
1.  Introduction
1.1.  The Purpose of Measuring Surface Water

Understanding the spatial and temporal dynamics of surface water extent is essential for water management 
planning and for monitoring drought and flood events. For instance, dam release schedules may take into account 
historical reservoir water levels and past responses to major precipitation events, while adjusting for active water 
resource needs (Bureau of Reclamation, 2020; Pulwarty & Melis, 2001). Daily streamflow data have been used 
to build a comprehensive multi-decadal record of droughts in the conterminous United States (hereafter US) 
(Austin et al., 2017; Zou et al., 2018). Investigations of surface water peaks over time may also help construct 
flood chronologies (Smith et al., 2018). Flooding has caused major monetary impacts across the US over the 
past century (Downton et al., 2005); identifying the patterns and causes of flooding can help estimate future 
damages (Wobus et al., 2014). While the U.S. Geological Survey (USGS) maintains streamgages that sample 
representative locations to support regional water management, flood forecasting, and trend detection (National 
Research Council, 2004), measurements from discrete locations may not provide a complete picture of surface 
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water and the spatial extent of change. The use of Earth observation satellites to create maps of surface water 
change is becoming more common for training and validating flood inundation predictions and generating broad 
insights into surface water dynamics (Bales & Wagner, 2009; Pickens et al., 2020). Progress is being made to 
generate spatially explicit, wall-to-wall time series of surface water, but to date, map data with sufficient spatial 
and temporal resolutions to monitor long-term surface water dynamics, event-driven changes, and corresponding 
change drivers remain limited (Tulbure & Broich, 2019).

Surface water management requires long-term, regional-scale approaches because the rates and causes of surface 
water change vary substantially among geographic areas (Müller Schmied et al., 2016). Human water demands 
(i.e., for agriculture and irrigation, water purveyance, power and industry, mining, and domestic use), land 
use/land cover (LULC) change, and weather (i.e., precipitation intensity and duration, temperature, and solar 
radiation) influence surface water change differently across landscapes over time (Dieter et al., 2017; Karl & 
Riebsame, 1989; Krueger et al., 2017; Pimentel et al., 1997; Poff et al., 2006; Slater & Villarini, 2017). Conse-
quently, surface water fluctuations may simultaneously vary between regions, where declines may trigger ration-
ing in one part of the country and sudden increases may create floods and economic losses elsewhere. The 
magnitude and location of ecosystem impacts can also be complex (Schaffer-Smith et al., 2017). In both cases, 
surface water maps can be employed to identify the spatial and temporal dynamics of surface water and be fed into 
LULC change forecasts to model the impact of surface water change across different landscapes (Garen, 1993; 
Shuter et al., 2013).

1.2.  Status of Surface Water Mapping Research

Large-area surface water mapping has grown over the past decade with the increase in remote sensing capabili-
ties, expanded access to satellite imagery sources (Zhou et al., 2017), and the advent of cloud-computing envi-
ronments. On the Google Earth Engine (GEE) cloud platform (Gorelick et al., 2017) water-related applications 
represent the second largest field of exploration (Tamiminia et al., 2020). These developments have broadened 
the spatial and temporal scope of viable research objectives and data products. Even moderate-resolution imagery 
can be scaled globally, such as the European Commission's Joint Research Center (JRC) Global Surface Water 
Extent dataset, a Landsat-based approach at 30 m for generating monthly, multi-decadal surface water mapping 
(Pekel et al., 2016). The assembly of dense image time-series allows researchers to track change over time, from 
mapping the extents of global reservoirs (Khandelwal et  al.,  2017; Rad et  al.,  2021) to develop global water 
bodies maps that distinguish dynamic and static water areas (Yamazaki et al., 2015). US-focused efforts include 
measuring regional interannual trends of annual surface water at 30 m across the nation from 1984 through 2016 
(Zou et al., 2018).

