired observations of MCs and chlorophyll‐a (from
the same grab sample) from weekly to bi‐weekly water samples collected at eight stations by GLERL‐CIGLR
(Figure 1; https://accession.nodc.noaa.gov/0187718). The GLERL‐CIGLR dataset has produced the longest‐
running record of paired MC and chlorophyll‐a concentrations (since 2008), whereas the other data sources
listed in Figure 1 only began to measure both chlorophyll‐a and MCs more recently (since ∼2013). Samples were
collected at the surface and bottom, and analyzed using the methods provided in Boegehold et al. (2023). We used
surface and bottom samples in our analysis, in contrast to the use of surface samples only by Liu et al. (2020). For
assessment of the MC forecast and development of the probability function (Figure 2; M3), we used observations
of MC toxin concentrations from multiple agencies and researchers, including GLERL‐CIGLR weekly sampling,
Ohio EPA, Ohio State University Stone Lab, Stone Lab Charter boat captain sampling program, and the United
State Geological Survey. In addition, we obtained beach monitoring data from the Ohio Department of Health
(ODH) (Maumee Bay and Kelley's Island State Parks). To obtain spatially detailed measurements of HABs and
MC concentration in Lake Erie on two days, a binational collaboration by the USA and Canada conducted two
intensive “HABs Grab” sampling events of Microcystis blooms in the western basin of Lake Erie on 9 August
2018 and 7 August 2019 (Chaffin et al., 2021). The program collected 100 and 172 grab samples within a 6‐hour
window in 2018 and 2019, respectively, and analyzed MC concentrations using the ELISA method (Chaffin
et al., 2021). Due to the high spatial resolution, the HABs Grab locations are not shown in Figure 2b, and will be
shown in the corresponding assessment figure. Because the detection limit and the reporting limit varied across
samples and data sources (ranging from 0.10 to 0.30 μg L− 1), we replaced below detection results (coded as “bdl”,
“nd”, or “<” in the original dataset) with 0 in the regression for step M2 and in skill assessment. The GLERL‐
CIGLR program reported particulate and dissolved MCs separately, which we combined to represent total
MCs for use in calibration and assessment. Dissolved MCs were typically a small proportion of total MCs when
MC concentrations were near the advisory level (Liu et al., 2020). All other programs reported total MCs
(particulate and dissolved combined).

2.3. Model Skill Statistics

To assess the skill of the Lake Erie HAB Forecast (M1), the following metrics for binary prediction of HAB/no‐
HAB events (cyanobacterial chlorophyll‐a >23 μg L− 1 or not) were used (Rowe et al., 2016): (a) rate of accurate
HAB occurrence, a/(a + c) , and rate of accurate no‐HAB prediction, d/(b + d) , where a represents correctly
predicted events (hits); b represents false events (false positive); c represents false negatives (misses), and d
represents correct nonevents. (b) Pierce skill score (PSS) gives the hit rate minus the false positive rate:
PSS = (ad − bc)/((b + d)(a + c)). Pierce skill score values range from − 1.0 to 1.0, with positive values
indicating that the hit rate is greater than the false positive rate, therefore the model has greater skill than a random
forecast or constant HAB or no‐HAB prediction (Hogan & Mason, 2012).
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As a benchmark for HAB Forecast skill calculation, we made a “persistence” forecast in which chlorophyll
concentrations were unchanged from the satellite image that was used to initialize the model, which represents the
best available information to a forecast user in the absence of a useful model (Rowe et al., 2016). The difference in
PSS between the HAB Forecast model and the persistence forecast (PSS model—PSS persistence) was used to
test whether the HAB Forecast model had greater skill than the benchmark persistence forecast.

