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ABSTRACT
Aquatic and terrestrial ecosystems are linked through the reciprocal exchange of materials and organisms. Aquatic-to-terrestrial 
subsidies are relatively small in most terrestrial ecosystems, but they can provide high contents of limiting resources that in-
crease consumer fitness and ecosystem production. However, they also may carry significant contaminant loads, particularly in 
anthropogenically impacted watersheds. Global change processes, including land use change, climate change and biodiversity 
declines, are altering the quantity and quality of aquatic subsidies, potentially shifting the balance of costs and benefits of aquatic 
subsidies for terrestrial consumers. Many global change processes interact and impact both the bright and dark sides of aquatic 
subsidies simultaneously, highlighting the need for future integrative research that bridges ecosystem as well as disciplinary 
boundaries. We identify key research priorities, including increased quantification of the spatiotemporal variability in aquatic 
subsidies across a range of ecosystems, greater understanding of the landscape-scale extent of aquatic subsidy impacts and deeper 
exploration of the relative costs and benefits of aquatic subsidies for consumers.

1   |   Introduction

Aquatic and terrestrial ecosystems are intimately linked 
through reciprocal fluxes of dietary energy and materials 
(Nakano and Murakami  2001; Baxter et  al.  2005; Marleau 
et  al.  2020; Little et  al.  2022). Terrestrial ecosystems have 

long been considered important sources of nutrients, organic 
matter and contaminants to aquatic ecosystems (Fisher and 
Likens  1973; Junk et  al.  1989; Likens and Bormann  1974). 
Because of the concave shape and lower position of aquatic 
ecosystems in the landscape (Leroux and Loreau  2008), ter-
restrial subsidies concentrate in aquatic ecosystems and they 
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are often on the same order of magnitude as aquatic primary 
production (Gounand et  al.  2018). Subsidies from aquatic to 
terrestrial ecosystems move against this gravitational gradient 
via seasonal flooding, animal emergence and direct transport 
by terrestrial consumers (Junk et al. 1989; Quinn et al. 2009). 
Aquatic-to-terrestrial subsidies are sparser, around 2–3 or-
ders of magnitude smaller than rates of terrestrial production 
(Gounand et al. 2018). However, both aquatic and terrestrial 
consumers use allochthonous resources at similar rates (Allen 
et al. 2024). This difference in the relative magnitude versus 
assimilation of aquatic vs. terrestrial subsidies may be because 
aquatic subsidies are generally of relatively higher quality 
(Harvey et al. 2023; Pichon et al. 2023; Závorka et al. 2023), 
which can offset asymmetries in resource quantity and lead to 
spatial complementarity at the meta-ecosystem scale (Pichon 
et al. 2023).

Aquatic subsidies are often rich in elemental nutrients that 
can be limiting for terrestrial consumers (Twining et al. 2019; 
Figure 1). Moreover, physiologically important omega-3 long-
chain polyunsaturated fatty acids (n-3 LC-PUFA), which are 
virtually absent in terrestrial primary producers, are often 
abundant in aquatic food webs (Twining, Brenna, Hairston 
Jr, and Flecker 2016; Twining, Brenna, Lawrence, et al. 2016). 
However, aquatic ecosystems can also be a significant source 
of contaminants transferred to land, often referred to as the 
‘dark side’ of resource subsidies (Walters et al. 2008; Figure 1). 
Aquatic ecosystems aggregate a range of contaminants from 
across watersheds, including both organic and inorganic con-
taminants (Schmidt et  al.  2012; Drenner et  al.  2013; Bishop 
et  al.  2020; Smalling et  al.  2021; Waite et  al.  2021; Nowell 
et al. 2024). In some cases, contaminants reduce aquatic bio-
mass and thus aquatic-to-terrestrial fluxes (Kraus, Schmidt, 
and Walters 2014; Kraus et al. 2020). In other cases, aquatic 
consumers, from insects to fish to amphibians, can end up 

transporting contaminants back to land in often more concen-
trated, organic forms linked with potentially limiting nutri-
ents that can be readily assimilated by terrestrial consumers 
(Vander Zanden and Sanzone  2004; Walters et  al.  2008; 
Drenner et  al.  2022). Riparian and coastal zones are often 
hotspots of consumer foraging, facilitating the consumption 
and transfer of aquatic subsidies and associated contami-
nants farther inland than they would reach through abiotic 
vectors alone (e.g., Raikow et  al.  2011; Gerber et  al.  2023). 
Consequently, aquatic subsidies can play outsized positive 
as well as negative roles in ecosystem function, even when 
relatively small in magnitude (Marcarelli et al. 2011; Bartels 
et al. 2012).

Global change processes are increasingly shifting the bal-
ance of aquatic resource quantity and quality in a myriad 
of ways. Land use changes can increase inputs of sediment, 
nutrients and contaminants from terrestrial to aquatic eco-
systems, which can decrease the quantity of aquatic-to-
terrestrial subsidies while also changing their quality (Larsen 
et  al.  2016; Kraus, Walters, et  al.  2014). Climate change can 
increase temperatures and alter hydrological regimes (Häder 
and Barnes 2019), which may foster conditions that increase 
contaminant loads (Hall, Cobb, et  al.  2020; Hall, Woo, 
et al. 2020), while also altering the phenology of both aquatic 
and terrestrial consumers (Shipley et  al.  2022). Biodiversity 
loss can lead to declines in native species and changes in com-
munity composition (Rumschlag et al. 2023) that can lead to 
loss of biomass and functional trait diversity of aquatic subsi-
dies and alter the ratio of nutrients to contaminants (Brandt 
et  al.  2024). Together, these processes can shift the relative 
cost: benefit ratio of aquatic subsidies for consumers, which 
may lead to riparian and coastal habitats becoming ecological 
traps for consumers who rely upon aquatic subsidies only to 
find them increasingly laden with contaminants.

FIGURE 1    |    Terrestrial inputs of organic matter and nutrients to aquatic ecosystems can fuel aquatic primary production, including the produc-
tion of limiting resources such as omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). Aquatic ecosystems also can accumulate contam-
inants from the watershed, which may be further transformed by aquatic ecosystem processes (e.g., mercury methylation). Primary and secondary 
consumers may assimilate both resources and contaminants in aquatic ecosystems and transport them back to the terrestrial ecosystem through 
biotic and abiotic pathways. These aquatic-terrestrial subsidies can provide both critical resources (‘bright side’) and contaminants (‘dark side’) for 
terrestrial consumers such as birds, mammals, or arthropods like spiders and eventually humans.
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Here, we review the state of research on aquatic-to-terrestrial 
subsidies with a focus on several key processes that trans-
form the quality of resources within freshwater ecosystems 
(Figure 1). First, we highlight multiple aspects of aquatic re-
sources, from algae to animals, that make them particularly 
high quality for a diversity of consumers—the ‘bright side’ 
of resource subsidies. We then synthesise research on the 
‘dark side’ of aquatic-to-terrestrial subsidies, explaining how 
freshwater ecosystems can simultaneously serve as sources of 
harmful compounds. Finally, we discuss how global change is 
altering key transformative processes that occur within water 
and influence the quantity and quality of subsidies. We end 
by highlighting the benefits of greater integration between 
basic food web ecology research on the bright side of subsidies 
with more applied ecotoxicology research on the dark side of 
subsidies.