1.3.  Quantifying Surface Water With the DSWE Algorithm

Methods of identifying surface water through satellite image interpretation vary. The focus of this paper is the 
Dynamic Surface Water Extent (DSWE) model, a decision-tree classification originally developed to map surface 
water in 30-m Landsat satellite imagery (Jones, 2015, 2019). Efforts to implement the DSWE model based on 
the Landsat archive in GEE include the Central Valley of California (Walker, Soulard, et al., 2020), Cambodia 
(Soulard et al., 2020), and the Mid-Atlantic region of the United States (Vanderhoof et al., 2020). DSWE has also 
been combined with the JRC product to compute probabilities of open water to help classify surface inundation 
during flood events based on Sentinel-1 data (DeVries et al., 2020). With the public availability of JavaScript 
algorithm code specific to GEE (Walker, Petrakis, et al., 2020), DSWE implementation can be customized for 
unique surface water applications and different satellite sensors. While DSWE maps at 30 m resolution are useful 
for identifying changes in moderate-scale water features, the 16-day revisit time of each Landsat satellite is often 
insufficient for detecting and analyzing seasonal trends and transient flood events, exacerbated by the frequency 
of cloudy observations. Additionally, the number of images available within the Landsat archive varies signif-
icantly in different parts of the world (Wulder et al., 2016). Daily imagery from Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellites Terra and Aqua have helped provide a useful alternative to Landsat-based 
approaches for DSWE mapping, albeit at a coarser 250-m resolution and for a shorter period of availability (2000 
to present) (Soulard et al., 2022). The generation of MODIS-based DSWE products (“DSWEmod”) for Califor-
nia leveraged daily data to create monthly and sub-monthly surface water maps with substantially reduced cloud 
obstruction. The contrast in cloud cover between the Landsat DSWE and DSWEmod products for California 
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was most pronounced in the winter months when obscured data averaged 12.4% and 1.4% for the Landsat- and 
MODIS-derived monthly maps, respectively (Soulard et al., 2022).

1.4.  Trends in Surface Water Extent

Many prior studies have used trend analyses to characterize water resources over multiple time intervals (i.e., 
seasonal, annual, and multi-year) and have identified aspects of water presence over time, such as droughts, flood 
frequency, and general patterns of streamflow, which can have implications for resource management decisions 
(Kunkel et al., 1999; Lins & Slack, 1999; Milano et al., 2013; Miller & Piechota, 2011; Webb & Nobilis, 1995). 
Temporal variability within trend analyses is also revealing; longer intervals can capture major trends while 
shorter intervals may identify acute flooding and other ephemeral changes. However, data continuity is para-
mount in trend analysis, and techniques aiming to test the temporal limits of trend analysis using optical imagery 
data must measure the influence of cloud obstruction in creating data gaps. Soulard et al. (2022) concluded that 
complete, cloud-free monthly records spanning multiple decades represent a reasonable temporal resolution for 
applications focused on intra- and inter-annual surface water dynamics. Recent literature suggests that dense time 
series are well-suited to capture processes of land surface change at monthly scales (Senay et al., 2017; Tulbure 
& Broich, 2013; Waylen et al., 2014).

Regions across the US have been experiencing unique hydrologic challenges during the early-21st century 
which may be driving trends in surface water, including an extended and intensifying megadrought across the 
West (Williams et al., 2020), periodic short-term drought and flood events across the Southeast (Labosier & 
Quiring,  2013), and increasingly frequent flooding events in the Mississippi River Basin (National Weather 
Service, 2019). Spatially explicit maps of surface water produced at a monthly scale can capture surface water 
changes related to these stresses and identify the extent of such changes, an insight that cannot be directly 
observed using point-based streamgage networks. While optical satellites do have clear limitations, imagery may 
remain a valuable resource in locations where a sparse distribution of streamgages limits the ability to gather 
hydrological data.

