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Abstract

Nutrients and light are major resources controlling growth, biomass, and
community structure of phytoplankton. When looking at those resources indi-
vidually, resource uptake and biochemical transformation, and thereby also
the demand for resources, have been shown to be temperature-dependent.
However, there is still a lack of understanding of how temperature controls
the response to multiple resources, although simultaneous limitation by multi-
ple resources is common for single species and whole communities. We
conducted a multifactorial, gradient-design experiment growing four freshwa-
ter phytoplankton species under 125 combinations of temperature, light, and
nutrients (5 X 5 X 5 levels). In three of four species, we found evidence for an
interactive effect of light and nutrients on growth that was modulated by tem-
perature. The effect of high-level supply of both resources on algal growth rate
generally exceeded the sum of their individual effects. Conversely, the lowest
growth rates occurred not necessarily at the lowest level of both resources but
at the most extreme light:nutrient supply ratios (either only light or nutrients
were at highest supply level but the other resource remained at low supply).
These interactive light-nutrient effects were modulated by temperature,
resulting in highest growth rates when both resources and temperature were
highest. Our study demonstrates that temperature modulates the magnitude of
the interactive light-nutrient effect on phytoplankton growth. Consequently,
these findings highlight the importance of considering temperature to under-
stand the limitation by multiple resources and show that growth responses
would be over- or underestimated when these interactions are not taken into
account. Our results provide a first indication that the resource-dependent
growth of phytoplankton will change in a warming world when considering
multiple resources.

KEYWORDS
gradient design, growth, interactive-effects, light:nutrient ratio, resource limitation,
temperature dependence
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INTRODUCTION

Limiting resources constrain the ecological niche of ani-
mals and plants, as they lower nutrient uptake and
growth rates (Tilman et al., 1982). These functional
and numerical responses to resource availability are clas-
sically studied in response to a single limiting factor as
proposed by Liebig’s Law of the Minimum (Sprengel,
1827; von Liebig, 1840). In this view, only the most limit-
ing resource with the least supply compared with the
demand determines the maximum biomass yield of a
population. However, accumulating evidence shows that
in natural communities, organisms often are simulta-
neously limited by multiple resources (Gleeson & Tilman,
1992). The limitation by multiple resources is clearly the
rule rather than the exception at community scales
(Allgeier et al.,, 2011; Elser et al., 2007; Harpole et al.,
2011), caused by different resource demands between
genotypes and species (Arrigo, 2005). Additionally, there is
also the possibility of biochemical limitation by multiple
resources at the individual species level (Arrigo, 2005;
Danger et al., 2008; Sperfeld et al., 2016). In this case, the
presence of one resource is needed to take up or transform
another resource. Autotrophic organisms are particularly
susceptible to such biochemical co-limitation since their
uptake mechanisms for resources are often interdependent
(Pahlow & Oschlies, 2009).

The empirical assessment of multiple-resource limita-
tions relies mainly on nutrient addition experiments
(Elser et al., 2007). In both terrestrial and aquatic primary
producer communities, the magnitude of an organism’s
response (e.g., biomass increase) to multiple nutrients may
range from sub-additive to super-additive, the latter indi-
cating either simultaneous or independent co-limitation
(Harpole et al., 2011). In addition to multiple-nutrient lim-
itation, in aquatic environments, special attention has
been given to nutrient-light limitation that influences
photoautotrophic organisms at biochemical (Eppley et al.,
1970) stoichiometric (Sterner et al., 1997), biomass and
production levels (Carey et al., 2007; Dubourg et al., 2015).
In aquatic systems, the gradients of nutrient concentration
and light intensity differ along the water column, so the
condition for optimal growth, that is, a balanced ratio of
resources (Sterner et al., 1997), is not necessarily given:
Irradiance decreases exponentially with water depth,
whereas nutrient availability often increases toward
deeper water. These inverse resource gradients with water
depth lead to spatially structured resource limitations, and
competition outcomes for light and nutrients deviate from
the prediction made for well-mixed surroundings (Ryabov,
2012). Light and nutrients are both essential resources for
photoautotrophs, and the processes of nutrient uptake and
photosynthesis that determine the organism’s growth are