2   |   The Bright Side of Subsidies

2.1   |   Dietary Energy

Aquatic ecosystems, from lakes and ponds to rivers and 
streams, can be important sources of dietary energy that sub-
sidise primary producers as well as consumers in adjacent ter-
restrial food webs (Naiman et al. 2002; Schindler et al. 2003; 
Baxter et al. 2005; Figure 1). Differences in the phenological 
timing of subsidies, and their quantity (e.g., biomass) and 
quality (e.g., nutrient or contaminant content), can signifi-
cantly impact how subsidies influence production in recipient 
ecosystems (Subalusky and Post 2019). In temperate forested 
streams, aquatic-to-terrestrial subsidies are typically greatest 
during early spring insect and amphibian emergence prior to 
leaf-out (e.g., Nakano and Murakami 2001; Baxter et al. 2005), 
while in temperate lakes large fluxes of insect biomass often 
continue throughout the summer (e.g., Martin-Creuzburg 
et al. 2017). Though aquatic subsidies may be greatest during 
the spring and/or summer, small fluxes of emergent insects 
that continue during the winter, thanks to the greater ther-
mal inertia of water compared to air, can be extremely im-
portant resources for riparian consumers in temperate areas 
where terrestrial insect biomass is near zero (e.g., Nakano and 
Murakami 2001; Iwata et al. 2003). Spatially, the importance of 
subsidies is typically greatest along ecotones, such as coastal, 
littoral and riparian areas. However, landscape characteristics 
of both the donor (i.e., subsidy source) and recipient (i.e., sub-
sidy destination) ecosystems can enhance or constrain such 
subsidies. For example, aquatic subsidy availability in terres-
trial ecosystems typically decreases with distance from shore 
(Gratton and Vander Zanden  2009; Muehlbauer et  al.  2014; 
Chari et al. 2020). Steep banks or confined valleys can further 
limit the transfer of nutrients via emerging insects (Power and 
Rainey 2000; Hagen and Sabo 2011). Meandering or braided 
streams and rivers with complex stream edges promote high 
riparian connectivity and subsidise a diversity of terrestrial 
predators, such as birds during periods of low abundance of 
terrestrial prey in the winter (Iwata et  al.  2003). Depth and 
shape influence subsidy magnitude in lakes, whereby deeper 
lakes with larger pelagic zones export smaller per area subsi-
dies to riparian consumers compared with ponds or shallower 

lakes with larger littoral zones (Fehlinger et al. 2022; Martin-
Creuzburg et al. 2017; Mathieu-Resuge et al. 2021).

2.2   |   Nutrients

Resource quality across both aquatic and terrestrial ecosystems 
is often defined in terms of the stoichiometric ratio of carbon 
to essential elemental nutrients, such as nitrogen or phosphorus 
(Elser, Fagan, et al. 2000; Elser, Sterner, et al. 2000). Terrestrial 
vegetation typically has the highest C:N and C:P ratios, while 
algae, animals and heterotrophic microbes like fungi and bac-
teria typically have C:N and C:P ratios that are several orders of 
magnitude lower (Elser, Fagan, et  al.  2000). Vegetation, espe-
cially leaves, tends to dominate terrestrial-to-aquatic subsidies, 
with smaller inputs of higher protein and lower C:N terrestrial 
insects, large animal carcasses, or faeces (Baxter et  al.  2005; 
Edwards and Huryn 1995; Mason and MacDonald 1982). In con-
trast, most aquatic-to-terrestrial subsidies tend to be in the form 
of animal bodies, such as the emerging adult phases of aquatic 
insects or fish that are transported to riparian ecosystems by 
other consumers. For example, migratory fish like salmon or 
suckers that are rich in both P and N are important resources 
for P-limited stream food webs (e.g., Gende et  al.  2002, 2004; 
Childress and McIntyre  2015; Kurasawa et  al.  2024) and also 
a substantial source of aquatic-derived N to riparian trees and 
shrubs (Helfield and Naiman  2001). Aquatic primary produc-
ers can also subsidise consumers from terrestrial systems ei-
ther when consumed from the water (Bakker et al. 2016; Lopez 
et al. 2020) or when receding water exposes algal mats (Bastow 
et  al.  2002). Aquatic subsidies rich in essential elemental nu-
trients can also increase soil nutrients (Dreyer et al. 2015), ter-
restrial plant production (Bultman et  al.  2014) and terrestrial 
predator biomass (Eriksson et  al.  2021), which may alter top-
down effects on terrestrial prey (Henschel et al. 2001; Sabo and 
Power 2002).

Fatty acid composition also varies fundamentally between 
aquatic and terrestrial ecosystems starting at the base of food 
webs (Hixson et  al.  2015; Twining, Brenna, Hairston Jr, and 
Flecker  2016), creating further differences in the quality of 
aquatic versus terrestrial subsidies for consumers. Aquatic pri-
mary producers including phytoplankton, benthic algae and 
some aquatic plants produce n-6 as well as n-3 LC-PUFA, which 
are essential for somatic growth, reproduction and survival of 
consumers (Twining, Brenna, Hairston Jr, and Flecker 2016). In 
contrast, terrestrial plants have relatively poor capabilities for 
producing LC-PUFA and tend to have higher ratios of n-6 to 
n-3 PUFA (Hixson et  al.  2015; Twining, Brenna, Hairston Jr, 
and Flecker 2016). LC-PUFA are critical structural components 
of cell membranes, are required as parts of many metabolic 
pathways and can be used to store energy (Arts et  al.  2001). 
Crucially, unlike stoichiometric differences which are most 
pronounced at lower trophic levels (Elser, Fagan, et al. 2000), 
differences in PUFA composition also persist at higher trophic 
levels (Hixson et  al.  2015; Twining, Brenna, Hairston Jr, and 
Flecker 2016). For instance, aquatic insects have substantially 
higher n-3 LC-PUFA content than terrestrial insects (Parmar 
et al. 2022). These differences arise when aquatic animals con-
suming aquatic primary producers retain LC-PUFA (Strandberg 
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et al. 2015), which can then accumulate at higher trophic levels 
(Guo et al. 2017).

Aquatic LC-PUFA can be transferred to land via a variety of 
pathways, including emerging insects or amphibians (e.g., 
Martin-Creuzburg et al. 2017; Moyo et al. 2017; Fritz et al. 2019), 
terrestrial consumers feeding directly on freshwater prey (e.g., 
Koussoroplis et  al.  2008) and terrestrial carcass-scattering 
during major fish migrations (e.g., Gende et al. 2004; Gladyshev 
et al. 2009). The quality and quantity of LC-PUFA exported from 
aquatic to terrestrial ecosystems depend on a variety of factors, 
including the composition of both aquatic primary producers 
(Guo et al. 2017; Moyo and Richoux 2022) and consumers (e.g., 
Martin-Creuzburg et  al.  2017; Mathieu-Resuge et  al.  2022). 
Aquatic subsidies of LC-PUFA can represent substantial benefits 
for growth, condition, immune function and reproduction of ter-
restrial consumers, such as birds (Twining, Brenna, Lawrence, 
et al. 2016; Twining et al. 2018, 2019) or spiders (Fritz et al. 2017; 
Kowarik et al. 2021; Kirschman et al. 2024) in riparian zones. 
Thus, even when small relative to terrestrial subsidies, aquatic 
resources can be exceptionally important for consumers and 
ecosystems in adjacent habitats due to their quality (Twining 
et al. 2019).

