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Generative AI as a tool to accelerate the field 
of ecology
 

Kasim Rafiq    1 , Sara Beery    2, Meredith S. Palmer    3, Zaid Harchaoui4 & 
Briana Abrahms    1

The emergence of generative artificial intelligence (AI) models specializing 
in the generation of new data with the statistical patterns and properties 
of the data upon which the models were trained has profoundly influenced 
a range of academic disciplines, industry and public discourse. Combined 
with the vast amounts of diverse data now available to ecologists, from 
genetic sequences to remotely sensed animal tracks, generative AI presents 
enormous potential applications within ecology. Here we draw upon a 
range of fields to discuss unique potential applications in which generative 
AI could accelerate the field of ecology, including augmenting data-scarce 
datasets, extending observations of ecological patterns and increasing the 
accessibility of ecological data. We also highlight key challenges, risks and 
considerations when using generative AI within ecology, such as privacy 
risks, model biases and environmental effects. Ultimately, the future of 
generative AI in ecology lies in the development of robust interdisciplinary 
collaborations between ecologists and computer scientists. Such 
partnerships will be important for embedding ecological knowledge  
within AI, leading to more ecologically meaningful and relevant models.  
This will be critical for leveraging the power of generative AI to drive 
ecological insights into species across the globe.

Over the past decade, the application of AI to ecology has revolution-
ized our ability to understand the mechanisms governing the structure 
of ecological systems and the drivers of evolutionary change1,2. From 
enabling the rapid and cost-effective processing of environmental 
big data for ecosystem monitoring3 to quantifying species interac-
tions in ecological networks4, AI has swiftly gained traction as a tool 
to provide deeper insights into ecology and evolution across diverse 
taxa and systems.

AI’s initial impact within science, including ecology, has been 
predominantly through AI methods wherein models learn to make 
predictions or classifications from training data that generalize well to 
previously unseen data from the same distributions (terms are further 
defined in Table 1). It has enabled the prediction of protein structures5, 

the classification of wildlife and plant species within images3 and the 
optimization of traffic flow in urban areas6. As the AI discipline has 
evolved, it has progressed to include a class of AI algorithms capable 
of generating new data with the statistical patterns and properties of 
the data upon which the models were trained, herein referred to as gen-
erative AI. Though some downstream applications of non-generative 
and generative AI can overlap, such as in classification and predic-
tion tasks, the algorithms used to learn from the training data and 
their subsequent capacity to generate realistic data are what define 
generative AI models (Box 1). Prominent examples of generative AI 
models include GPT-4o7, which can generate text, Stable Diffusion8, 
which can generate images, and Runway’s Gen models9, which can 
generate video. Moreover, in addition to these large, computationally 
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against non-generative AI, traditional statistical inference or other 
established methods within the field, as the advantages of different 
approaches will often be context-dependent, and in many cases there 
remains uncertainty on whether and how generative AI will affect ecol-
ogy. Instead, we reference these other approaches to contextualize 
the potential of this rapidly evolving technology alongside familiar 
methods. By doing so, we aim to encourage discussion on the broad 
diversity and scope of generative AI’s current and future role within 
the discipline rather than focussing only on established use cases. 
We focus primarily on applications unique to ecology and discuss a 
selection of (non-exhaustive) potential use cases, such as using gen-
erative AI models to enrich data-scarce ecological datasets, extend 
observations of ecological patterns, build upon existing mechanistic 
modelling frameworks and increase the accessibility of ecological data. 
Additional potential applications of generative AI within ecology and 
suggested references for further reading can be found in Table 2. We 
close by summarizing key considerations and challenges for using 
these models within ecology.