We carried out K‐fold cross‐validation (Geisser, 1975; Stone, 1974) to assess the skill of the forecast system. The
data set comprises 10 years (2014–2023) of hindcasts, and corresponding observations. In cross‐validation the
data were divided into 10 subsets, each consisting of a single year of data, and for each subset the spline fit was
calibrated based on data from the other nine subsets (years) so that the leave‐out subset was not used in (or
autocorrelated within) the calibration. The model was tested against the leave‐out subset by matching a predicted
probability of exceeding the MC threshold with each in‐lake observation of MC concentration at the location,
time, and depth of the observation. This procedure generated nine leave‐out validation datasets (one for each
year). Considering the strong interannual variability in HABs, we combined the 9 leave‐out datasets to produce
the skill metrics across all years. We refer to this method as “leave‐out‐one‐year cross‐validation.” We used the
reliability diagram to assess the skill of the toxin forecast system. The reliability diagram was created by binning
the paired predictions and observations within ranges of predicted probability of exceeding the MC threshold on
the x‐axis, then the proportion of observed MC concentrations exceeding the threshold value was calculated for
each bin, and plotted on the y‐axis, with a binomial confidence interval. The reliability diagram can tell the user
how closely the forecast probability corresponds to the actual chance of observing the event (Hartmann
et al., 2002). Using the same data set as the reliability diagram, the interpretation of model skill was further
visualized using a box and whisker plot, visualizing the distribution of the observed toxin concentrations against
binned intervals of the forecast probability.

3. Results
3.1. Application of MODIS‐OLCI Conversion Formula

We applied a hockey stick relationship to CIMODIS imagery to avoid bias introduced by the transition from
MODIS to OLCI imagery in M1. For detailed information, please see the Supporting Information S1. The skill of
the Lake Erie HAB Forecast initialized with MODIS imagery was improved after bias‐adjustment of MODIS
imagery. Without bias adjustment, the Lake Erie HAB Forecast often performed worse than persistence (PSS < 0)

Figure 3. Pierce Skill Score (PSS) model—PSS persistence for (a) the Harmful Algal Blooms (HABs) Forecast initialized
from original Moderate Resolution Imaging Spectroradiometer (MODIS) images, and (b) the HAB Forecast initialized from
adjustedMODIS images. Positive values indicate that HAB Forecast has greater skill than the persistence forecast. Error bars
represent the 95% bootstrap confidence interval on the difference in PSS for hindcast simulations.
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(Figure 3a). With the bias adjustment, the model was always more accurate than the persistence forecast (PSS > 0,
Figure 3b).

Having applied the MODIS bias adjustment to the hindcast years, replaced the linear regression in M2 with the
more robust Siegel regression method, and included the additional years from 2017 to 2023, we updated the
modeled and observed MC matchups and generated a spline fit to the observed proportion of observations
exceeding 6 μg L− 1 MCs over binned intervals of predicted toxin concentration (Figure 4). We assumed that the
probability of exceeding the MC threshold was equal to the proportion exceeding the threshold in the highest
binned interval for which sufficient observations were available to calculate the proportion (horizontal straight‐
line extension of the orange spline fit at high predicted MCs, >40 μg/L, in Figure 4). This assumption was
necessary because observations become increasingly rare as MC concentrations increase. The spline fit function
served as M3 (Figure 2) when running the forecast.

The results of the leave‐out‐one‐year cross‐validation are shown in Figure 5. The forecast system's reliability is
high for forecast days 0–2 (Figure 5b), and decreases slightly for days 3–5 (Figure 5d). This is because, with the
increase of forecast horizon, the assumption that the MC:chla relationship remains constant during the forecast
period becomes weaker, leading to reduced model performance. Additionally, the increased uncertainties inherent
in the HAB forecast system also weaken the model's performance as forecast horizon increases. Confidence
intervals of the observed proportion exceeding the MC threshold include the 1:1 line in most cases, indicating
little bias in the forecast. The positive slopes of the quantile regression lines in the whisker plots (Figures 5a and
5c) show that with increasing forecast probability, the fraction of observed toxin concentration exceeding the
threshold increases, indicating forecast skill.