3   |   The Dark Side of Subsidies

Freshwaters collect and concentrate contaminants throughout 
their watersheds, which can lead to widespread contamina-
tion in many aquatic systems and subsequent impacts on eco-
system function (Fleeger et al. 2003). These contaminants can 
impact the quantity, quality, timing and composition of aquatic-
to-terrestrial subsidies (Figure 1) by: (1) reducing aquatic pro-
duction and subsequently aquatic-to-terrestrial subsidies, (2) 
accumulating in tissues of aquatic consumers that subsidise 
terrestrial ecosystems and (3) becoming more concentrated at 
higher trophic levels in aquatic consumers that serve as subsi-
dies. Contaminant classes, such as trace metals, organo-metals, 
pharmaceuticals, pesticides and persistent organic pollutants 
(POPs) differ in the types of effects they have on subsidies 
(Kraus 2019; Kraus et al. 2020). For example, organo-metals like 
methylmercury (MeHg) and non-insecticide POPs tend to ac-
cumulate in aquatic insect larvae and be retained in the bodies 
of the adult aquatic insects, thus altering the quality of aquatic-
to-terrestrial subsidies (Walters et al. 2008, 2016). On the other 
hand, trace inorganic metals, insecticides and other compounds 
that are highly toxic to aquatic insect larvae generally exhibit 
limited accumulation, and instead decrease aquatic secondary 
production (e.g., Carlisle and Clements  2003) and emergence 
(Paetzold et  al.  2011; Kraus, Walters, et  al.  2014), thus reduc-
ing aquatic subsidy quantity (Schmidt et al. 2013, 2022; Wesner 
et al. 2014; Miller et al. 2020).

3.1   |   Metal(Loid)s

Metals enter aquatic ecosystems from the atmosphere through 
both natural processes like volcanoes and volatilization from 
soils or water as well as through industrial processes (Nriagu 
and Pacyna  1988). Trace metals (e.g., Cu, Cd and Zn) from 
hardrock mining and natural mineralization can also leach into 

surface and groundwater from tailing piles, open mining tun-
nels, soil and exposed rock (Schmidt et al. 2012). Sulfur oxida-
tion in minerals can generate acidity that lowers pH and further 
elevates dissolved metal concentrations and bioavailability in 
aquatic ecosystems (Balistrieri et  al.  2020). Unlike trace met-
als, the metal(oid)s mercury, selenium and arsenic can enter 
aquatic ecosystems in both inorganic (e.g., Hg2+) and organic 
forms (e.g., MeHg) and can be converted from inorganic to or-
ganic forms by bacteria, primary producers, or other biotrans-
formative processes (Stadtman 1974; Gilmour et al. 2011, 2013). 
Environmental conditions can influence the bioavailability of 
all metals and metalloids, which in turn impacts their bioac-
cumulation and toxicity. For example, the bioaccumulation of 
trace metals and inorganic metalloids within biota is largely de-
termined by the bioavailable fraction of the metal in the environ-
ment (e.g., sediment, water and diet). Trace metals can be very 
toxic to organisms at lower trophic levels, but they tend to be ex-
creted through processes like metamorphosis and trophic trans-
fer and thus do not bioaccumulate within food webs (Pickhardt 
and Fisher 2007; Mathews and Fisher 2008; Revenga et al. 2012; 
Kraus, Walters, et al. 2014; Herman et al. 2021). Similarly, the 
availability of organic metalloids (e.g., Chapman et  al.  2010; 
Rahman et al. 2012; Erickson et al. 2019) like MeHg for aquatic 
consumers, such as insect larvae, zooplankton and fish, de-
pends on environmental conditions that favour the production 
of MeHg, especially redox conditions at the sediment/water in-
terface (Ullrich et al. 2001; Tang et al. 2020). MeHg availability 
also depends on the biomass of primary producers: higher pri-
mary producer biomass generally results in lower MeHg content 
per unit biomass (i.e., MeHg biodilution; Pickhardt et al. 2002), 
which in turn results in lower MeHg content in aquatic con-
sumers (Walters et al. 2015). However, in contrast to trace met-
als, organic metalloids accumulate more readily within biota, 
are well-retained across life stages like metamorphosis and in 
the case of MeHg biomagnify along food chains (e.g., Lavoie 
et  al.  2013). Much of the toxic effects of organic metalloids, 
therefore, occur at higher trophic levels (Basu and Head 2010; 
Hallinger et al. 2011; Chételat et al. 2020), although metalloids 
differ in their toxicity at the base of the food web depending on 
chemical species (Chapman et  al.  2010; Rahman et  al.  2012; 
Erickson et al. 2019).

As a result of these differences in bioaccumulation and toxicity, 
trace metals and organic metals like MeHg have very different 
impacts on aquatic-to-terrestrial subsidies (Kraus  2019; Kraus 
et al. 2020). For example, animal-mediated fluxes of MeHg from 
aquatic to terrestrial food webs can be driven by food web struc-
ture and nutrient concentrations as well as the MeHg contents 
of consumers themselves (Chumchal and Drenner 2015, 2020). 
Specifically, predators like fish can decrease emergent insect 
fluxes of MeHg, while nutrients and MeHg accumulation in 
predatory insects can increase emergent insect fluxes of MeHg. 
MeHg contents in riparian insectivores are also correlated with 
insect-mediated fluxes of MeHg (e.g., Twining, Bernhardt, 
et al. 2021; Twining, Razavi, et al. 2021). Unlike MeHg, insect-
mediated fluxes of trace metals tend to be negatively cor-
related with bioavailable concentrations of trace metals, which 
are highly toxic to insect larvae (Schmidt et  al.  2010; Mebane 
et al. 2020) and metamorphosing insects (Schmidt et al. 2013; 
Wesner et al. 2017). Consequently, high concentrations of trace 
metals in aquatic ecosystems typically reduce emergent insect 
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biomass and prevent contaminants from moving into terres-
trial ecosystems (Paetzold et  al.  2011; Kraus, Schmidt, and 
Walters, 2014). As a result, trace metals impact riparian insecti-
vores indirectly through their effects on emergent insect biomass 
(Kraus, Schmidt, and Walters,  2014). Comparing the physico-
chemical properties of individual compounds to their retention 
across metamorphosis can help predict their potential for bio-
accumulation. The propensity for inorganic trace metals to be 
retained across metamorphosis appears related to their protein-
binding affinity (Kraus, Walters, et al. 2014; Bogstie et al. 2024), 
and detoxification processes that mineralise the metal (Wanty 
et al. 2017). For instance, trace metals are more toxic to insect 
larvae and less likely to be retained across metamorphosis than 
organic metals such as MeHg or selenium. These patterns ex-
plain why contaminant content in riparian insectivores, such 
as spiders and swallows, is much more effective as a sentinel 
of MeHg and selenium pollution than for trace metal pollution 
(Alberts et al. 2013; Otter et al. 2013; Chumchal et al. 2022).

3.2   |   Organic Pollutants

Organic pollutants as a group are extremely diverse in terms 
of their source, accumulation in biota and behaviour within 
aquatic ecosystems. Similarly to metals, organic pollutant con-
tents vary based on landscape context, their physico-chemical 
properties and other aspects of water quality like temperature 
and dissolved oxygen content. Unlike most metals, organic 
pollutants contain carbon-nitrogen or carbon–carbon bonds. 
Numerous organic pollutants have been studied with respect to 
their effects on aquatic-to-terrestrial subsidies, including poly-
chlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 
(PAHs), pharmaceuticals and endocrine-disrupting chemicals, 
flame retardants, pesticides (i.e., herbicides, insecticides and 
fungicides) and surfactants and antifouling adjuvants (added 
to chemical mixtures). Some of these classes, such as PCBs, 
historically used insecticides (e.g., dichlorodiphenyltrichlo-
roethane [DDT]) and dioxins, are considered persistent organic 
pollutants (POPs), which are mostly highly lipophilic haloge-
nated organic compounds that do not readily break down in 
the environment and are extremely toxic to humans and other 
organisms. Unfortunately, because they are fat soluble, these 
highly toxic lipophilic compounds often bioaccumulate and 
biomagnify within both terrestrial and aquatic food webs (e.g., 
Vander Zanden and Rasmussen  1996; Kelly et  al.  2008; Kelly 
and Gobas  2003). Other compounds, such as PAHs and some 
current pesticides, are more likely to be metabolised within or-
ganisms, and as such show a pattern of biodilution with trophic 
transfer higher up the food web (e.g., Erasmus et al. 2020; Fu 
et al. 2022; Jin et al. 2023).