Augmenting data-scarce datasets
In recent years, technological advances have greatly enhanced data col-
lection in ecology, yielding vast volumes of diverse data, from remotely 
sensed satellite images to animal tracking data to species detections 
from autonomous camera trap arrays13,14. However, the increased scale 
of incoming data has brought associated challenges in data processing, 
resulting in increased times for deriving scientific insights. These chal-
lenges, alongside the increasing accessibility of expert-annotated data-
sets, have catalysed interdisciplinary collaborations between ecologists 
and computer scientists to develop AI models, typically non-generative, 
capable of rapidly and accurately classifying and processing data, 
such as identifying species in camera trap images and plants in 
citizen-science sightings3,15,16. This has saved enormous amounts 
of time and money for ecology and conservation15. For AI models  
to perform accurately across different conditions, such as different 
ecosystems, they need to be trained on a large number of representa-
tive samples of every classification category across all contexts where 
the model will be used. However, expert-annotated datasets rarely 
cover all classification categories and environments uniformly. For 
example, in the context of camera trap images, data for rare species are 
less abundant than for common ones, and models are often trained in 
specific ecosystems that are not generalizable across the entire focal 
species’ range17,18. Particularly for wildlife species known to be elusive 
with large and diverse ranges, which encompasses many threatened 
taxa, or rare endemic plant species, these data may be impossible to 
collect in the wild.

Data augmentation is a tactic used to supplement real data for 
training AI models. Datasets can be augmented to increase the amount 
and diversity of training data through methods such as altering real 
data19 and generating novel synthetic training data20. In the latter case, 
generative AI methods, such as generative adversarial networks21 and 
diffusion models22, could be applied to help researchers to create 
realistic data for species, environments or scenarios where data are 
scarce. For example, data could be generated across the categories 
of interest23, targeted to specifically fill data gaps (for example, rare 
species24) or could increase the contextual diversity for training or 
evaluating models in new regions or ecosystems25. To this end, genera-
tive AI models have already been used to improve the classification of 
rare mammals in camera traps26, insects in sticky paper trap images27 
and species in citizen-science data28. Moreover, non-generative AI 
classification models trained with generative-AI-augmented datasets 
have been used to access new ecological insights from big data, helping 
us to better understand challenging-to-observe ecological processes. 
Such models have, for example, been used to identify bat species within 
vertical-looking radar, which had hitherto been impossible due to their 
morphological similarities with birds, thereby allowing us to gain new 

resource-intensive models, generative AI models are increasingly being 
developed that are capable of running on consumer hardware and by 
a greater diversity of independent research teams10. To date, genera-
tive AI models have been used to generate a variety of data types, from 
bio-climatic variables for improved weather forecasting11 to genetic 
sequences for creating new protein structures12.

Applications of generative AI in ecology
In this Progress, we aim to highlight the wide range of potential 
opportunities and challenges of applying generative AI as a tool in 
ecology. Our goal is not to rank or endorse generative AI methods 

Table 1 | Common generative AI terminology and definitions 
for ecologists

Term Definition

Bias In the context of generative AI, these are 
systematic errors or misrepresentations that 
arise from patterns in the training data that 
favour certain groups or ideas, perpetuate 
stereotypes or lead to incorrect assumptions.

Data augmentation The process of generating new synthetic data to 
improve an existing dataset of real data.

Diffusion models A type of generative AI model that uses a 
series of forward (noise-adding) and reverse 
(noise-removing) steps to gradually learn the 
underlying structures of the data for generation.

Fine tuning The process of further training a pre-trained 
model to improve its performance in a specific 
task or domain. For example, foundation 
large language models can be fine tuned for 
academic writing applications by providing 
additional academic texts for training.

Foundation models AI models trained on large quantities of training 
data that enable them to carry out a broad range 
of tasks. For example, foundation large language 
models can be used to summarize, label and 
translate texts. These models can be fine tuned 
for specific tasks or domains.

Generative adversarial 
networks

A type of generative AI model that learns 
to generate outputs by generating new 
samples, evaluating them against real data and 
penalizing inaccuracies to improve subsequent 
generations.

Generative AI A class of AI models that generate new data with 
the statistical patterns and properties of the data 
upon which the models were trained.

Hallucinate/hallucination The generation of false or misleading 
information not supported by the input data or 
training dataset. It often occurs when the model 
generates plausible but factually incorrect or 
nonsensical outputs.