1.5.  Ecoregion Perspective

Surface water extent exhibits considerable spatiotemporal variability across the US (Senay et al., 2017; Tulbure 
& Broich, 2013; Waylen et al., 2014). Spatial stratification is helpful for conveying region-specific dynamics. 
Hydrologic Unit Codes (HUCs), which represent hydrologic drainage areas, are often used as a spatial delinea-
tion of water resources (Seaber et al., 1987). However, HUCs are not designed for ecological analyses and can 
span heterogeneous areas (Griffith et al., 1999). The ecoregion framework, in contrast, separates the country into 
zones of relatively homogenous biotic and abiotic influence, including land use, soil, vegetation, and climate 
characteristics such as precipitation (Omernik, 1987). While human uses are not accounted for in this framework, 
and water purveyance (and water cycle teleconnections) often spans multiple regions, an ecoregion approach is 
generally beneficial for climatic comparisons and is often scalable to land management operations (Omernik & 
Bailey, 1997).

1.6.  Study Objectives

As the MODIS program approaches its third decade in operation, the lengthening time span of the MODIS 
image archive now allows for the detection of recent ecoregional patterns or trends over large geographic extents. 
The objectives of this study are to (a) adapt and scale the DSWEmod model of Soulard et al. (2022) to generate 
monthly surface water products for the conterminous US from 2003 through 2019, (b) analyze the spatial and 
temporal dynamics of regional surface water extents across the full time series as well as seasonally, and (c) 
compare surface water area trends to streamgage discharge trends to determine where and how well different 
approaches to measuring water dynamics align. By reporting surface water change trends at national and regional 
scales, evaluating how the surface water trend direction compares with discharge records, and summarizing 
the agreement in trends between the two methodological approaches across ecoregions, we aim to corrobo-
rate past findings while also providing new insights into how surface water extents vary over space and time. 
Ideally, the information provided on the spatial extent of surface water change contained within our analysis will 
provide regional insights to supplement streamgage data and help land managers more effectively understand 
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and manage surface waters throughout the US. Further, evaluation of similarities and differences between in-situ 
and satellite-based observations will help ascertain DSWEmod's efficacy as a tool for monitoring surface water 
dynamics in parts of the world without streamgage networks.

2.  Materials and Methods
2.1.  Study Area

To understand the geographic distribution of surface water change across the US, we stratified surface water 
measurements by Level I and Level III Environmental Protection Agency (EPA) Ecoregions (Omernik, 1987). 
The 10 Level I Ecoregions are used to provide an overarching summary of change patterns, while the 85 Level 
III Ecoregions allow us to examine regional variability in more detail (Figure 1). Refer to Figure 1 for numbers, 
names, and locations of the Level I and Level III Ecoregions listed throughout the text.

2.2.  Surface Water Imagery Products

2.2.1.  Generation of National-Scale DSWEmod Data

We extended DSWEmod in GEE to create a monthly maximum surface water product for the US from Janu-
ary 2003 through December 2019 (n = 204 months) (Soulard et al., 2021). DSWEmod generation started with 
pre-processing daily Terra images by performing an angular pixel correction to account for off-nadir viewing 
angles, applying a collection of standard and customized cloud masks, and downscaling images to create a 
synthetic 250-m daily product (Schaaf et al., 2002). MODIS Aqua imagery with similar processing was used to 
help develop the customized cloud masks. Downscaling uses a ratio developed for the near-infrared (NIR) band 
to apply to the two MODIS short-wave infrared (SWIR) bands, and a ratio developed for the red band to apply to 
the other MODIS visible channels to generate synthetic 250-m MODIS multispectral data (Nigro et al., 2014). 
For full image processing details see Soulard et al. (2022).