interdependent; carbon fixation by photosynthesis is lim-
ited by nitrogen (N), as this is needed for the synthesis of
pigments (Pahlow, 2005; Pahlow & Oschlies, 2009).
Consequently, increased light can only increase primary
production if nutrient demands are covered, whereas
nutrient limitation reduces the potential investment in pig-
ment synthesis, which would lead to a suboptimal light
harvesting (Mette et al., 2011). Conversely, N-uptake
and transformation can be limited by light, as the
light-dependent part of photosynthesis provides ATP
and NADPH for anabolic processes (Falkowski &
Stone, 1975)25

It can further be assumed that the resource range
where a limitation by multiple resources occurs changes
along other environmental gradients. Temperature is one
of the main environmental drivers that imposes funda-
mental constraints on the metabolism of organisms and
influences phytoplankton metabolic traits such as the
half-saturation constant (Qu et al., 2018), nutrient uptake
rates (Gao et al., 2000), and minimum resource require-
ments (Lewington-Pearce et al., 2019). Consequently,
there is abundant evidence of the interactive effect of
temperature and single resources (either nutrients or
light) on phytoplankton growth. The availability of nutri-
ents shapes the response to temperature, whereas
nutrient limitation has been shown to reduce the tem-
perature sensitivity which results in a flattening of the
temperature response curve (Aranguren-Gassis et al.,
2019; Maranon et al., 2018). As a consequence of the
temperature-nutrient effect, low nutrient concentra-
tions reduce the temperature optimum for growth
(Bestion et al., 2018; Thomas et al., 2017) and inhibit
community biomass production during a heat wave
(Hayashida et al., 2020). The temperature optimum
(Top) in  turn correlates with the irradiance
optimum (o), S0 species that have their temperature
optimum at higher temperatures prefer higher light
intensities (Bouterfas et al., 2002; Edwards et al., 2016).
In addition to the  temperature-light or
temperature-nutrient interaction effect on growth, tem-
perature influences cellular N:P stoichiometry, indicat-
ing that temperature also controls the resource space
where co-limitation can occur as higher temperatures
increase ribosomal efficiency and thus reduce
P-demand, shifting optimal ratios and thus the most
likely co-limitation region to higher N:P (Thrane
et al.,, 2017; Toseland et al., 2013). Extending the tem-
perature dependence on resource use by including light,
Arteaga et al. (2014) showed global ocean patterns of differ-
ent resource limitations between light, N, and P that
changed along latitudinal gradients and seasons, suggesting
that resource limitations are temperature-dependent for
phytoplankton elemental composition.
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Despite the amount of evidence for a temperature-
dependent light or nutrient effect on phytoplankton
growth, there is still a lack of knowledge of how tempera-
ture modulates the response to multiple resources
(i.e., light and nutrients) in phytoplankton growth.
To understand the type of interaction between tempera-
ture, light, and nutrient supply, and thus what role
temperature plays in the light-nutrient effect, we manip-
ulated the availability of light and nutrients along a tem-
perature gradient and monitored the responses of four
freshwater phytoplankton species. In a controlled labora-
tory experiment, we grew four monoclonal species at
5 X 5 X 5 combinations of temperatures, nutrient concen-
trations and light intensities, and measured their maxi-
mum growth rates. We hypothesized that light and
nutrients interactively affect phytoplankton growth
rather than influencing the growth independently (H1)
and that the interactive effect of light and nutrients
depends on temperature (H2). To test H1 and H2, we
fitted generalized additive models (GAMs), with and
without such interaction terms, and compared their per-
formance using likelihood ratio tests and the corrected
Akaike information criterion (AIC,): A significant likeli-
hood ratio test and lower AIC, in a model with resource
interaction term, relative to the model without interac-
tion term, would support H1. H2 would be supported if
including the temperature-resource interaction enhances
the model’s performance even more, providing empirical
evidence that the dependency on both resources, light
and nutrients, changes with temperature.