Large language models A type of generative AI model trained to 
understand, interpret and generate language. 
They are trained on vast text datasets and can 
perform various language-related tasks.

Multimodal AI AI (generative or non-generative) that integrates 
multiple data types, such as text, audio and 
image data, to perform tasks, including data 
generation, prediction and classification.

Retrieval-augmented 
generation

A technique for improving the ability of large 
language models to retrieve information from 
external sources that the models were not 
necessarily trained on.

Training data In the context of AI, a dataset used to train AI 
models.

Unsupervised learning A method for training AI models where the 
model learns from training data that have not 
been pre-labelled or annotated.
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BOX 1

Underpinnings of generative AI models
Generative AI encompasses a range of data-generation AI models, 
each adopting unique methods to generate data. For example, in the 
below figure, we illustrate how generative adversarial networks learn 
to generate data, such as animal vocalizations, through a feedback 
loop by using random noise to create fake data that are then evaluated 
by a discriminating component of the model. The feedback from 
the discriminator improves the generation of subsequent more 
realistic-looking data21. By contrast, diffusion models learn to generate 
data, such as camera trap images, by iteratively adding Gaussian 
noise to a data sample and then gradually denoising the sample 
over a series of mirroring steps22. Note that, often, the underlying 
architecture used for generating data can be applied to different data 
types; for example, both generative adversarial networks and diffusion 
models can be applied to similar data, including audio, images and 
video. As such, which model architectures to use depends on the 
specific details of the applications, such as end-use cases and training 
data quantities, and requires consultation with computer scientists. 
An overview of how other generative AI models, such as variational 
autoencoders and large language models, represent distinct 
approaches to creating new data is included in refs. 80,81.

Often, these models learn the underlying patterns giving rise to 
real-world data through unsupervised learning, an approach where 
models are provided unlabelled training data, thus allowing them to 
take advantage of large datasets where manual human labelling would 
be too expensive or time consuming. This contrasts with many (though 

not all) non-generative AI approaches where annotated training 
datasets are typically required; moreover, generative AI models 
often require scales of training data several magnitudes greater than 
non-generative AI approaches. However, when trained with enough 
data, generative AI algorithms can give rise to foundation models: 
large-scale models suitable for a range of general tasks, such as image 
generation across different use cases (for example, ref. 8). Foundation 
models can further be adapted or fine tuned for improved performance 
in domain-specific applications with relatively little additional training 
data. Foundation image-generation models could, for example, be 
fine tuned to generate camera trap-style images of rare species in 
undersampled regions (Augmenting data-scarce datasets section), 
whereas general-purpose large language models could be fine tuned 
to increase their performance in extracting information from scientific 
text (Enhancing the accessibility of existing datasets section).

Moreover, different data types (such as text, image or video) 
can be combined during the training process, and models can 
learn to make useful connections between diverse data modalities. 
For example, many image-generation models can combine 
user-provided text prompts and image inputs to enable customizable 
image editing or to generate new images8. This flexibility across 
data types is particularly relevant in ecology, where the burgeoning 
availability of diverse data—from genetic sequences to animal 
movement tracks—opens the possibility for ecologists to integrate 
large, diverse datasets within such multimodal generative AI models.

Real animal vocalizationsa

b

Real data

Fake dataGeneratorRandom noise

Discriminator

Feedback used to fine tune the generator and discriminator

Addition of noise to original data

Addition of noise to generate data

Did the discriminator 
think the created data 
was real or fake?
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insights from existing data into large-scale aerial migrations, such as 
on aerial habitat selection and shifting migration timings29.