We applied the DSWEmod algorithm to the processed MODIS data. DSWEmod relies on five water indices created 
using combinations of the SWIR, NIR, and visible bands: Normalized Difference Vegetation Index (NDVI), Modi-
fied Normalized Difference Wetness Index (MNDWI), Automated Water Extent Shadow (AWESH), Multi-band 
Spectral Relationship Visible (MBSRV), and Multi-Band Spectral Relationship Near-infrared (MBSRN) 
(USGS, 2019). We generated topographic slope and terrain hillshade products from a digital elevation model 
(USGS EROS, 2018), with results upscaled to the ∼250-m resolution and projection of MODIS data, to screen 
for steep locations that are unlikely to hold water and shaded pixels that might be misclassified as water. Pixels are 
categorized according to empirically derived thresholds into one of six classes: not-water (class 0) for clear pixels 
with no water presence; NoData (class 9) for pixels obscured by clouds, cloud shadow, snow, ice, or hillshade; 
and four surface water classes, differentiated by confidence level into high-confidence surface water (class 1), 
moderate-confidence surface water (class 2), potential wetland (class 3), and low-confidence water or  wetland 
(class 4) (USGS, 2019). The monthly surface water product shows the maximum water extent, in which only one 
surface water detection was necessary across the monthly image composite to classify a pixel as water; the highest 
confidence surface water class detected at each pixel was used. The lower confidence classes have been shown 
to misclassify areas with some urban development, considerable vegetation (Soulard et al., 2020; Vanderhoof 
et al., 2020), and snow. For these reasons, we focused our analysis on the highest-confidence surface water class 
(DSWEmod class 1, hereafter referred to as “water”), and obscuration from clouds, clouds shadows, and snow/
ice collectively (DSWEmod class 9, “NoData”).

Images with a large proportion of NoData pixels may result in the reduction of detected water, which may incor-
rectly suggest that a surface water decline has occurred. Therefore, statistical analyses exclude results from months 
with greater than 10% NoData area for each Level I and Level III Ecoregion. The 10% threshold was selected to 
balance data continuity and data contamination. The remaining data were used for the DSWEmod water analysis.

2.2.2.  Accuracy Assessment of DSWEmod Water Product

To test the accuracy of DSWEmod at a national scale, we implemented a stratified random sampling approach 
(Stehman & Foody, 2019) based on Level I Ecoregions; this approach is modeled after Soulard et al. (2022). We 
selected random samples for each ecoregion within maximum water footprints (1985-2019) determined by an 
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Figure 1.  Level I and Level III Ecoregions (Omernik, 1987) used as spatial divisions in the analysis. The larger, more generalized Level I Ecoregions are highlighted 
by bold lines.
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independent water product, JRC (Pekel et al., 2016), hereafter referred to as the JRC maximum water stratum. We 
restricted the accuracy assessment to water bodies greater than 25 ha since 250-m MODIS data cannot adequately 
resolve smaller features (Jin & Sader, 2005). We also constrained the test to two summer seasons representing the 
beginning and end of the study period (June through August of 2003 and 2019). We selected summer to maximize 
the potential for cloud-free image acquisitions across the US since JRC validation data are often incomplete or 
unavailable for times and locations when clouds are more prevalent. The remaining criteria for selecting samples 
within the JRC maximum water stratum were that points were at least 100 m inside the edges of water bodies and 
at least 500 m apart. The sampling procedure produced a wide range of samples between ecoregions based on the 
relative abundance of large water bodies and the areal extents of each ecoregion. For instance, only nine random 
samples were selected in the Southern Semi-Arid Highlands (Level I Ecoregion #12), while 6,901 were selected 
in the Eastern Temperate Forests (#8). All samples were evaluated on both dates.

In addition to JRC maximum water extent serving as the sampling stratum, monthly JRC classifications of surface 
water presence and absence served as reference data for 2003 and 2019. Global validation results show that 
monthly JRC products are highly accurate when available (Pekel et al., 2016; Perin et al., 2021), thus justifying 
use as the best reference data available. We extracted upscaled (resampled from 30 to 250 m) JRC and DSWEmod 
data at each point location and year. To make the DSWEmod maps comparable to the reference data classes of 
water/not water/no data, we retained “high confidence” water as an indicator of “water presence” and treated all 
other classes except for NoData as “water absence”. Sample locations were used to construct error matrices for 
each year of the analysis for the 10 Level I Ecoregions (Congalton, 1991). Only one detection of surface water per 
year's summer window was required to be classified as either DSWEmod or JRC water. We merged results from 
each yearly test and calculated the producer's, user's, and overall accuracy.