As a result of these differences in patterns of accumulation and 
toxicity, organic contaminants vary greatly in their impacts 
on aquatic-to-terrestrial subsidies (Kraus  2019; Bundschuh 
et al. 2022). Persistent organic contaminants like PCBs that are 
not highly toxic to aquatic animals can accumulate and then 
enter terrestrial food webs as subsidies, e.g., via aquatic insect 
emergence or consumption of contaminated fish. For example, 
contents of such compounds in riparian spiders eating aquatic 
insects can be closely related to the contents of these compounds 
in river sediment (Walters et  al.  2010). Migratory fishes, such 

as salmonids, that move across multiple aquatic ecosystems as 
part of their life cycle can also be important vectors of persistent 
organic contaminants into both aquatic (Merna  1986; Gerig 
et al. 2018) as well as riparian food webs (Morrissey et al. 2012). 
Other organic compounds like PAHs appear to be metabolised 
during metamorphosis and biodilute within food chains, mak-
ing them less of a threat to subsidised terrestrial food webs. 
For instance, the concentration of PAHs in adult Chironomus 
(Meigen 1803; non-biting midges) was 2.9 times higher in lar-
vae than in adults, making them (or at least their parent com-
pounds) less of a threat to subsidised terrestrial food webs. 
However, compounds belonging to many classes of compounds 
like pharmaceuticals and personal care products, endocrine-
disrupting chemicals, pesticides and flame retardants appear 
to vary greatly in their bioaccumulation properties within those 
classes and thus in their effects on aquatic-terrestrial linkages 
(Richmond et al. 2018; Previšić et al. 2021; Rosi et al. 2023).

Understanding the relative toxicity and bioaccumulation of 
contaminants in insects may help us estimate insect-mediated 
contaminant fluxes from aquatic to terrestrial food webs. For 
example, the octanol–water partitioning coefficient (log Kow), 
which is a metric of how soluble the compound is in lipids com-
pared with water (i.e., lipophilicity) and the size of the compound, 
appears to be related to the retention of some contaminants 
across metamorphosis. In a meta-analysis, Kraus, Walters, 
et al.  (2014) found that log Kow was negatively correlated with 
the metamorphic retention of less lipophilic (log Kow < 5; mainly 
PAHs) and larger compounds, and positively correlated for more 
lipophilic (log Kow 5–7) and smaller compounds (Liu et al. 2018). 
Liu et al. (2021) also found a negative relationship between log 
Kow and metamorphic retention for organophosphorus flame 
retardants and plasticizers with log Kow ranging from ~0 to 10. 
Consequently, Kraus  (2019) predicted that current-use insecti-
cides, which are not expected to accumulate in insect tissues but 
are expected to reduce metamorphosis, should lead to reduced 
emergence and decreased insecticide flux from contaminated 
waters.

However, the most recent studies in this area have failed to show 
a consistent relationship between physico-chemical properties 
and metamorphic retention of organic compounds. In fact, 
empirical work suggested that while current-use insecticides 
accumulated in wetland insects and led to a 43% decline in emer-
gence biomass, there was also a 50% increase in overall pesticide 
flux via emergent insects across an insecticide gradient (Kraus 
et al. 2022). Additional recent studies also suggest that emergent 
aquatic insects can indeed be important sources of current-use 
pesticides, including those with log Kow < 5 as well as neonic-
otinoids, for riparian ecosystems (Roodt et  al.  2022; Roodt, 
Huszarik, et al. 2023; Roodt, Schaufelberger, and Schulz 2023), 
and that such pesticides can bioaccumulate in both emerging 
aquatic insects as well as in riparian spiders (Roodt, Huszarik, 
et al. 2023). However, at very high doses, such pesticides are le-
thal to most taxa, resulting in major declines in emergent in-
sect biomass and thus minimal organic contaminant transport 
(Barmentlo et  al.  2021). Given the strong negative effects that 
current-use pesticides like neonicotinoids can also have on ter-
restrial vertebrates (Eng et al. 2017, 2019), more research on the 
transfer of such compounds across aquatic-terrestrial meta-
ecosystems will help fill this current knowledge gap.
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3.3   |   Cyanobacterial Toxins

Another group of harmful organic compounds that largely 
originate in aquatic systems and have the potential to alter the 
quality of aquatic-terrestrial subsidies are cyanobacterial toxins. 
Cyanobacteria comprise a diverse group of prokaryotic organ-
isms of which many can produce secondary metabolites that 
are potentially harmful to consumers (Sivonen 1996). As the 
frequency of toxic cyanobacterial blooms increases, their effects 
on aquatic and nearby terrestrial communities are of increasing 
interest and concern. Cyanobacteria can expose zooplankton 
and other consumers to cyanobacterial toxins. These toxins may 
affect aquatic-to-terrestrial subsidies by altering aquatic subsidy 
production as well as through bioaccumulation. The sensitiv-
ity of emergent aquatic insect larvae to cyanobacterial toxins 
has not yet been studied systematically (Fadel et al. 2023). The 
available studies have focused mostly on microcystins, a well-
studied group of harmful secondary metabolites produced by 
many cyanobacteria, especially those of the genera Microcystis, 
Anabaena/Dolichospermum and Planktothrix. In mosquito 
larvae, microcystin exposure has been reported to damage 
the epithelial cells of the midgut, increase mortality (Saario 
et al. 1994) and delay development (Rey et al. 2009). In larvae 
of the Ecdyonurus angelieri (Thomas 1968; mayfly), microcystin 
accumulation has been shown to cause severe histological dam-
age in the fat body and alterations in the tracheal system, thus 
increasing mortality (Liarte et al. 2014). In general, however, it 
seems that invertebrates, including aquatic insect larvae, may 
be less sensitive to these toxins compared to mammals (Stewart 
et al. 2008), which experience neurotoxicity from cyanobacterial 
poisoning that often leads to death.

Researchers are just beginning to study fluxes of cyanobacte-
rial toxins across the aquatic-terrestrial interface. For instance, 
larvae of non-biting midges have been shown to feed on cyano-
bacteria and to accumulate microcystins as well as the potent 
neurotoxin anatoxin-a in high amounts without experiencing 
increased mortality (Toporowska et al. 2014). Microcystins have 
also been shown to accumulate in larvae of the genus Hexagenia 
(Walsh 1863; mayfly) and to be present in the terrestrial adult life 
stage, suggesting that emergent aquatic insects could be import-
ant vectors for the transport of cyanotoxins across the aquatic-
terrestrial interface (Moy et  al.  2016; Woller-Skar et  al.  2020). 
Moy et  al.  (2016) reported the transfer of microcystins from 
Hexagenia mayflies to their consumers, that is, spiders and 
Protonotaria citrea (Boddaert 1783; Prothonotary Warblers). In 
Prothonotary Warblers, the highest microcystin concentrations 
were found in nestlings, especially at sites where the nestlings 
received higher proportions of aquatic insects in their diet. A 
recent study found that microcystins derived from Planktothrix 
accumulate in zooplankton, but not in emergent aquatic insects, 
including Chaoborus (Lichtenstein 1800), whose larvae feed on 
zooplankton (Riehle et  al.  2024). In general, the microcystin 
content seems to be lower in secondary consumers, suggest-
ing biodilution (Ferrão-Filho and Kozlowsky-Suzuki  2011). 
However, the bioaccumulation of microcystins in emerging in-
sects might be species-specific (Poste et al. 2011; Cianci-Gaskill 
et al. 2022; Glidewell et al. 2024). Whether this is also true for 
other cyanobacterial toxins across the aquatic-terrestrial bound-
ary is unclear. In light of the predicted increase in the frequency 
and severity of harmful cyanobacterial blooms (see below), 

understanding the trophic transfer of cyanobacterial toxins 
within aquatic food webs and across ecosystem boundaries will 
become increasingly relevant.