METHODS

We conducted a laboratory experiment using four fresh-
water phytoplankton species, Scenedesmus armatus,
Coelastrum astroideum, Staurastrum manfeldtii, and
Cosmarium botrytis, isolated from the lake Grafschaftssee
(Germany, 53°33'005” N; 7°58'049” E) in July 2020. We
selected these species to cover a range of cell sizes
(39-16,900 pm?) and growth characteristics as well as rela-
tive abundance in the natural community (species herein-
after referred to as Scenedesmus, Coelastrum, Staurastrum,
and Cosmarium). We reduced the trait variability within
the population by wusing monoclonal monocultures.
Thereby, we focused on biochemical co-limitation (multi-
ple resources needed by a single cell) and excluded
co-limitation due to different resource demands based on
genetic variation (different genotypes in the population).
Species isolation was conducted using a micropipette
(Andersen & Kawachi, 2005) under an inverted micro-
scope (Leica, Germany). We repeated the isolation steps
until a monoclonal culture was obtained for each species

(cultures were unialgal but not axenic). Prior to the start of
the experiment, species were cultivated for 6 weeks in 1/4
WC Medium (Guillard & Lorenzen, 1972) at 18°C and a
light intensity of 70-umol photons m~2s™"' with a 12/12
light/dark regime.

Experimental design

We performed a multiple-gradient experiment (Table 1)
applying five levels of temperatures (10-30°C), five light
intensities (36-264-pmol photons m*s™*), and five nutri-
ent concentrations (N and P with a constant ratio) for
each species, resulting in a total of 500 experimental
units. The experiment was conducted in cell culture
flasks (50 mL, Sarstedt AG & Co. KG) using a total vol-
ume of 40 mL. The bottles were incubated in the indoor
mesocosms at the ICBM Wilhelmshaven (Gall et al.,
2017) to ensure full light spectrum and temperature con-
trol. To obtain five different temperature levels, all sam-
ples were incubated using floating plastic boxes on the
water surface of the mesocosm providing the respective
temperatures, which we controlled via data logger (Hobo
Pendant, Onset, Bourne, MA, USA) exposed in the boxes
(Appendix S1: Figure S1). For the light treatments
(Table 1), we used two light-emitting diode (LED) modules
per mesocosm (Evergrow IT2040; Shenzhen Sanxinbao
Semiconductor Lightning Co. Ltd) positioned above each
mesocosm and adjusted light intensity by covering the
floating plastic boxes with four different neutral gray filter
foils (LEE Filter Nos. 209, 210, 211, and 298), which
reduce intensity but retain the full spectrum (Hintz
et al.,, 2021). The light reduction (in percentage) by the
light filter foils was measured with a spherical PAR sensor
(US-SQS/L Submersible Spherical Mirco Quantum Sensor,
Walz, with LI-250A, LI-COR) that was covered by the

TABLE 1
degrees Celsius], light intensity [in micromoles of photons per

The experimental treatments (temperature [in

square meter per second], and nutrients [in micromoles per liter])
were set up in a combined gradient design (5 X 5 X 5) resulting in
125 treatments per species whereby nitrogen (N) and phosphorus
(P) were added together as the nutrient treatment.

Nutrients
Temperature Light N/P
10 36 1.8/0.1
15 62 13.2/0.9
20 135 26.3/1.7
25 183 34.3/2.2
30 264 46.5/3.0
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respective light filter foil and placed below a LED panel.
The full light intensity (100%) in the mesocosm without
light filter foil was measured at the surface of the water
(position of the plastic boxes) in the mesocosms and the
absolute light intensity for the other light levels was calcu-
lated with the full light intensity and the amount of light
reduction (in percentage) induced by the respective filter
foil. For the nutrient gradient, we added nitrogen (N, as
NaNO;) and phosphorus (P as K,HPQO,) in different
concentrations but same ratio at the beginning of the
experiment as a single addition (Table 1). A bioassay
conducted with the initial community where the spe-
cies originated from showed a co-limitation of both
N and P (Appendix S1: Figure S2). To avoid limitations
by other elements, we added nutrients, except N
and P, according to 1/4 WC growth medium (Guillard &
Lorenzen, 1972). Note: The targeted N and P additions dif-
fered from the actual nutrient additions shown in Table 1,
so the actual N and P ratio deviated from the planned 16:1
ratio (mean molar N:P ratio = 16.2, SD = 2.3).