A qualitative assessment of map products was used to test the ability of the DSWEmod product to resolve spatial 
detail and detect ephemeral surface water presence across a range of different hydrological features. Our specific 
objective was to evaluate the capacity of DSWEmod to delineate various hydrological features throughout the 
year. To accomplish this, we assembled a map of monthly summed water presence (i.e., maximum possible 
count of 12 at each pixel) for 2019 and identified water features of different widths with consistent surface water 
presence over time. All monthly maps for the 2019 calendar year were qualitatively compared to high-resolution 
U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) images (∼1-m spatial resolution) 
(USDA, 2021) to identify the strengths and limitations of DSWEmod.

2.2.3.  Analysis of DSWEmod Seasonal Dynamics

We developed box plots to assess the seasonal and spatial dynamics of DSWEmod water (class 1) and NoData 
(class 9 – i.e., clouds, cloud shadow, snow, ice, or hillshade) across the US. We calculated the 3-month seasonal 
mean area of DSWEmod water and NoData nationally for each year from 2003 through 2019, with the seasons 
defined as winter (December - February), spring (March - May), summer (June - August), and fall (September 
- November). Given the spread of the winter season across consecutive years, winter averages for 2003 were 
calculated using only 2 months (i.e., January/February 2003). A companion map was also developed to convey 
the spatial distribution and frequency of NoData values over the study period. All 204 monthly maps were used 
to calculate the percentage occurrence of NoData values for each pixel by season.

2.3.  Calculation of Surface Water Trends and Descriptive Statistics

We performed Mann-Kendall (M-K) trend tests across multiple time scales for each Level I and Level III Ecore-
gion using the statistics package R version 4.0.2 (R Core Team, 2020). The M-K test is a non-parametric statis-
tical analysis that detects the presence of consistently increasing or decreasing monotonic trends (Kendall, 1975; 
Mann, 1945). Adaptations of the test have been widely used in hydrologic time series studies (Yue et al., 2002) 
since it can tolerate the presence and nonnormal distribution of outliers, such as maximum discharge or flood-
ing events (Hamed, 2008; Villarini et  al., 2011, 2012). We quantified seasonal and annual ecoregional mean 
water area for 2003–2019 (n = 17 records for each season corresponding to the number of years in the study 
period) and removed sequences with fewer than 10 valid observations (i.e., those meeting our %NoData crite-
rion), which is generally accepted as the minimum number suitable for application of the M-K test (Libiseller & 
Grimvall, 2002). Analysis at sub-annual intervals is important because climate change is projected to alter the 
timing of precipitation regimes, storm occurrence, and snowpack accumulation and melting, which may have 
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hydrological implications on a monthly or seasonal basis (Byun et al., 2019). Serial autocorrelation within a time 
series, independent of sample size, can result in inaccurate rejection of the null hypothesis when using M-K, 
leading to the incorrect identification of significant trends (Bayazit & Önöz, 2007). Prewhitening can address 
serial autocorrelation by removing portions of a trend if autocorrelation is present (von Storch, 1999; Yue & 
Wang, 2002). We used the R “zyp” package (Bronaugh & Werner, 2013) to compute prewhitened linear trends for 
Level I and Level III Ecoregions and the conterminous US. We applied the Theil-Sen test to each time series to 
estimate the slope of linear trends (Sen's slope) (Sen, 1968). Whereas M-K provides an estimate of the direction 
and significance of the monotonic trend, Sen's slope determines an estimate of the rate of the trend in area per 
unit of time (Banerjee & Kumar, 2018).

As a complement to seasonal and overall M-K trend and Sen's slope analyses, we also summarized each Level 
I Ecoregion time series using a suite of general statistics over the 2003–2019 study period: (a) mean, minimum, 
and maximum surface water extent, (b) standard deviation, (c) coefficient of variation, and (d) average percent of 
ecoregion area across all 204 monthly observations.

2.4.  Comparing Surface Water Trends With Instrumented Streamgage Discharge Trends

Trends of instrumented streamgage discharge data are regularly compiled to monitor the flow of surface water 
across the landscape (Lins & Slack, 1999, 2005; Miller & Piechota, 2011). Discharge has similar driving forces 
as surface water and its measurement can complement the spatial views of surface water maps generated from 
satellite imagery (Walker, Soulard, et al., 2020). We compare trends in discharge to trends in surface water for 
all Level III Ecoregions to assess their agreement (congruence) over the study period across regions. We provide 
possible explanations for regions where discharge trend direction is not in agreement with the direction of surface 
water trends (incongruence).