Whereas current ecological data augmentation applications have 
predominantly focussed on images, these techniques could also be 
expanded to other data types, such as audio and animal-borne sensor 
data. For example, Wan and Dodge used generative AI to interpolate 
data gaps in animal trajectories and found such models performed 
better than other commonly used interpolation techniques30, hinting 
at their potential to recover information from often irregular datasets 
within movement ecology. Moreover, within engineering, generative 
adversarial networks have been used to generate synthetic accelera-
tion datasets, enhancing the ability of non-generative AI models to 
detect building damage31. Similarly, in animal ecology, a compelling 
question is whether generative AI models could augment sparse 
behaviour occurrences in datasets from animal-borne sensors and 
thus improve the ability of non-generative AI classification models 
to recognize important animal behaviours, such as predation events, 
human encounters and other interspecific interactions32.

The application of generative AI for data augmentation is relatively 
new, and challenges exist. For example, in image-generation, current 
systems struggle to accurately generate images of rare species from 

only a few examples33 and can hallucinate or exaggerate species’ tex-
tural features or morphology28. Such hallucinations will also probably 
extend to the generation of other data types. Moreover, training with 
synthetically augmented data can be highly inefficient compared to real 
data, sometimes requiring 10× to 100× more training images to achieve 
the same performance gains24,34. Continuing collaborations between 
ecologists and computer scientists will be critical for addressing these 
challenges in the context of ecological applications and in growing the 
range of generative AI applications for ecological data augmentation.

Extending ecological patterns beyond observed data
Ecological patterns and processes arise from complex interactions 
between organisms and their environments across multiple spatial and 
temporal scales. These interactions can be high-dimensional and non-
linear, such that ecological phenomena are often difficult to accurately 
predict and observe directly35. Deciphering the underlying drivers 
behind these ecological patterns is a central challenge for ecologists 
due in part to the innate complexities of natural systems, the volumes 
of data—from animal movements to physiological states to satellite 
imagery—required to quantify ecological processes and the tractability 
of contemporary models36,37.

Table 2 | Examples of potential generative AI applications within ecology

Potential application in 
ecology

Illustrative example Potential advances to current 
methods

Parallels in other fields Key 
references

Enhancing our 
understanding of complex 
ecological processes

Using generative models to 
understand high-order interactions 
within plant communities

Could capture complex patterns 
that are difficult to model 
heuristically and with other 
computational approaches

Generative AI is being used within 
the neurosciences to enhance our 
understanding of complex brain 
processes, including brain ageing 
and disease progression

35,70

Improved modelling of 
individual dynamics in 
agent-based models

Using generative agent-based models 
to study shifts in animal movements 
and disease risks under global change

Could more accurately represent 
animal decision-making compared 
to existing agent-based methods

In the social sciences, generative 
agent-based models are being used 
to study complex social behaviours 
and decisions.

42,43

Forecasting species 
responses to novel 
conditions

Using generative AI models to 
generate probabilistic forecasts of 
species migrations under extreme 
climate events

Could enable the prediction of 
complex behaviours or ecosystem 
dynamics in new contexts with few 
examples in the training data

Generative models have been used 
to predict the pathogenicity of new 
disease variants and more efficiently 
quantify uncertainty in climate 
forecasts

71,72

Simulating population 
data to infer genetic 
parameters, such as 
mutation rates

Using generative models to simulate 
the effect of habit fragmentation on 
gene flow

Generative models could perhaps 
identify genetic parameters from 
real data, avoiding the biases of 
setting parameters manually

Generative models have been 
used to reconstruct the genetic 
parameters of human data

73

Enriching ecological 
datasets that have limited 
data

Augmenting datasets of rare plant 
species with generated images to 
improve species classifications in 
citizen-science applications

Could provide more realistic 
synthetic data than other methods 
of data augmentation

Generative models are enhancing 
medical imaging datasets for rare 
conditions

74

Annotating and labelling 
large social–ecological 
datasets

Using large language models to 
analyse social media sentiments on 
attitudes towards nature topics, such 
as biodiversity loss

Increased efficiency over human 
screening alone; supports 
multilingual text; more flexibility in 
AI text categorization

Generative models are being used 
by businesses to analyse customer 
reviews

75

Increasing the scope and 
scale of literature reviews 
and meta-analyses

Applying large language models and 
retrieval-augmented generation to 
screen papers and extract data for 
global literature reviews

Increased efficiency over human 
screening alone; can work with 
manuscripts from multiple 
languages

Large language models have been 
used for screening medical papers

76

Reducing publishing 
barriers for non-native 
English writers

Using large language models for 
writing support and grammar 
correction in paper submissions

Expands access to writing 
improvement tools that are 
currently restricted by scope, 
location and cost.