Sampling

We measured the optical density (OD, absorbance at
440 nm) and the raw fluorescence (RFU, excitation =
395 nm; emission = 680 nm) using a microplate reader
(Synergy H1, BioTek instruments) to track the biomass
development over time. Flasks were gently shaken before
0.5mL subsamples were removed for sampling under
sterile conditions (clean bench, Berner) and measured
using 48-well microplates (SARSTEDT AG & Co. KG)
every other day. After sampling, we placed the cell flasks
randomly in their respective light treatment boxes in the
incubators. Final samples were taken when the satura-
tion phase (carrying capacity) was reached. We defined
the saturation phase to be reached as soon as the OD did
not increase for at least six following days (three sam-
plings). Hence, we took final samples at different times of
the experiment for different treatments, depending on
the time they reached the saturation phase (Appendix S1:
Figure S3).

TABLE 2

Growth rates

For growth rates determination r (day™), we used the
R package “growthrates” to capture the maximum slope
of the growth curve, using the RFU measurements. The
used function “fit_easylinear” (Hall et al., 2014) relies on
the slope estimates from a linear trend encompassing at
least four data points. Since Staurastrum and Cosmarium
are desmids and can produce some mucous that sur-
rounds the cells as gelatinous layer (mucous influences
the OD but not the RFU), the OD and RFU data showed
in some treatments opposite trends over time. Therefore,
we decided to use the RFU data for all species to deter-
mine the growth rates. The RFU based data provided
growth curves that were independent of bacteria
and mucous production and showed less variability
(see Appendix S1: Figure S4 for incubation curves based
on OD data, Appendix S1: Figure S5 for comparison bet-
ween growth estimates on RFU and OD basis, and
Appendix S1: Table S1 for outcomes of statistical analyses
with growth rates based on OD data).

Statistical analyses

We performed the complete statistical analysis in
R (version 3.6.2, the R Foundation for Statistical
Computing Platform). Sample sizes for the species
Cosmarium and Staurastrum were reduced for further
analyses due to contaminations of Coelastrum (see Table 2
for sample size).

Interactive resource effect on growth (H1)

To provide evidence for an interactive light-nutrient
effect on species-specific growth rates (H1), we used two
GAMs for each species, respectively: The first model
reflects independent effects of temperature, light, and
nutrients (hereafter null model) (Equation 1). The second
model includes an interaction term of light and nutrients
(hereafter Resource Interaction model) on species-specific

Model comparison based on corrected Akaike information criterion (AIC,) for all species (see for model validation plots, and

for growth rate predictions by the different models Appendix S1: Figures S6 and S10).

Coelastrum
Model AIC,
Independent effects (null model) —225
Interactive resource effect (H1) —A22
Interactive temp-resource effect (H2) —A26
No. Obs. 125

Cosmarium Scenedesmus Staurastrum
AIC, AIC, AIC,
—248 —280 —204
—A6 —A9 +A2
—A17 —A33 +A6