For gage selection and discharge time-series extraction, we utilized the “dataRetrieval” package (DeCicco & 
Hirsch, 2021) in R, which obtains USGS streamgage time-series data through the National Water Information 
System (NWIS) (USGS, 2022) service. All available gages were selected within overlapping 8-digit HUCs for 
each ecoregion and clipped to the respective ecoregion boundary. Additionally, for consideration in this analysis, 
each gage had to (a) include discharge data (parameter “00060”) and (b) have data across >75% of the months 
of our study period (n = 153 of 204 months). To make the gage sample more comparable to DSWEmod (e.g., 
moderate-scale water bodies), we only retained gages in each ecoregion where mean annual discharge was in the 
top three quartiles (i.e., 2–4). Using M-K trend tests, we measured annual discharge trends across all available 
months, adapting the approach used in Walker, Soulard, et al. (2020) and Soulard et al. (2022). A majority rule 
was applied to identify the predominant M-K trend direction across all gages tested in each Level III Ecoregion 
(i.e., increasing or decreasing), and the result was compared to the overall DSWEmod surface water trend derived 
from the continuous monthly record. Results were mapped across the conterminous US to display patterns of 
congruency and incongruency in trend direction.

3.  Results
3.1.  Assessment of DSWEmod for National Applications

3.1.1.  Accuracy Assessment With JRC

Contingency matrices were generated for each Level I Ecoregion between 2003 and 2019. To streamline report-
ing, results from the two tests were added in Table 1 to convey the average mapping accuracy across dates. For 
the collective summers, overall accuracy exceeds 75% for all tests where a large sample size was available. The 
exceptions are the Southern Semi-Arid Highlands (Level I Ecoregion #12) and Temperate Sierras (#13) (n < 70 
points), where the overall accuracy values were lower. The user's accuracy was greater than producer's accuracy 
in all ecoregions, and exceeds 90% for 8 of 10 ecoregions, suggesting that there are fewer errors of commission 
than errors of omission (Table 1).

3.1.2.  Delineation of Water Features

We performed qualitative checks against high-resolution, false-color (NIR/red/green) NAIP imagery to investi-
gate how well DSWEmod maps resolve the extent and boundaries of surface water features (Figure 2). Reference 
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imagery coincided with extensive flooding along the Mississippi River (USGS,  2020). DSWEmod imagery 
detected these inundation dynamics as well as those along the primary river channel (Figure 2a). Permanent chan-
nels with a width of 500–1,500 m (Figure 2a) and large water bodies (Figure 2b) were identified as water consist-
ently throughout the year (i.e., up to 12 months); winter season snow and ice reduced the number of months that 
some lake pixels were classified as water. In contrast, DSWEmod did not consistently identify water within a 
narrower channel (250–750 m wide), where areas <500 m wide were not consistently identified as surface water 