While the probability function in Figure 4 was calibrated for the threshold MC concentration of 6 μg L− 1, the data
in Figure 5 can be used to define the observed probability of exceeding other threshold concentrations, including
the public health advisory level of 8 μg L− 1. Although the analytical precision of the ELISA method may be

Figure 4. Proportion of observed MCs exceeding the 6 μg L− 1 threshold for binned intervals of predicted MCs (symbol) with
95% binomial confidence interval (vertical gray lines). The rug on the horizontal axis indicates the locations of predicted MC
values. Spline fit (line) used to predict the probability of exceeding 6 μg L− 1MCs (M3 in Figure 2) frommodel‐predictedMC
concentration.
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insufficient to resolve the difference between 6 and 8 μg L− 1 MC concentrations (Qian et al., 2015), for the
purpose of presenting the forecast to the public, we defined four MC risk levels, with the quantified probability of
exceeding 6 and 8 μg L− 1 levels because these levels were former or current advisory levels. In Table 1, we
summarized the proportion of observed toxins exceeding 6 μg L− 1 (the Ohio advisory level before 2019) and
8 μg L− 1 (the USEPA recommended advisory level in 2019) for MC risk levels using 2014–2023 dataset. We
defined the bounds of the risk level categories so that the low risk category had an observed proportion exceeding
6 and 8 μg L− 1 < 0.1, and the higher risk categories had sufficient observations to provide non‐overlapping
confidence intervals, with the exception that the medium and high risk categories have effectively the same
proportion exceeding 8 μg L− 1.

In Figure 6, we further examined the model's skill for various locations of interest to stakeholder groups, including
the PWS plant intake sites in Figure 1b (Figures 6a and 6b), bottom water samples (Figures 6c and 6d), and ODH

Figure 5. Model skill for data outside the calibration set, based on the 10‐fold leave‐out‐one‐year cross‐validation hindcast
assessment for the period of 2014–2023 using whisker plots (a), (c) and reliability diagrams (b), (d) for nearer‐term forecasts
(day 0–2) and longer‐term forecasts (day 3–5). Forecast probabilities are plotted at eight quantiles of all predictions for which
sample data are available. The boxes in the whisker plots represent the interquartile ranges with the middle line representing
the median, the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from
the box, and values beyond the whiskers are plotted as symbols (circles). The horizontal dashed line represents the threshold
MC concentration of 6 μg L− 1. The colored lines (tau) represent the quantile regressions. The gray bars in the reliability
diagrams indicate the 95% binomial confidence interval on the estimate of the proportion, and the numbers next to the
Gy bars represent the numbers of samples used in each probability bin. In a perfect forecast, points would fall on the 1:1 line
of the reliability diagram.

Table 1
The Binned Intervals of Forecast Probability Used to Define MC Risk Levels With the Observed Proportion of Grab‐Sample Observations Exceeding the Threshold MC
Levels of 6 and 8 μg L− 1 for 2014–2023 Dataset

Forecast probability bin range (based on 6 μg L− 1) MC risk level Obs. Proportion exceeding 6 μg L− 1 Obs. Proportion exceeding 8 μg L− 1

0–0.099 Low 0.014 (0.012–0.016) 0.0092 (0.0076–0.011)

0.099–0.23 Medium‐low 0.17 (0.14–0.20) 0.16 (0.14–0.19)

0.23–0.33 Medium‐high 0.31 (0.26–0.37) 0.35 (0.29–0.41)

0.33–1.0 High 0.46 (0.40–0.52) 0.31 (0.22–0.42)

Note. The fractions inside the parentheses represent the 95% binomial confidence intervals of the proportion.
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Beach data (Figures 6e and 6f) for forecast days 0–5. The forecast system has good reliability for the PWS sites
and bottom waters. However, for the beach sites the predicted probability was considerably lower than the
observed proportion exceeding the MC threshold.