109 124 100
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growth rates (Equation 2). More specifically, for the null
model, temperature, light, and nutrients were modeled as
smooth functions, while for the Resource Interaction
model, we added a linear pairwise two-way interaction
between light and nutrients (Equation 1). We compared
the models via corrected AIC (AIC.) and likelihood ratio
test (Stasinopoulos & Rigby, 2008) using the R package
“MuMIn” (Barton, 2023). While the likelihood ratio test
assesses whether including the interaction term signifi-
cantly enhances the model’s goodness of fit (Lewis
et al., 2011), the AIC balances the model’s goodness of fit
with its complexity, aiming to find a parsimonious model
that avoids overfitting, thus identifying the most appro-
priate model (among our hypothesis-based model candi-
dates) in line with the data. As such, we are finding
strong support for the interactive effect between nutrients
and light when the Resource Interaction model has a dis-
tinctly lower AIC. than the null model (AAIC. > 2) and
the likelihood ratio test rejects the null model (p < 0.05).
For model fitting we used, the R package “gamiss”
(Stasinopoulos & Rigby, 2008), and for model validation
the R package “gamiss:ggplots” (Stasinopoulos et al., 2022).

Temperature effects on the interactive resource
effect (H2)

In order to test whether temperature influences the
interdependent response to both resources (i.e., interactive
resource effect) (H2), we fitted a third GAM that includes
all second- and third-order temperature-resource interac-
tion terms (Equation 3) (hereafter temperature-resource
model). A lower AIC, for the temperature-resource model
and a significant likelihood ratio test compared with the
resource interaction model indicate that growth rates are
better predicted by a model that considers the interactive
temperature-resource effects, thus supporting H2.
Null model (HO):

E(r)=a+f1(T) +f,(N) +f3(L) (1)
Resource Interaction model (H1):

E(r)=a+f(T) +f,(N) +f3(L) + biNL + b,TL + bs TN
(2)

Temperature-Resource Interaction model (H2):

E(r)=a+f,(T)+f,(N) +f5(L) + byNL + b,TL + b3 TN + b, TNL

(3)

The models were created for each species separately.
E(r) is the expected growth rate r; f,,f,.f; are smooth

functions of the explanatory variables temperature (T),
nutrients (N), and light (L); by1,b,,b; the coefficients of
linear two-way interactions between explanatory vari-
ables; b, the coefficients of the three-way interaction; and
a the model intercept. The smooth functions allow for
nonlinear effects on growth of the used factors. Although
we are aware that the nutrient-light interaction might
also be nonlinear, we only considered a linear interaction
term here for simplicity, ensuring the interaction is
monotonic and not generating an overly complex model
in respect to the size of the data. The model assumes nor-
mally distributed (Gaussian) errors (see Appendix S1:
Figure S6 for model validation plots for the
temperature-resource  model, and Appendix SI:
Figures S7-S10 for model validation of all three models
[null model, H1, H2]).

The growth rate predictions by the model with the
best AIC. were used for data visualization in form of
response surface plots. For the visualization of the
observed growth rates as well as predictions by the other
models along the resource gradients and temperatures
see Appendix S1: Figure S10.

For the species where the temperature-resource model
had the best AIC., we compared the observed growth rates
with those that were predicted by the null model using nor-
malized quantile residuals (standardized difference
between observed growth rates and predicted growth rates)
(Dunn & Smyth, 1996). We visualized the residuals along
the predicted values as well as the used light:nutrient
ratios, for each temperature separately, which allowed us
to identify at which resource and temperature conditions
the growth rates are under-, or overestimated by the null
model (Staurastrum was excluded as the growth rates
were better predicted by the null model, rejecting H1 and
consequently H2). In general, systematic deviations of the
residuals from 0 indicate a misspecified model, where sys-
tematically positive residuals present higher observed
growth rates and thus underestimated growth rates by the
null model, and systematic negative values present lower
observed growth rates and thus overestimated growth
rates by the null model (Figure 1). If these residual pat-
terns vanish in models incorporating interaction terms
provides additional support for such interactions modulat-
ing phytoplankton growth rates.