Accuracy assessment results

5—Northern Forests 10—North American deserts

  JRC Not Water JRC Water JRC Not Water JRC Water

DSWEmod Not Water 156 219 DSWEmod Not Water 723 416

DSWEmod Water 93 4458 DSWEmod Water 43 778

DSWEmod User's Accuracy = 98.0% DSWEmod User's Accuracy = 94.8%

DSWEmod Producer's Accuracy = 95.3% DSWEmod Producer's Accuracy = 65.2%

Overall Accuracy = 93.7% Overall Accuracy = 76.6%

6—Northwestern Forested Mountains 11—Mediterranean California

  JRC Not Water JRC Water JRC Not Water JRC Water

DSWEmod Not Water 120 199 DSWEmod Not Water 315 112

DSWEmod Water 19 1126 DSWEmod Water 61 302

DSWEmod User's Accuracy = 98.3% DSWEmod User's Accuracy = 83.2%

DSWEmod Producer's Accuracy = 85.0% DSWEmod Producer's Accuracy = 72.9%

Overall Accuracy = 85.1% Overall Accuracy = 78.1%

7—Marine West Coast Forest 12—Southern Semi-Arid Highlands

  JRC Not Water JRC Water JRC Not Water JRC Water

DSWEmod Not Water 19 26 DSWEmod Not Water 10 7

DSWEmod Water 8 137 DSWEmod Water 0 1

DSWEmod User's Accuracy = 94.5% DSWEmod User's Accuracy = 100%

DSWEmod Producer's Accuracy = 84.0% DSWEmod Producer's Accuracy = 12.5%

Overall Accuracy = 82.1% Overall Accuracy = 61.1%

8—Eastern Temperate Forests 13—Temperate Sierras

  JRC Not Water JRC Water JRC Not Water JRC Water

DSWEmod Not Water 3856 1637 DSWEmod Not Water 16 16

DSWEmod Water 658 7651 DSWEmod Water 2 30

DSWEmod User's Accuracy = 92.1% DSWEmod User's Accuracy = 93.8%

DSWEmod Producer's Accuracy = 82.4% DSWEmod Producer's Accuracy = 65.2%

Overall Accuracy = 83.4% Overall Accuracy = 71.9%

9—Great Plains 15—Tropical Wet Forests

  JRC Not Water JRC Water JRC Not Water JRC Water

DSWEmod Not Water 2275 1379 DSWEmod Not Water 365 93

DSWEmod Water 320 5080 DSWEmod Water 37 127

DSWEmod User's Accuracy = 94.1% DSWEmod User's Accuracy = 77.4%

DSWEmod Producer's Accuracy = 78.6% DSWEmod Producer's Accuracy = 57.7%

Overall Accuracy = 81.2% Overall Accuracy = 79.1%

Note. DSWEmod “Not Water” refers to any class other than high-confidence surface water (class 1). Similarly, “JRC Not 
Water” refers to JRC classes 0 and 1, while “JRC Water” refers to class 2 (Pekel et al., 2016).

Table 1 
Merged Results From the 2003 and 2019 Accuracy Assessments for Each Level I Ecoregion (Omernik, 1987)
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Figure 2.  The spatial resolution capabilities of Dynamic Surface Water Extentmod (DSWEmod) water are demonstrated for three size classes of surface water objects. 
Monthly water presence/absence are summarized for 1 year (2019) in representative areas: (a) a wide channel (width: 500–1,500m), at the Mississippi-Ohio River 
confluence; (b) large water bodies (>25 ha; width: >1,000m), in the Finger Lakes of New York; and (c) a narrow channel (width: 250–750m), along the Colorado River 
arm of Lake Powell. To show detailed landscape conditions, each DSWEmod image is paired with false-color (NIR/red/green) NAIP imagery (USDA, 2021) (Source: 
Esri and the USDA Farm Service Agency; USA NAIP Imagery - Color Infrared).
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(Figure 2c). This inconsistency suggests that DSWEmod may identify surface water extent in larger channels and 
water bodies with relatively high certainty but may not necessarily identify pulses or consistent surface water 
flows within smaller stream/river networks or small water bodies.

3.1.3.  Seasonal Variability in Water and NoData Pixels

DSWEmod water extents are seasonally variable for the US (Figure 3). The water extent mapped by DSWEmod 
is lowest (i.e., median value) during the winter months, followed by summer (Figure 3a). Mean surface water 
extents are similar in spring and fall, but most of the peaks in the DSWEmod time series occurred in the fall. The 
extent of clouds/cloud shadows and snow/ice (NoData) in DSWEmod is much higher in the winter compared to 
other seasons (Figure 3b; i–iv). The presence of snow, ice, clouds, and hillshade in the winter, spring, and fall 
seasons contributed to a reduction in mapped surface water in the northern and northeastern US, which also led to 
lower overall national estimates. At the national scale, DSWEmod NoData represents about 13% of each map for 
the winter months, compared to 0.01% during the summer months. The abundance of NoData during the winter 
season limits our ability to confidently identify water areas in select winter months in some parts of the country.