3.2. Hindcast Assessment Using Intensive Sampling Dates

We ran hindcast simulations for the intensive HABs Grab field sampling dates in 2018 and 2019, utilizing Siegel
regression models for the most recent GLERL‐CIGLR sampling dates preceding the 2018 and 2019 intensive
sampling dates (Figure 7). MaximumMC and chlorophyll‐a concentrations were lower on the intensive sampling
date in 2018 (maximum observed concentrations were 6.38, 75.20 μg L− 1, respectively) than in 2019 (maximum
observed concentrations were 45.56, 196.16 μg L− 1, respectively). Figures 8a and 8b show the modeled
chlorophyll‐a concentration and the MC risk levels for the 2019 intensive sampling date. In the hindcast simu-
lation, the HAB forecast was initialized from a satellite image on the same day and MC:chla regression was from
2 days prior. The model‐predicted HAB area showed reasonable agreement with HAB area indicated by in‐situ
observations, with some disagreement occurring due to the mismatch between satellite‐predicted and observed
chlorophyll‐a (Figure 8a). The observed MC concentrations greater than 6 μg L− 1 were associated with higher
MC risk levels, indicating a potentially useful forecast (Figure 8b).

Figure 6. Box and whisker plots and reliability diagrams to examine the forecast system's skill for the (a), (b) Public water
system intake sites, (c), (d) All bottom water samples from Figure 1b stations including the United State Geological Survey
station and Lakes Environmental Research Laboratory‐Cooperative Institute for Great Lakes Research stations, and (e),
(f) Ohio Department of Health Beach data for forecast days 0–5. The forecast probability ranges from 0.0 to 1.0, representing
0%–100% probability.
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To examine the sensitivity of the MC forecast to the HAB forecast initialization date, we carried out another
hindcast for the 2019 HABs Grab date initialized from a satellite image 4 days prior (Figures 8c and 8d). The
longer forecast horizon led to less agreement between the observed and modeled HAB area. Most (80%) of the
MC concentrations exceeding 6 μg L− 1 were associated with high and medium‐highMC risk levels, indicating the
forecast still has skill.

On the 2018 intensive sampling date, both modeled and observed chlorophyll concentrations were relatively low
(Figures 8e and 8f). The model hindcast probability of exceeding 6 μg L− 1 was low for all stations (100%).
Consistent with the low predicted probability of exceedance, the observations showed that only one station close
to Port Clinton, OH had MCs exceeding 6 μg L− 1.

To illustrate how a user of the forecast could reduce their risk of MC exposure, we conducted a comparative
analysis of the likelihood of encountering toxin levels exceeding 8 μg L− 1. The analysis compares a scenario in
which the user avoided elevated risk areas of the lake identified by the forecast, in comparison to a scenario in
which the user had no forecast risk information, and therefore was equally likely to encounter any of the MC
observations on that date. To estimate the relative risk for each scenario, we calculated the proportion of HABs
Grab observations >8 μg L− 1 in areas identified as lower risk by the forecast compared to the proportion
>8 μg L− 1 in the full HABs Grab data set on a given date. If a user chose to avoid the two highest risk categories
(orange and red regions of the forecast map) according to the forecast initiated on 2019‐08‐07, their observed
frequency of encountering MC concentration >8 μg L− 1 would decrease from 15.4% to 0% (Figures 8a and 8b).
By applying the same criteria to the less accurate forecast initiated 4 days earlier, the user's observed frequency of
encountering MC concentrations >8 μg L− 1 would drop from 14.7% to 4.2% (Figures 8c and 8d). Applying the
same criterion to the 2018 forecast initiated 4 days in advance, the user would feel free to use all of Lake Erie, and
the observed frequency of encountering MC concentrations >8 μg L− 1 was 0% (same as observation) (Figures 8e
and 8f).

If a user chose to avoid the three highest risk categories, using the forecast initiated on 7 August 2019, the user
would reduce their frequency of encountering MC concentrations >8 μg L− 1 from 15.4% to 0% (Figures 8a and
8b). Using the same criteria applied to the less accurate forecast initiated 4 days earlier, the user would reduce
their frequency of encountering MC concentrations >8 μg L− 1 from 14.7% to 0% (Figures 8c and 8d). Applying
the same criterion to the 2018 forecast initiated 4 days in advance, the user could visit all of Lake Erie, and the
observed frequency of encountering MC concentrations >8 μg L− 1 was 0% (same as observation) (Figures 8e
and 8f).