RESULTS
Interactive resource effect on growth (H1)
For three of the four species, observed growth rates were

better predicted by the resource interaction model that
included the interaction term between light and nutrients
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FIGURE 1 Conceptual figure of possible responses to gradients of two resources. (a) On a response surface, different responses to

multiple resources can be found resulting in numerous limitation scenarios depending on the supply ratio and concentration of the
resources (R1, R2) (Sperfeld et al., 2016). Black solid lines are resource-dependent growth isoclines that indicate equal growth at changing

resource availabilities. (b) The interactive effect of the two resources can deviate from the additive response (no interaction, gray bar)
resulting in higher or lower responses. (c) To classify at which resource conditions along the resource gradients the interactive effect would
be under-, or overestimated by an additive null model, the residuals of the additive model can be used. Positive residuals mean that the

observed response is higher than the additive response and thus would be underestimated by the null model (turquoise bars). Negative
residuals mean that the observed response is lower than the additive response and thus would be overestimated by the null model

(purple bars).

than by the model without interactions (null model),
including only the independent effects of temperature
and both resources (based on the AIC. difference to
null model, AAIC,, and a likelihood ratio test p < 0.05)
(Table 2). One exception was Staurastrum, whose
growth rates were better predicted by the null model
than by the resource interaction model due a higher
AIC, for the resource interaction model and a nonsig-
nificant likelihood ratio test (p > 0.05) (Table 2 and
Appendix S1: Figures S7-S9). Therefore, light and
nutrients interactively affected the growth rates in
three of the four species resulting in highest growth
rates when both resources together were at highest
level and lowest when only one resource was enhanced
but the other was kept at the lowest level (hereafter
extreme resource supply ratio) (Figure 2).

Interactive temperature-resource
effect (H2)

To test whether the observed interactive resource effect is
temperature-dependent, we compared the resource
interaction model with the temperature-resource inter-
action model. For three of the four species (except for
Staurastrum), the temperature-resource model showed

distinct lower AIC. values than the resource interac-
tion model (Table 2 and Appendix S1: Figures S7-S9),
and the likelihood ratio test rejected the resource inter-
action model (p < 0.05). Therefore, temperature did
not only increase predicted growth rates gradually but
influenced the interactive effect of light and nutrients
on species-specific growth rates. This interactive
temperature-resource effect resulted in highest growth
rates when all three factors were at highest level
(Figure 2).

The visualization of the normalized quantile residuals
of the null model along the light:nutrient ratios for each
temperature showed clearly identifiable residual patterns
(Figure 3) (while the temperature-resource model exhibits
no significant residual patterns; see Appendix SI1:
Figures S7 and S8 for residual patterns of all models). At
extreme light:nutrient supply ratios (Figure 3, purple
shapes) the null model overestimated the growth rates
with lower and more negative values the higher the
temperature (Figure 3). At the same time, the null
model underestimated the growth rates at intermediate
light:nutrient supply ratios, especially when both
resources were at highest level (Figure 3, turquoise tri-
angles), with a more severe residual pattern the higher
the temperature (Figure 3). Therefore, the overesti-
mation of growth rates under extreme resource supply
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FIGURE 2 Response surface for species-specific growth rates (day™"), predicted by the best generalized additive model (determined
with corrected Akaike information criterion and Likelihood Ratio Test), along resource gradients and across temperatures (10-30°C). Except
for Staurastrum, the model that fitted the observed growth rates best was the temperature-resource model. For Staurastrum, the null model
was used for visualization. Dots represent the resource concentrations used in the experiment. Black lines are growth isoclines and were
created with geom_contour in ggplot. Nitrogen concentration was used as a representative parameter for nutrient addition as the molar ratio
between nitrogen and phosphorus was kept constant (see Table 1 for corresponding phosphorus concentration). Response surface plots that
contain only the observed growth rates can be found in Appendix S1: Figure S10.

ratios and the underestimation of growth rates at intermedi- DISCUSSION

ate resource supply ratios, particularly when both resources

are high, increased with rising temperature, if temperature-  The objective of this study was to test whether the tem-
resource interactions were not accounted for. perature dependence of metabolism also affects the