Academic publishers are integrating 
generative AI into their professional 
journal-editing services

77

Expanding science 
outreach efforts with the 
public

Using large language model-powered 
chatbots to communicate research to 
underrepresented groups

Allows a greater scope of 
personalized and interactive 
science outreach; supports 
multilingual outreach

AI chatbots have been used to 
increase engagement with museum 
visitors

78

Compiling data for 
policymakers and applied 
use cases

Using large language models to 
compile and summarize studies 
relevant to urban planning

Could improve the ability of 
non-scientists to find and 
understand research relevant 
to their applications; supports 
multilingual outreach

Large language models are 
being evaluated in the context 
of supporting the uptake of 
nature-based solutions.

79
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In the face of these challenges, a central question is whether and 
how generative AI could be more broadly applied to ecological data to 
help to understand complex interactions between organisms and their 
environments. One emerging possibility is that generative AI models 
could help to elucidate ecological relationships by generating new data 
that reflect and extend real-world patterns present in their training 
datasets, though this out-of-sample generation is an emerging area of 
research. For example, whereas generative adversarial networks have 
been used to generate realistic movement trajectories of central place 
foragers38, the inclusion of environmental covariates in the generative 
process remains a crucial next step for potentially generating trajec-
tories across novel environmental conditions. Additionally, although 
generative AI has demonstrated an ability to generate outputs that 
extend beyond training data in other domains, such as language and 
image generation (for example, ref. 21), similar out-of-sample data 
generation remains to be empirically validated for many ecological 
data types (but refer to ref. 35).

The application of generative AI in this context could resemble 
the role of simulations within ecological modelling, wherein com-
plex simulations can be used to compare against real-world systems 
for prediction and hypothesis testing39. Traditional statistical and 
mechanistic models, such as those historically used for predicting 
population growth or resource depletion, are powerful tools often 
based on strong theoretical foundations and empirical data; gen-
erative AI models differ in their method of creating new data. For 
example, whereas mechanistic approaches often rely on predefined 
equations to model ecological processes and make predictions, gen-
erative AI approaches use AI algorithms optimized for data generation 
to self-learn directly from the training data the underlying patterns 
that give rise to real-world observations (Box 1). Such models could, 
therefore, potentially capture and replicate complex, statistically 
identifiable processes that would be challenging for ecologists to 
formally define and parameterize within simulations. As such, genera-
tive AI could be used to generate more nuanced representations of 
ecological phenomena under a broader range of conditions, thereby 
providing a complementary tool to traditional methods. However, it 
is important to note that the effectiveness of generative AI in gener-
ating realistic data is heavily dependent on the availability of a large 
and varied training dataset, a limitation that traditional statistical 
and mechanistic models do not face as acutely. Moreover, caution is 
necessary when interpreting model outputs, particularly as the risk 
of generating data that incorrectly represents ecological phenomena 
is heightened by the opaque nature of the AI data-generation process. 
Ultimately, this remains an area of emerging research and one where 
we speculate collaborations between ecologists and computer sci-
entists could lead to exciting discipline-specific applications. For 
example, models trained with animal movement and environmental 
data could be used to create forecasts of animal movements across a 
range of hypothetical climate scenarios, infer ecological connectiv-
ity in data-scarce regions and stress-test conservation management 
strategies.