Figure 7. Siegel regression between chlorophyll‐a and MCs for the most recent Great Lakes Environmental Research
Laboratory‐Cooperative Institute for Great Lakes Research sampling dates over the western basin of Lake Erie preceding
2018 (a) and 2019 (b) intensive sampling dates (Figure 8), collected on 30 July 2018 and 5 August 2019, respectively.
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4. Discussion
Our novel approach combines remote sensing, water quality sampling, hydrodynamic forecasting, and a
Lagrangian particle dispersion model, to predict the probability of MC exceeding a threshold value. In com-
parison to our previous approach (Liu et al., 2020), we expanded the hindcast period to cover 2014 to 2023, and
improved the model skill and calibration by including bias adjustment of the satellite imagery over the hindcast
period, replacing the linear regression between chlorophyll and MCs by a more robust Siegel regression model,
and by applying a spline fit to provide a function to relate the probability of exceeding an MC threshold value to
model‐predicted MC concentration. We also conducted a more rigorous skill assessment of the forecast system
using leave‐out‐one‐year cross‐validation over a 10‐year hindcast period, and two intensive sampling dates in
2018 and 2019, highlighting our system's potential application to reduce a user's risk of exposure to MC toxins in
Lake Erie. In addition, our assessment showed a useful level of skill for surface water, PWS intake sites, and
bottom water where PWS intakes are usually located, in contrast to the forecast system of Liu et al. (2020), which
was calibrated and assessed using surface observations only. Because the relationship between model‐predicted
MCs and the probability of exceeding the threshold MC concentration in grab samples (Figure 4) incorporates

Figure 8. The model predicted chlorophyll concentrations and probability of MCs exceeding 6 μg L− 1 for (a)‐(d) 2019, and
(e)‐(f) 2018 intensive sampling dates in August. Colored dots in subplots (a), (c) and (e) represent 2019 in‐situ chlorophyll
concentration observations; triangles in (b), (d) and (f) represent stations with observed MCs exceeding 6 μg L− 1, and dots
represent stations with observed MCs ≤ 6 μg L− 1. In (a) and (b), the Harmful Algal Blooms (HABs) forecast was initialized
from a satellite image on the same day and MC:chla regression from two days prior; in (c) and (d), the HAB forecast was
initialized from a satellite 4 days prior and MC:chla regression from 10 days prior; (e) and (f) are for the 2018 intensive
sampling date, and the HAB forecast was initialized from satellite image 4 days prior and MC:chla regression was from 11
days prior.
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uncertainty in model‐predicted chlorophyll‐a concentrations, the natural variability in the MC:chla relationship,
and the spatial scale mismatch between modeled or satellite‐derived values (∼km) and grab samples (<1 m), the
maximum probability of exceedance the model can predict is ∼0.6. This limitation reflects the reality that it is not
currently possible to predict MC threshold exceedances with absolute certainty. The forecast cannot be recom-
mended for ODH Beach sites due to bias revealed in the assessment. Although the number of observations and
sites were limited for the beach data, the bias may result from a different sampling methodology in the beach
program, versus open water sampling programs, or mechanisms of localized concentration of Microcystis col-
onies in downwind beach areas not represented in the model.

