Abstract:In order to explore the sources of organic carbon and nitrogen in suspended particles (SP) and sediments, and their implication for water quality, the spatiotemporal variation characteristics of stable isotopic carbon (δ13C), nitrogen (δ15N) and C/N in SP and surface sediments of Lake Erhai were determined in 2013-2014, and their effects on water quality were analyzed. The results showed that, ① The δ13C, C/N and δ15N of SP were significantly different between dry and wet seasons (P<0.05), and varied in the range of -31.75‰ to -18.21‰(the mean was -25.34‰±4.14‰), 9.1 to 16.9(13.3±2.7) and 4.9‰ to 7.4‰(6.4‰±1.3‰) in the dry season, and -23.8‰ to -14.7‰(-20.2‰±3.3‰),4.6 to 8.9(7.1±1.6) and 7.4‰ to 10.8‰(9.3‰±1.8‰) in the wet season, respectively. The end-member mixing model showed, the sources of organic carbon in SP transformed from the terrestrial C3 plants dominated (46.0%±6.9%) in the dry season to phytoplankton dominated (43.3%±6.1%) in the wet season; the nitrogen sources in SP transformed from the terrestrial plants dominated (40.7%±6.5%) in the dry season to aquatic plants and phytoplankton dominated (39.9%±6.6%) in the wet season. There were no significant differences in δ13C and C/N in surface sediments between dry and wet seasons (P>0.05), and the δ13C and C/N varied in the range of -24.0‰ to -14.6‰(-18.7‰±4.7‰)) and 9.1 to 15.5(12.1±3.3), respectively. The δ15N of surface sediments was significantly different between dry and wet seasons(P<0.05), and varied in the range of 1.9‰ to 4.9‰(3.6‰±1.5‰) and 0.7‰ to 7.8‰(4.2‰±1.8‰), respectively. The organic carbon in surface sediments in dry and wet seasons mainly originated from the terrestrial C4 plants, which contributed 48.2%±19.1% of the total organic carbon, and the nitrogen sources in surface sediments transformed from the terrestrial plants dominated (44.3%±10.1%) in the dry season to fertilizers dominated (30.3%±6.8%) in the wet season. The different sources of organic carbon and nitrogen between SP and surface sediments revealed that the organic carbon and nitrogen from phytoplankton were easily degraded, leading to the deterioration of water quality; while the organic carbon from terrestrial C4 plants and soil erosion and nitrogen from fertilizer are easy to deposit, which had little effect on water quality. ② Correlation analysis and random forest regression analysis showed that the source difference of particulate organic matter(POM) (δ13C and δ15N), oxidation-reduction potential and water temperature (WT) in SP were key indicators in the multi-nutrient cycling index for lake water with the importance for 4.0% to 6.9%, while POM, C/N and WT in SP were key indicators in chlorophyll-a for lake water with the importance for 9.3% to 10.7%, which indicated that the source characteristics of POM combining with environmental factors had a significant effect on water quality. However, the source characteristics of organic carbon and nitrogen in surface sediments have no significant effect on water quality. For the protection of Lake Erhai, in addition to further strengthening the control of external loads, the phytoplankton biomass should be mainly controlled in the wet season to avoid further deterioration of water quality.