4   |   Global Change Impacts on 
Aquatic-to-Terrestrial Subsidies

Global change processes are increasingly shifting the balance 
between the ‘dark’ and ‘bright’ sides of cross-ecosystem sub-
sidies. Interacting processes like land use and climate change 
are already altering factors including the timing, magnitude 
and, especially, the quality of aquatic subsidies (Manning and 
Sullivan  2021; Schulz et  al.  2023). For example, the net effect 
of aquatic to terrestrial subsidies can shift from beneficial to 
harmful with increased inputs of contaminants in areas with 
intensive anthropogenic land use. This shift has the potential 
to turn riparian zones and their associated resource subsidies 
into ecological traps for consumers, who may continue to use 
them as important resources despite their new contaminant 
load (e.g., Hale and Swearer 2016). Human-induced climate and 
land-use change are also expected to influence species compo-
sition, production and phenology in riparian and aquatic eco-
systems (Larsen et al. 2016), in turn altering subsidy quantity, 
quality and temporal dynamics at the aquatic-terrestrial bound-
ary (Jentsch and White 2019). In particular, climate change has 
a high potential to shift the phenology and variability of subsi-
dies, making them either more or less pulsed (Nash et al. 2023; 
Leathers et  al.  2024), as well as changing their nutritional 
quality (Strandberg et  al.  2020; Twining et  al.  2022; Shipley 
et  al.  2022). Biodiversity change within aquatic ecosystems, 
often driven by land use intensification and/or climate warming 
(Haase et al. 2023; Wilkes et al. 2023), also has the potential to 
further alter the dynamics and quality of aquatic to terrestrial 
fluxes. Such changes in subsidy characteristics will interact with 
characteristics of the recipient ecosystem, such as the phenology 
of producers and consumers (Subalusky and Post 2019).

4.1   |   Land Use Change

Land use changes, such as agricultural intensification and ur-
banisation, often result in changing inputs of contaminants, 
sediment and elemental nutrients from terrestrial ecosystems. 
In turn, this can alter both the quality and quantity of aquatic-
to-terrestrial subsidies (e.g., Krell et al. 2015; Larsen et al. 2016; 
Figure  2a). For example, aquatic ecosystems polluted by trace 
metals are likely to have reduced emergent insect biomass 
(Paetzold et al. 2011; Kraus, Schmidt, and Walters 2014). Direct 
inputs of elemental nutrients from terrestrial ecosystems, such 
as those from intensive agriculture or sewage discharges in 
human-impacted landscapes, can also likely have strong effects 
on aquatic ecosystems (Watzin and McIntosh 1999), and their 
subsidies. For instance, some studies suggest that increased N 
and P inputs may boost aquatic primary productivity, translat-
ing into larger aquatic subsidies in agricultural areas compared 
to forested areas (Carlson et al. 2016; Raitif et al. 2022). However, 
high levels of elemental nutrients can shift aquatic primary pro-
ducer composition towards cyanobacteria that are less palatable, 
nutritionally inadequate (e.g., lacking sterols and n-3 LCPUFA) 
and potentially toxic (Martin-Creuzburg and von Elert  2008). 
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Cyanobacterial blooms, including those containing microcys-
tin toxins, are strongly associated with intensive human land 
use, especially agricultural and urban areas, as well as climate 
warming (e.g., Beaver et al. 2014; Kakouei et al. 2021). Increased 
cyanobacterial blooms due to ongoing climate and land use 
change could potentially reduce aquatic-to-terrestrial subsidies 
or substantially alter their quality (Moy et al. 2016).

Land use can also have a drastic impact on emergent insect 
community composition in terms of the functional traits of 
emerging insects, including their dispersal ability (Frainer and 
McKie  2015; Stenroth et  al.  2015; Carlson et  al.  2016; McKie 
et al. 2018) and nutritional quality (see below). For instance, ag-
ricultural areas typically support fewer large-bodied taxa like 
Ephemeroptera, Plecoptera (Burmeister 1839) and Trichoptera 
and more small-bodied taxa, especially Diptera, which are rel-
atively weak flyers and disperse over short distances (Stenroth 
et al. 2015; Carlson et al. 2016; Raitif et al. 2019). Urbanisation, 
including the transition from agricultural to urban areas, can 
also further shift communities to dipteran dominance (Kautza 
and Sullivan 2015, 2016). These changes in communities lead-
ing to differences in dispersal and emergence traits could alter 
riparian connectivity, such that subsidies in areas with intensive 
human land use could have more localised effects compared 
to those from less disturbed areas (Alberts and Sullivan 2016; 
Sullivan et  al.  2021; Kowarik et  al.  2023). However, riparian 

cover can also influence the degree to which aquatic subsidies 
are incorporated into terrestrial food webs (Raitif et al. 2022): 
for instance, streams with a riparian forested buffer zone had 
higher n-3 LC-PUFA (i.e., nutrients primarily of aquatic or-
igin) in certain spider groups such as wolf spiders (Lycosidae; 
Sundevall 1833) compared to streams without a buffer zone 
(Ramberg et al. 2020).

Land use change can also lead to shifts in the quality of subsidies 
by increasing their contaminant content. For instance, aquatic 
subsidies from areas with intensive human land use can include 
pesticides, pharmaceuticals and a range of other contaminants 
(see Table 1). Of particular concern are MeHg and other organic 
compounds, which biomagnify within aquatic food webs and 
are well retained across life stages like metamorphosis and 
emergence. Exposure to such compounds often varies with local 
land use: multiple studies have documented increased MeHg ex-
posure in insectivorous riparian birds in areas heavily altered by 
industrial and agricultural activities (e.g., Hallinger et al. 2011; 
Twining, Razavi, et al. 2021). Recent work also highlights how 
emergent aquatic insects can serve as major sources of neonicoti-
noid pesticides for riparian ecosystems (Roodt et al. 2022; Roodt, 
Huszarik, et al. 2023; Roodt, Schaufelberger, and Schulz 2023). 
Of particular concern, researchers found that even in instances 
where heavy use of insecticides for row crop agriculture re-
sulted in declines in emergent insect biomass, the insects that 

FIGURE 2    |    Both the bright and dark sides of resource subsidies can be shaped by several inter-linked (arrows between sections) drivers of global 
change. (a) Land use change can alter inputs from terrestrial to aquatic ecosystems, often increasing sediment, nutrients and contaminants and lead 
to changes in aquatic community structure. Together, these changes may lead to more homogenous pulsed resources of aquatic subsidies with higher 
concentrations of contaminants. (b) Climate change can increase temperatures and alter hydrological regimes, which may increase the occurrence 
of conditions that favour mercury methylation and growth of harmful algal blooms, while also altering the phenology of both aquatic and terrestri-
al consumers. These changes may lead to phenological mismatches with riparian consumers and increased ratios of contaminants to resources. (c) 
Biodiversity change, including widespread declines of native species and the spread of invasive species, can alter the biomass and functional trait 
diversity of both aquatic and terrestrial consumers. These changes may lead to more homogenous pulses of aquatic resources that may be uncoupled 
from terrestrial consumers.
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did emerge resulted in increased fluxes of contaminants relative 
to areas with lower insecticide use (Kraus et al. 2022).