Our method relies on MCs and chlorophyll‐a data from grab samples collected in Lake Erie, which we used to
develop a weekly updated regression of MC on chlorophyll‐a. Past research has shown that the MC:chla ratio
decreases throughout the bloom season (Gobler et al., 2016), which is likely due to an interaction between ni-
trogen availability, oxidative stress, and a shift in theMicrocystis gene pool from strains that can produce MCs to
strains that cannot (Hellweger et al., 2022; Paerl and Otten, 2013; Yancey et al., 2022). While the MC:chla
appears to decrease throughout the bloom season every summer, the maximum ratio and rate of decrease varies
from year to year (Gobler et al., 2016; Liu et al., 2020). For example, MC:chla was 0.31–0.4 in late July and early
August 2014 whereas the ratio was less than 0.15 during the same time period in 2015 (Liu et al., 2020). While the
MC:chla relationship varies over time, our skill assessment shows that skillful predictions can be made by
updating the MC:chla relationship using weekly monitoring data. A limitation of our approach is that the forecast
relies on monitoring locations that are representative of MC levels found in the bloom. For example, if a toxic
bloom formed in an area not covered by the monitoring stations, the forecast would likely have little skill. An
additional limitation is that MC levels can increase rapidly when a toxic bloom initiates (Liu et al., 2020), and
weekly updating of the MC:chla relationship may not be sufficiently frequent to capture these cases. However,
since our skill assessment covered the full HAB season, a 10‐year period, and the spatial area in which HABs
typically occur in Lake Erie, these limitations should be represented in probabilities of exceedance associated
with the risk levels (Table 1). Greater spatial and temporal coverage of monitoring would likely improve the skill
of our forecast and reduce the uncertainty of predictions.

Zhou, Chaffin, et al. (2023) assessed spatial‐temporal forecasts of MCs in Lake Erie using a method similar to
ours, but with key differences. Zhou, Chaffin, et al. (2023) initialized their model with spatial maps of MC
concentrations interpolated from grab‐sample observations from the same data sources we used, while we
initialized our model with satellite‐derived cyanobacterial chlorophyll‐a and an MC:chla regression updated
weekly based on observations. In addition, Zhou, Chaffin, et al. (2023) used an Eulerian tracer model (Zhou,
Rowe, et al., 2023) and incorporated measured rates of MC production (Chaffin et al., 2022), and the incorpo-
ration of MC production rates improved model accuracy by 10% compared to models without MC production
rates, especially at higher MC concentrations. While some of these features could be assessed in future versions of
our method, we chose to assess a forecast based on input data that are already being routinely produced by NOAA,
specifically, the satellite‐derived cyanobacterial index imagery, a Lagrangian‐based HAB forecast, and weekly
paired samples of chlorophyll‐a and MCs. Information on the rate of production of MC (Zhou, Chaffin,
et al., 2023), or information on genes associated with MC production (Dick et al., 2021) could be considered for
incorporation into future versions of a forecast.

The strategy of using a “dual” model strategy–satellite for chlorophyll and field data for conversion of chlorophyll
to MC–allows the method to be adaptable to other areas. The satellite‐based cyanobacteria determination is used
in the Cyanobacterial Assessment Network, a U.S. national monitoring program for nearly 2000 large lakes
(Schaeffer et al., 2022). Accordingly, our approach has the potential to be applied to other systems suffering from
HABs, where a strong correlation between chlorophyll and MC concentrations exists at toxin levels relevant to
advisory levels. For example, Izydorczyk et al. (2009) found a positive correlation between the chlorophyll‐a
concentration from cyanobacteria and the concentration of intracellular MCs in the drinking water intake point
at the Bronislawow Bay in Sulejow Reservoir (Poland), which makes the measurement of chlorophyll‐a con-
centration an effective early warning system for cyanobacteria in that particular region. Sakai et al. (2013) found
that the occurrence and distribution of MCs in Lake Taihu, the third largest lake in China, is highly correlated with
chlorophyll‐a concentration. Hayes and Vanni (2018) found the studied lakes and reservoirs in Ohio, which have
small watershed areas relative to lake surface areas, had elevated MC concentrations when phytoplankton
biomass was high. While further research into the biological mechanisms of HAB species composition and MC

Water Resources Research 10.1029/2024WR038952

LIU ET AL. 12 of 14

 19447973, 2025, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038952 by N

anjing Institution O
f G

eo &
 L

im
nology, W

iley O
nline L

ibrary on [27/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



production may improve MC prediction, our approach provides a framework for MC forecasting that may be
applicable across systems with sufficient observational data.

Data Availability Statement
Software used: R 4.2.2.

Data availability: the scripts for toxin forecast and model assessment, and example data are published on Zenodo
(Great Lakes Environmental Research Laboratory, 2024; https://doi.org/10.5281/zenodo.13685470).
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