Furthermore, by analysing the outputs from generative AI  
models, researchers could develop and test hypotheses about real- 
world ecological interactions and mechanisms, leading to a deeper 
understanding of the underlying processes driving ecological pat-
terns. For instance, Hirn et al. used generative AI models to create novel 
patches of plant species communities that had similar properties to 
real communities and used the resulting conditional probabilities of 
species co-occurrences to infer complex indirect interactions involv-
ing multiple species35. The authors concluded that including data 
on hypothesized mediators of species interactions within training 
datasets—such as phenotypic traits—could allow for hypothesized 
mechanisms driving species co-occurrence to be tested. This could 
be achieved by generating species compositions across conditions of 
the mediator that may be hard to empirically observe and statistically 

testing how these conditions influence the likelihood of different spe-
cies co-occurring, thereby gaining insights into complex processes 
driving such ecological dynamics (more details in refs. 35,40).

Integrating generative AI with mechanistic models
Additional potential lies in integrating generative AI directly within 
existing ecological analytical approaches. For example, agent-based 
models, which simulate interactions of individual ‘agents’ with their 
abiotic and biotic environments, are a foundational tool within ecology 
used to test diverse ecological theories ranging from migration timing 
to parental investment41. Extensions of these models that integrate 
generative AI with mechanistic modelling are being used in the social 
sciences to mimic complex human behaviours more accurately and 
consequently model their consequences on social dynamics, such as 
epidemic spread42–44. Combined with the growing scale of animal behav-
iour data available, including from wearable sensors and drones, similar 
generative agent-based model approaches within ecology could pro-
vide exciting opportunities for a more realistic representation of animal 
decision-making. Such models could enable the testing of complex 
theories in behavioural ecology, such as the role of personal memory 
in territory formation and the role of individual decisions in driving 
emergent group structures within social species45,46. For example,  
analogous to efforts in the social sciences, coupling a mechanistic 
model of disease transmission with a generative AI model simulating 
realistic animal behaviours across scenarios could provide deeper 
insights into the complex, nonlinear interactions that drive disease 
spread. For examples of how similar methods are being considered 
across fields, we recommend refs. 43,44.

Ultimately, the potential for generative AI to generate realistic 
ecological, environmental and behavioural data under novel conditions 
provides intriguing opportunities for predicting ecosystem dynamics 
under global change. For instance, within the domain of disease ecol-
ogy, generative AI could be used to forecast the emergence and trans-
mission of zoonotic diseases due to changes in species distributions 
and expansion of wildlife–urban interfaces47, whereas in the context 
of human–wildlife conflict, generative models could lead to improved 
predictions of conflict hotspots under shifts in anthropogenic land 
use and climate change48. Generative AI could thus serve as a versatile 
tool for ecologists, offering a platform for theoretical exploration, 
hypothesis generation and modelling. These findings, in turn, could 
inform empirical research and ecosystem management strategies, such 
as guiding restoration efforts, predicting areas of future conservation 
concern and aiding invasive species management.

Enhancing the accessibility of existing datasets
In addition to directly modelling ecological phenomena, generative 
AI could also help to identify key environmental processes underlying 
the relationships between landscapes and the species they support 
by increasing the accessibility of environmental data. For example, 
generative AI models are increasingly being used within the environ-
mental sciences to identify and extract geographic attributes—such 
as vegetation cover, water bodies and anthropogenic changes—from 
remote sensing data and can do this with fewer training samples than 
required for traditional AI techniques49,50. Moreover, generative AI 
models have been used to reduce the dimensionality of complex envi-
ronmental datasets without the linear dimension reduction constraints 
often imposed by methods such as principal component analysis, for 
example, to simplify the modelling of species distributions, thereby 
streamlining the acquisition of information for conservation planning51. 
In such applications, evaluation of model outputs remains critical to 
understand whether and where generative AI models offer improve-
ments over less complex approaches.

Additionally, large language models and retrieval-augmented 
generation, a technique for improving the ability of large language 
models to retrieve information from specific sources, offer promise 
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in allowing researchers to more efficiently query and extract ecologi-
cal data from written datasets52,53. Such applications could also hold 
promise for tackling long-standing barriers to diversity, equity and 
inclusion within ecology, for example, by facilitating the extraction of 
information from non-English texts, thereby increasing the visibility 
of underrepresented groups in ecology. For further reading on the 
potential implications of generative AI in diversity, equity and inclu-
sion, we recommend refs. 54,55 as starting resources.