Subsidy quality may also shift with continued land use change 
due to changes in the species composition of aquatic invertebrates 
(Dwyer et al. 2018; Parmar et al. 2022) or their basal resources like 
algae (Whorley et al. 2019). For example, some studies of periph-
yton along urbanisation and agricultural gradients have found 
decreased n-3 LC-PUFA content in heavily modified systems that 
receive large N and P inputs (Cashman et al. 2013; Guo et al. 2015), 
while others have found higher proportions of these fatty acids in 
such systems (Guo et al. 2021; Whorley et al. 2019). Within taxa, 
in a mesocosm study, Scharnweber et al. (2020) found that higher 
P levels were associated with lower eicosapentaenoic acid (20:5n-3, 
EPA) content in emergent insects. Guo et  al.  (2017) found that 
grazer LC-PUFA content became more similar to that of periphy-
ton when periphyton LC-PUFA content increased under low light, 
high nutrient conditions. Other studies of consumer fatty acid 

composition along land use gradients have found little consistent 
effect of land use on either periphyton or emergent aquatic insect 
fatty acid composition (e.g., Larson et al. 2013; Twining et al. 2021). 
However, even without land use-induced changes in their own nu-
trient content, the relative nutritional value of aquatic insects may 
be greater in urbanised areas where the n-3 LC-PUFA content of 
terrestrial arthropods is lower (Shipley et al. 2024).

Land use change can also lead to changes in the composition and 
timing of subsidies due to light pollution as well as urban heat island 
effects (see climate change section below). Many aquatic ecosys-
tems in urban and suburban areas also are receiving increased in-
puts of light due to artificial light at night (ALAN). ALAN can have 
complex species-specific and context-dependent effects that can 
influence aquatic-terrestrial linkages (Hirt et al. 2023). In aquatic 
systems, shredder insects exposed to artificial light increased rates 
of consumption, although without subsequent increases in growth 
rates, suggesting resulting increases in litter breakdown rates and 

FIGURE 3    |    Future priorities for research encompassing both the bright and dark sides of aquatic-to-terrestrial subsidies include: (a) incorporat-
ing more spatiotemporal variability into sampling efforts, (b) working at the landscape scale across a diversity of consumers that vary in their reli-
ance upon aquatic resources as well as their evolutionary history and (c) understanding the mechanisms through which subsidies shift from being 
beneficial resources to functioning as ecological traps for consumers.
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potential declines in invertebrate fitness (Czarnecka et al. 2021). 
Flying insects, and emerging aquatic invertebrates in particular, 
are impacted by ALAN through modification in behaviour and 
emergence patterns (Szaz et al. 2015). ALAN can decrease rich-
ness and mean body size of emerging insects, while increasing 
mean body size of riparian consumers (Meyer and Sullivan 2013). 
In another study, experimental increases in ALAN increased the 
emergence rates of aquatic insects, total amount of flying insects 
and the proportion of flying insects that were aquatic, which cas-
caded through the riparian food web to alter the composition of 
riparian consumer and scavenger species (Manfrin et  al.  2017). 
These effects point to the complex changes in the magnitude and 
effect of aquatic-terrestrial fluxes that can result from changes in 
natural light regimes, which are becoming increasingly common 
(Sullivan and Manning 2019; Parkinson and Tiegs 2023).

4.2   |   Climate Change and Warming

Climate warming is already influencing key processes that 
shape the quantity and quality of aquatic subsidies (Figure 2b; 
Häder and Barnes  2019). Aquatic food webs are typically 

dominated by ectotherms ranging from zooplankton to fish 
(Borer et  al.  2005; Ward and McCann  2017). Consequently, 
metabolic processes like growth and development are directly 
related to temperature in most aquatic consumers, mak-
ing them especially likely to respond to climate warming as 
well as urban heat island effects generated through land use 
change (Angilletta Jr et al. 2004; Zuo et al. 2012; Vanni and 
McIntyre 2016). The phenology of emergent insects is highly 
dependent upon water temperature, through its influence on 
development, resulting in strong seasonal pulses of subsi-
dies to land in many temperate environments (e.g., Walters 
et  al.  2018; Shipley et  al.  2022). The spawning phenology of 
migratory fishes is also typically linked to water tempera-
ture (Asch et  al.  2019; Nack et  al.  2019; Opdal et  al.  2024). 
Urban aquatic ecosystems can also exhibit altered temporal 
patterns of insect emergence, with emergent insect biomass 
export peaking earlier in urban systems than in forested sys-
tems (Carlson et al. 2016). This is likely due to the profound 
differences in temperature and growing degree day accumu-
lation between urban and rural areas (Brans et al. 2018). For 
instance, stream water temperatures are typically higher in 
areas without the shading effect of riparian canopy cover 

TABLE 1    |    Contaminants that comprise the dark side of resource subsidies, their ecological effects on aquatic taxa and their effects on aquatic-
terrestrial subsidies (see also Kraus 2019; Kraus et al. 2023).

Contaminant Type Contaminant Ecological effect Effect on subsidy

Metals and Metaloids Inorganic mercury 
and metals

Toxic to lower-trophic level 
organisms; do not bioaccumulate

Decrease subsidy 
quantity of lower trophic 

level organisms

Metals and Metaloids Methylmercury 
(MeHg)

Bioaccumulate and biomagnify; 
toxic effects of exposure are 

content dependent and mostly 
occur at higher trophic levels

Decrease subsidy quality 
through increased 

contaminant concentration

Organic pollutant Polychlorinated 
biphenyls (PCBs)

Bioaccumulate in aquatic animals Decrease subsidy quality 
through increased 

contaminant concentration

Organic pollutant Polycyclic 
aromatic 

hydrocarbons 
(PAHs)

Metabolised during metamorphosis 
and biodilute in food webs

Moderately decrease 
subsidy quantity or quality

Organic pollutant Pharmaceuticals 
and personal care 
products (PPCPs)

Can accumulate in aquatic 
animals, but impacts can be 

highly variable by compound

Can decrease subsidy 
quantity and quality, but 

impacts can be highly 
variable by class

Organic pollutant Current-use 
insecticides (e.g., 
neonicotinoids)

Accumulate in aquatic animals 
and reduce metamorphosis

Decrease subsidy quantity 
through decreased 

emergence; decrease 
subsidy quality through 

bioaccumulation in 
those that do emerge

Cyanobacterial toxins (i.e., 
naturally produced within aquatic 
systems)

Cyanobacterial 
toxins

Accumulate in aquatic insects 
and increase mortality

Decrease subsidy quantity 
through decreased 

emergence; decrease 
subsidy quality through 

bioaccumulation in 
those that do emerge
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(e.g., Moore et  al.  2005). Small dams that release surface 
water can also increase stream temperatures (Lessard and 
Hayes 2003; Zaidel et al. 2021), while large dams that release 
deeper water can have a cooling effect on rivers and streams 
(Heggenes et  al.  2021). In addition to temperature, lower 
water levels, which are also occurring as a consequence of cli-
mate change in many aquatic systems, can cue emergence in 
aquatic insects, leading to smaller emerging adults and thus 
a smaller and earlier aquatic-to-terrestrial flux (Harper and 
Peckarsky 2006; Leathers et al. 2024). As aquatic phenology 
shifts, this may translate into changes in the availability of 
high quality aquatic-derived nutrients for riparian consumers 
(Shipley et  al.  2022) and/or result in shifts to lower quality 
terrestrial resources (Deacy et al. 2017). Such shifts as a result 
of changes in phenological synchrony could entail ecosystem-
wide effects such as lower fitness in certain riparian con-
sumers (Twining et al. 2018). They may also lead to reduced 
transport of aquatic nutrients that fertilise terrestrial primary 
producers (e.g., Helfield and Naiman 2001; Deacy et al. 2017).