8 of 12 HEINRICHS ET AL.
10 15 20 25 30 Light
v ®|36
A ®|62
A A @]
_ 21 vV e, e 1©] 135
g voe o] 183
8 PS Am Qv o | — |
E oy o N O | 264
2 o e Voay, ® © o
[%) (@]
- 0- .
§ VVVQE‘ ° Nitrogen
g O A OKDD ol5
- 'Ao Q A ‘: oo ® 0|17
- o e v o 28
— I
o v | £]40
00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 15 00 05 10 15 L2
log L:N ratio

FIGURE 3

Normalized quantile residuals of the null model (i.e., standardized differences between the observed growth rates and those

predicted by the null model) along the supplied light:nutrient ratios (L:N) across temperatures (panel grids). Plot includes the data of the
species Coelastrum, Cosmarium, and Scenedesmus (Staurastrum was excluded as this species does not show a temperature-resource effect).
Smooth solid lines and CIs were created via generalized additive model in ggplot and indicate a systematic deviation from zero. Shapes
present the nutrient concentrations in nitrogen (but see Table 1 for phosphorus concentrations) and filled colors the light intensities.
Colored contours (turquoise and purple) present the resource treatments at highest and intermediate (turquoise) resource supply ratio, and

extreme (purple) resource supply.

response to multiple resources. The multifactorial gradi-
ent design used here allowed us to show the inter-
dependent effect of light and nutrients on phytoplankton
growth and to provide experimental evidence for the tem-
perature dependence of multiple-resource limitations
within phytoplankton species. To our knowledge, our
study is the first that systematically assesses and quan-
tifies the combined effect of temperature and multiple
resources, light and nutrients, on phytoplankton growth.
The interactive resource effect we found confirms H1
and is not surprising as the photosynthetic apparatus is
strongly coupled with the availability of nitrogen and
therefore reflects the mechanistic links between carbon
fixation and chlorophyll synthesis. Consequently, nutri-
ent limitation reduces the potential investment in pig-
ment synthesis, which can lead to a suboptimal light use
efficiency (Mette et al., 2011). While chlorophyll content
and thus the nitrogen demand for photosynthetic pig-
ments generally decreases with increasing light intensity
(Eppley & Sloan, 1966), increased light can only increase
photosynthesis and thus growth (Eppley & Sloan, 1966) if
nutrient demands are covered which is in line with our
findings. Accounting for temperature-dependent inter-
active resource effects (H2) leads to significantly
improved models without overfitting (see Appendix S1:
Figures S7 and S8), confirming H2 and thus showing
that the interdependent response to light and nutrients
is modulated by temperature. The one exception was
Staurastrum, which showed the best growth rate

predictions by the null model, rejecting H1 and H2.
However, it should be noted that especially at highest
temperature (30°C) and high-resource conditions
Staurastrum showed a number of missing values due to
contaminations which could have influenced the
model outcome (see Appendix S1: Figure S10 for miss-
ing values). Moreover, the growth rates of Staurastrum
based on OD data showed a better model outcome
when accounting for the resource interaction (H1)
compared with the model without resource interaction
(null model), strengthening the overall results of this
study (see Appendix S1: Table S1 for model comparison
based on OD data). A further potential caveat when
interpreting the results of this study is the fact that
there was no acclimation of the cultures prior to the
experiment. Organisms need time to respond to their
environment to optimize performance (i.e., gradual
acclimation; Fey et al., 2021) by for instance maximizing
light absorption and adjusting nutrient uptake rates
(Caceres et al., 2019; Lewis et al., 2019). Thus, it is likely
that the used species might have underperformed during
the first days of the experiment relative to acclimated
populations. However, we consider this bias to be minor
as we ran the experiment until the populations reached
their stationary phase (minimum of 12 days) and esti-
mated the maximum growth rate in this period of time.
Based on the evidence from the superior H2 model
indicating temperature-dependent interactive resource
effects, we show that phytoplankton growth is promoted
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under high-resource supply of both light and nutrients at
warm temperatures rather than at lower temperatures.
This positive interactive effect resulted in maximum
growth rates at highest levels of temperature, light, and
nutrients. Although we did not find other studies that
tested for the combined effect of all three factors together,
there are multiple studies focusing either on temperature-
light or temperature-nutrient effects on phytoplankton.
These two-way interactions support the promoting tem-
perature effect at high-resource concentrations we found
and suggest a stronger dependence on resources with ris-
ing temperature. For instance, along an increasing light
gradient, studies reported higher maximum population
growth rates (at I,,) at warmer than colder conditions
(when the temperature is below T,p,) (Boumnich et al.,
1990; Bouterfas et al., 2002; Hammer et al., 2002; Spilling
et al., 2015). Further, Hayashida et al. (2020) found that
rising temperatures due to marine heat waves yielded
stronger algal blooms in nutrient-rich than nutrient-poor
waters. Dai et al. (2023) showed that warming favors
coastal phytoplankton blooms with an effect size that was
positively influenced by nutrient enrichment.