Limitations of generative AI
Although generative AI presents promising prospects for ecology, it 
also carries limitations, challenges and risks (such as those touched 
on throughout) that must be carefully weighed by researchers before 
its use. Below, we briefly discuss three particularly relevant considera-
tions for ecologists.

Model biases
One important concern is the potential for AI-generated outputs to 
mirror biases within their training data56,57. Biases within generative 
AI models are systematic errors or misrepresentations that favour 
certain groups or ideas, perpetuate stereotypes or lead to incorrect 
assumptions56. This issue is particularly relevant for ecology due to geo-
graphic, taxonomic and social biases within ecological datasets2,58–61. 
For example, in the context of large language models, it is crucial to 
guard against perpetuating existing biases against underrepresented 
groups of researchers, particularly in how models might prioritize or 
value studies. This could manifest in the unfair ranking or selection of 
research literature based on their similarities with the predominantly 
gendered global north bias in ecology publications59,61 and could lead 
to models overlooking critical insights from researchers from under-
represented regions or groups. Moreover, issues can arise from the 
model’s creation of fictitious content, which in the context of scientific 
writing could include fictitious literature citations62,63. As generative 
AI evolves, improvements in bias and reductions in the occurrence of 
such hallucinations are anticipated62. To further mitigate these risks, it 
is essential to use diverse datasets during model training, ensure active 
researcher involvement in the review of model outputs and rigorously 
assess outputs for bias.

Environmental effects
The environmental footprint of AI technologies, both from opera-
tional energy consumption and hardware manufacturing64, poses a 
dilemma for ecologists committed to sustainability. Generative AI 
models are particularly energy intensive, with substantial effects  
on carbon emissions65,66. This underscores the need for transpar-
ency when integrating AI into ecology and the development of 
efficiency-focussed algorithms optimized to reduce carbon emissions 
and energy use2,65. Such innovations in AI efficiency also tend to reduce 
computational complexity and will thus make a broader range of algo-
rithms available for ecologists to run on their own devices without 
specialist hardware, increasing the accessibility of the technology as 
a whole.

Privacy and ownership
Generative AI also brings unique data privacy and ownership 
concerns67,68, which are particularly pertinent within ecology as data 
collection is often challenging and resource intensive. Moreover, gen-
erative AI models can reproduce specific contents of their training data 
in their outputs69, and thus, researchers must be mindful of privacy and 
security risks. This concern is particularly acute in cases where models 
are trained with personal data, for example, within social–ecological 
studies, where there is a risk of models outputting sensitive informa-
tion69. Such privacy concerns also extend to issues of species safety, 
where the unintended disclosure of sensitive information, such as 
threatened species locations, could put species at risk.

Concluding remarks
Generative AI is rapidly gaining traction across academic domains 
and holds immense potential in accelerating the field of ecology. To 
date, these models have shown preliminary promise in augmenting 
data-scarce datasets, understanding ecological processes and stream-
lining the retrieval of complex information. However, the rapidly evolv-
ing nature of generative AI means that the scope of its applications 
within ecology is expanding greatly, and there remains uncertainty on 
its future role within the field. Whereas initial use cases have focussed 
on data types such as images and human language, there are emerging 
opportunities to apply generative AI models to a multitude of ecological 
data, including, but not limited to, genetic information, animal-borne 
sensor data and remotely sensed environmental data. However, we 
acknowledge that with these opportunities come risks and challenges. 
Issues such as inherent biases in training data, the environmental  
footprint of running complex AI models and ethical concerns around 
data privacy and ownership must be carefully navigated. The future of 
generative AI in ecology lies in the development of robust interdiscipli-
nary collaborations between ecologists and computer scientists. Such 
partnerships will be important for embedding ecological knowledge 
within AI and AI within the ecological research process. This will lead to 
more ecologically meaningful and relevant models and will be critical 
for leveraging the power of generative AI to drive ecological insights 
into species across the globe.
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