The overall effects of warming on processes that influence 
aquatic-to-terrestrial subsidies will likely vary across ecosys-
tems. For instance, freshwater systems in the tropics are pre-
dicted to have reduced emergent insect biomass and species 
richness with warming (Nash et  al.  2021), while warming in 
temperate and arctic regions may increase aquatic insect emer-
gence biomass (Hannesdóttir et al. 2012). Climate change is also 
predicted to reduce the strength of seasonal insect emergence 
patterns (Nash et  al.  2023), potentially disrupting terrestrial 
consumers that time their life history events with highly pulsed 
aquatic insect emergence (e.g., Adams et al. 2023). In addition, 
warmer water temperatures can lead to accelerated larval insect 
development, resulting in reduced emergent adult body size and 
female fecundity (e.g., Dallas and Ross-Gillespie 2015; Sweeney 
et al. 2018; Anderson et al. 2019; Bonacina et al. 2023). However, 
the effects that this will have on subsidies may vary with life 
history strategy: multivoltine species that have multiple genera-
tions per year may end up exporting more total aquatic-derived 
biomass over the entire year if warmer temperatures allow them 
to complete more life cycles, whereas univoltine species may ex-
port less biomass by producing one brood of smaller adults (e.g., 
Zeuss et al. 2017). Recent work suggests that having a diverse 
community of emergent species that differ in their responses to 
temperature may help stabilise overall subsidy biomass, but that 
warmer temperatures may still lead to a change in phenology 
and species composition (Leathers et al. 2024). Moreover, as cli-
mate change is predicted to lead to species loss in many ecosys-
tems, biodiversity's buffering potential may be decreasing.

In addition to its effect on aquatic-to-terrestrial subsidy phenol-
ogy and quantity, temperature may alter subsidy quality (e.g., 
LC-PUFA). Higher water temperatures tend to increase the 
dominance of cyanobacteria (e.g., Kosten et  al.  2012), which 
contain little to no LC-PUFA (Galloway and Winder 2015) and 
sterols (Martin-Creuzburg and von Elert  2008) and are thus 
considered poor food quality compared to other phytoplankton. 
Temperatures are also predicted to lower LC-PUFA production 
within individual phytoplankton taxa (Hixson and Arts  2016) 
via homeoviscous adaptation, a process in which the proportion 
of unsaturated fatty acids in cellular membranes is increased 
at lower temperatures in order to maintain vital membrane 

properties. Combined, both mechanisms could have reverber-
ating consequences for the dietary LC-PUFA availability for 
aquatic consumers. As is the case for primary producers, cli-
mate change is already causing shifts in aquatic invertebrate 
community composition as communities shift towards those 
more tolerant of warmer temperatures and/or lower dissolved 
oxygen content (Baranov et al. 2020; Birrell et al. 2020; Khaliq 
et al. 2024), which could lead to changes in the nutritional com-
position of subsidies. Furthermore, within species, ectother-
mic aquatic consumers themselves, including Daphnia (O.F. 
Müller 1776) (e.g., Zeis et  al.  2019) and non-biting midge lar-
vae (Strandberg et al. 2020, 2021), appear to contain lower LC-
PUFA content when grown at higher temperatures, suggesting 
that they may also regulate their fatty acid composition based 
on temperature. Decreased n-3 LC-PUFA content because of 
climate change could make aquatic subsidies less valuable for 
terrestrial consumers.

Climate warming also has the potential to exacerbate the dark 
side of aquatic subsidies through temperature-based effects on 
Hg methylation as well as cyanobacterial growth (see above). 
Specifically, conditions that promote greater bioavailability of 
methylmercury are likely to increase with climate warming. 
Higher temperatures and low oxygen conditions both stimu-
late the microbial activity of methylating anaerobic bacteria, 
such as sulfate reducing bacteria (Parks et  al.  2013; Ullrich 
et  al.  2001). Aquatic ecosystems ranging from streams (e.g., 
Carter et al. 2021) to lakes (e.g., Jane et al. 2021; Jenny et al. 2016; 
Tellier et  al.  2022) are experiencing increasing deoxygenation 
with climate warming. Climate change is also already leading to 
longer periods of lake stratification, promoting earlier and lon-
ger onsets of hypolimnetic oxygen depletion (Jane et al. 2021), 
making low oxygen Hg methylating conditions more prevalent 
across lakes and reservoirs, increasing Hg exposure and accu-
mulation in freshwater food webs. For example, consumers that 
forage in hypoxic environments represent an elevated source of 
MeHg to both fish and birds (Hall, Cobb, et al. 2020; Hall, Woo, 
et  al.  2020; Baldwin et  al.  2022). However, because primary 
productivity changes with hypoxia (e.g., Preece et al. 2019), and 
controls Hg bioaccumulation (e.g., Beutel et  al.  2014; Razavi 
et  al.  2015), there remain many unknowns regarding how 
changing climate will affect Hg exposure from aquatic subsidies 
across organisms and habitats.

4.3   |   Changing Biodiversity

Changes in the abundance and diversity of organisms are oc-
curring across ecosystems, with endemic species declining 
and introduced nuisance species increasing in many areas 
(Sánchez-Bayo and Wyckhuys  2019; van Klink et  al.  2020; 
Dahlin et al. 2021; Jähnig et al. 2021). Land use change, es-
pecially habitat destruction and the release of contaminants 
into the environment, climate change and their interactive 
effects on ecosystems underlie many of these shifts in biodi-
versity (above, Figure 2). Aquatic ecosystems are no exception 
to this pattern and recent work suggests that, globally, fresh-
water biodiversity is declining at a higher rate than terrestrial 
biodiversity (Williams-Subiza and Epele 2021). Such declines 
are concerning because many studies have demonstrated 
the strong links between biodiversity and many beneficial 

 14610248, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70109 by N

anjing Institution O
f G

eo, W
iley O

nline L
ibrary on [14/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 20

ecosystem functions (e.g., van der Plas 2019), including the 
outsized importance of freshwater biodiversity for key nu-
tritional functions across ecosystems (Shipley et  al.  2024). 
Within the context of subsidies specifically, having multiple 
species or multiple populations of migratory fishes can result 
in greater stability of subsidies via portfolio effects when spe-
cies or populations vary in their life history (e.g., Schindler 
et  al.  2010) and/or functional traits (e.g., nutritional compo-
sition; Twining and Palkovacs  2017; Kurasawa et  al.  2024). 
Such biodiversity-portfolio effects also appear likely to gen-
erate increased temporal stability for other aquatic taxa that 
subsidise terrestrial ecosystems, including emergent aquatic 
insects (Uno and Pneh 2020; Nash et al. 2023).

In addition to richness, the loss or gain of species with distinct 
functional traits may have strong impacts on ecosystem func-
tion across aquatic-terrestrial meta-ecosystems. For example, 
declines of individual species with unique dispersal, migra-
tion and life history traits (Childress and McIntyre 2015; Uno 
and Power  2015) or mass pulsed emergence (e.g., Walters 
et  al.  2018; Stepanian et  al.  2020) can have major impacts 

on ecosystem function. Introduced species also demonstrate 
the strong impacts that individual species with novel func-
tional roles can have on meta-ecosystems (e.g., Peller and 
Altermatt 2024). For example, fish introductions to formerly 
fishless lakes result in dramatic reductions in emerging 
aquatic insects as well as avian insectivores in riparian zones 
(e.g., Epanchin et al. 2010). Such effects can also be indirect: 
introduced fish species that consume most of the subsidised 
terrestrial prey base in streams can force other fish to predate 
more heavily on aquatic insects, thus reducing fluxes of emer-
gent aquatic insects and riparian spider biomass (e.g., Baxter 
et al. 2004; Benjamin et al. 2011).