Previous studies showed that the required light inten-
sity as well as the nutrient concentration at which growth
is maximized increases as temperature rises but also the
growth rates itself (Baker et al., 2016; Qu et al., 2018;
Thomas et al., 2017). This means that on one hand a
higher supply is required to achieve maximized growth
rates as temperature rises, but on the other hand, when
the supply is met, higher rates can be achieved. In sup-
port of this, other studies showed that the higher demand
for nutrients with rising temperatures (Lewington-Pearce
et al., 2019; Qu et al., 2018) makes phytoplankton living
in nutrient-poor waters more vulnerable to high tempera-
tures (Aranguren-Gassis et al., 2019). Aligning with these
findings, a freshwater mesocosm experiment showed a
positive biomass response to warming at high nutrient
supply, but negative at nutrient-limiting conditions
(Verbeek et al., 2018). Our results perfectly fit into these
findings. While in our study rising temperature promoted
the positive effect of multiple resources at intermediate
supply, growth rates remained constantly low across tem-
peratures at extreme light:nutrient supply ratios. These
findings coincide with previous studies showing a weaker
response in growth along a temperature gradient when
nutrients were limiting (Aranguren-Gassis & Litchman,
2020; Maranon et al., 2018). In our study, the null model
increasingly overestimated the growth rates at extreme
resource supply ratios the higher the temperature sugg-
esting that warming narrows the required nutrient:light
ratios to promote growth. Klausmeier et al. (2004) manip-
ulated phytoplankton growth rates using a chemostat
setup and showed that the flexibility of the cellular N:P

ratio is reduced at high growth rates but is more depen-
dent on the supplied nutrient ratios at low growth rates.
The limited tolerance of the cellular N:P ratio indicates
that fast-growing phytoplankton requirements are more
stoichiometrically constrained than slow-growing phyto-
plankton (Hillebrand et al., 2013; Klausmeier et al.,
2004). Although these studies focused on the ratio
between two nutrients (N:P), the need for a certain
resource ratio at high growth rates (and thus high tem-
peratures) may also underlie our results for different
light:nutrient supply ratios.

In conclusion, our results on the temperature-dependent
response to multiple resources agree with studies that tested
for temperature-dependent responses to single resources.
Additionally, we showed that positive light effects on phyto-
plankton growth rates are highest in warm and
nutrient-rich conditions, nutrient effects are highest in
warm high-irradiance conditions, and temperature effects
are highest at high-resource supply in intermediate ratios.
We can conclude that temperature modulates the limitation
by multiple resources in predictable ways, which opens the
opportunity to improve parametric models trying to predict
global change responses in aquatic systems.

IMPLICATIONS

Anthropogenic global change alters surface tempera-
tures in aquatic ecosystems (Pachauri et al., 2014),
nutrient availability, and light conditions. Understanding
the mechanisms that shape phytoplankton responses to
temperature-resource interactions is therefore crucial for
predicting how climate change and human impact will
alter phytoplankton productivity at the basis of aquatic
food webs. Ignoring these interactions would overestimate
or underestimate the impact of multiple resources under
different temperature conditions that shape resource com-
petition and community structure.
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