In addition to altering the benefits of subsidies, changes in 
aquatic biodiversity may also have consequences for their as-
sociated risks (Figure 2c). Research on biodiversity-ecosystem 
function has typically focused on quantifying relationships 
between biodiversity and beneficial functions or ecosystem 
services rather than on understanding how biodiversity might 
influence risks. Aquatic biodiversity could potentially buffer 
terrestrial communities from contaminant transfer because 

BOX 1    |    Research topics for future studies of reciprocal aquatic–terrestrial subsidies under global change.

Spatial and Temporal Variability in Reciprocal Subsidies

Better understanding of spatiotemporal variability in the quantity, quality and phenology of aquatic-to-terrestrial subsidies can 
help close this key knowledge gap (Figure 3a). Our understanding of subsidy dynamics is best in Northern Hemisphere tem-
perate systems and in small streams. Increased spatiotemporal sampling of such subsidies across a greater array of aquatic eco-
systems across geographical regions (e.g., Dézerald et al. 2018) will help us fill key gaps in our current understanding. Working 
across a greater diversity of systems will also improve our understanding of global change impacts, as freshwater systems in 
different geographic regions are facing distinct threats– for instance, while some areas stand to get wetter with more high-flow 
events, other areas are rapidly drying (Trenberth 2011; Arnell and Gosling 2016; McCabe et al. 2023), and while some regions 
have already experienced major impacts from industrialisation and urbanisation and are recovering, many regions are only at 
the onset of industrial and urban development (Haase et al. 2023; Li et al. 2024). Large-scale coordinated aquatic subsidy moni-
toring efforts with common sampling schemes, equipment and units, as is used for monitoring many other ecological variables 
in long-term ecological research, can help with this. Emerging tools, such as AI-based identification to rapidly identify taxa and 
quantify biomass based on photos (e.g., phenopype, Lürig 2022), as well as radar-based monitoring (e.g., Stepanian et al. 2020) 
throughout the hydrological year and during high and low flow events, may enable future researchers to better understand the 
future roles of aquatic subsidies across a diversity of contexts.
Landscape-Scale Influence of Reciprocal Subsidies
Second, we currently lack a full understanding of the importance of aquatic-to-terrestrial subsidies across the landscape and how 
this importance may vary by ecosystem and consumer (Figure 3b). For example, while aquatic-derived energy is most important 
within riparian zones (e.g., Muehlbauer et al. 2014), even small quantities of aquatic-derived nutrients or contaminants may have 
major consequences on food webs further inland. A better understanding of aquatic subsidy dependence and use across a wider 
array of terrestrial animals will help inform management decisions. Taking a macroevolutionary perspective may be particularly 
helpful in making these assessments across taxa. Studies of aquatic subsidy dependence across entire clades of consumers that 
exhibit a wide range of specialisation on aquatic resources will help us understand which taxa are most likely to experience both 
the risks and benefits that aquatic subsidies present at the landscape scale.
Reciprocal Subsidies as an Ecological Resource or Trap in Changing Environments
A final topic for future research is understanding the conditions in which subsidies shift from beneficial resources into ecolog-
ical traps for consumers (Figure 3c). The dual roles of aquatic subsidies have the potential to lead to surface waters becoming 
ecological traps for riparian consumers seeking important nutrients and instead finding them bound with contaminants (e.g., 
Hale and Swearer 2016).
Characterisation and comparison of bioaccumulation across a range of beneficial compounds, which are often internally regu-
lated via rates of synthesis, as well as a diversity of contaminants, which are largely regulated through removal processes like 
excretion or shedding, will also improve our general understanding of such processes (e.g., Kainz et al. 2008; Kraus, Walters, 
et al. 2014). Mechanistic experimental work will also help us understand how contaminants themselves might alter the produc-
tion of beneficial compounds from subsidies (Kolbenschlag et al. 2023; Pietz et al. 2023). Importantly, understanding the context 
in which global change processes are likely to lead to increased production of nutrient-rich subsidies and dilution of contami-
nants, versus when they will lead to increases in harmful metals and organic compounds, can help guide management decisions 
(Schmidt et al. 2013; Kraus 2019; Schulz et al. 2023).
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species and functional groups often vary in their contaminant 
content. For example, Brandt et al.  (2024) found that migra-
tory salmon species varied in their contaminant loads based 
on their life history and trophic level, and the risks and bene-
fits they posed to consumers shifted over time with changes in 
species composition. Overall, the effects of aquatic biodiver-
sity on the ‘dark’ side of subsidies likely vary based on contam-
inant class. Trace metals and other contaminants that cause 
high mortality in aquatic taxa will also likely select for a less 
diverse, more pollution-tolerant community of species with 
the potential to increase contaminants at the per biomass level 
or even overall contaminant fluxes (e.g., Kraus et al. 2022). In 
the case of contaminants that biomagnify with trophic levels, 
such as MeHg, having a more diverse community with more 
trophic levels could result in increased biomagnification and 
thus increased risk as subsidies. In contrast, for those that do 
not appear to magnify, such as microcystins, increased diver-
sity of taxa and trophic levels could act to dilute or buffer such 
risks, especially if contaminants enter food webs through 
specific food resources (i.e., phytoplankton and periphyton 
in the case of microcystins). As biodiversity loss often occurs 
alongside or as a consequence of pollution, further research 
addressing how biodiversity shapes not only the ‘bright’ but 
also the ‘dark’ sides of aquatic subsidies would be useful.

5   |   Conclusions

A growing body of recent research reveals that freshwater 
ecosystems play an outsized role as sources of both nutri-
tionally vital resources and harmful contaminants to a di-
versity of consumers across aquatic to terrestrial food webs. 
Aquatic-based biochemical transformations are responsible 
for shaping subsidies into those that are beneficial as well as 
harmful. Typically, these ‘bright’ and ‘dark’ sides of aquatic-
to-terrestrial subsidies have been studied in isolation, but in 
today's ever-more human-modified landscapes, these risks 
and benefits are likely to be coupled within the same ecosys-
tems (Brandt et al. 2024; Subalusky et al. 2020), complicating 
management decisions (Box 1). Integrative studies that exam-
ine how the bright and dark sides of subsidies vary relative 
to one another and in response to multiple interlinked global 
change stressors (Figure 2)include: (1) quantifying spatiotem-
poral variation in reciprocal subsidies, (2) illuminating the 
full landscape-scale effects of such subsidies and (3) assess-
ing global change effects on the relative risks and benefits of 
subsidies.

Throughout this review, we have illustrated the important and 
complex role that aquatic subsidies can play in terrestrial food 
webs, demonstrating that aquatic ecosystems must be fac-
tored into landscape-scale studies. We have also highlighted 
how the role of surface waters on the landscape in the future 
will become increasingly important and dynamic with global 
change processes, like climate change, land use change and 
biodiversity loss. Artificial boundaries between aquatic and 
terrestrial research have historically limited our understand-
ing of both systems and are an impediment to transformative 
research that accurately reflects the complexity of real inter-
connected ecosystems. Furthermore, divisions between eco-
logical research on resource subsidies and ecotoxicological 

research on contaminants, which have historically been 
funded by different agencies and published in different jour-
nals, have precluded until recently a holistic examination of 
the coupled transport of nutrients and contaminants in many 
cases. Collaborative and integrative research approaches at 
the landscape scale will improve understanding of the nu-
ances of linked ecosystems and the consequences of global 
change (Box 1).
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