Figure 3.  Seasonal distributions of surface water and NoData pixels in box plot and graphical form. Box plots (top) show (a) DSWEmod water and (b) DSWEmod 
NoData from 2003 through 2019 across the United States. Seasonal groups are winter, spring, summer, and fall. Note that y-axes are scaled individually. Maps (bottom; 
i–iv) show the seasonal distribution of DSWEmod NoData.
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3.2.  Level I Ecoregion Macro-Analysis

3.2.1.  Seasonal and Overall Surface Water Trends

The results of the M-K tests show that surface water trends vary considerably across all time scales both within 
and between Level I Ecoregions (Table 2). For example, no ecoregions have consistent trends (negative or posi-
tive) overall and in all four seasons. The Northern Forests show negative trends, and the Great Plains show posi-
tive trends for all seasons except winter, which had too few values to support the application of the M-K test. The 
US also has positive trends overall and for all seasons other than the fall, which had no trend. The Marine West 
Coast Forest, on the other hand, has positive trends for the winter, spring, and fall, yet has a significant negative 
trend during the summer. Overall, only 6 of the 55 Level I Ecoregion trends (10.9%) were significant (p < 0.05).

3.2.2.  Overview Statistics

An analysis of 204 monthly surface water maps (Petrakis et al., 2021) summarized by Level I Ecoregion provides 
general insights into spatiotemporal surface water dynamics from 2003 through 2019, including where water 
was most abundant or variable over the study period (Table 3). These results are consistent with known water 
cycle dynamics in these areas. For example, the Tropical Wet Forest Ecoregion in southern Florida represents 
the wettest part of the US, based on the largest proportion of surface water relative to the ecoregion extent. On 
average, water composed 10.3% of the ecoregion but episodically approached 20%. Surface water extents in 
larger ecoregions like the Great Plains and Eastern Temperate Forests cover proportionally smaller areas (i.e., 
proportion of 18,495 km 2 [0.8%] and 44,107 km 2 [1.7%], respectively). In most ecoregions, the water footprints 
typically undergo a 2-3× increase between the minimum and maximum values, but regions like the Northern 
Forests exhibit a ∼5.4× change between the minimum and maximum values while the US exhibits a slightly 
lower overall change (∼1.7×).

3.3.  Level III Ecoregion Micro-Analysis

3.3.1.  Mann-Kendall Trends

The Level III Ecoregion trends display more consistency across seasonal tests than the Level I Ecoregion anal-
ysis described in Section 3.2.1. Given the number and heterogeneity of the 85 Level III Ecoregions, we discuss 
only the most pronounced results of the trend analysis at this scale (Figure 4). Level III Ecoregions in the south-
western US, including the Sonoran Basin and Range (Level III Ecoregion #81), Mojave Basin and Range (#14), 
and Southern California/Northern Baja Coast (#85), exhibit the most consistent decreasing surface water trends 

Level I Ecoregion seasonal surface water trends

Level I Ecoregion Winter Spring Summer Fall Overall

5 – Northern Forests NA −0.183 −0.417 * −0.183 −0.142 *

6 – Northwestern Forested Mountains 0.015 −0.200 −0.133 −0.367 −0.077

7 – Marine West Coast Forest 0.029 0.029 −0.483 * 0.167 −0.048

8 – Eastern Temperate Forests −0.086 0.367 0.103 −0.217 0.015

9 – Great Plains NA 0.300 0.317 0.267 0.195 *

10 – North American Deserts −0.124 −0.100 −0.150 0.059 0.006

11 – Mediterranean California 0 −0.267 0.033 −0.250 −0.021

12 – Southern Semi-Arid Highlands 0.147 −0.191 0.324 0.162 −0.008

13 – Temperate Sierras −0.044 −0.221 0.183 0.412 * 0.001

15 – Tropical Wet Forests 0.567 * −0.029 0.233 −0.132 0.009

Conterminous United States 0.236 0.183 0.100 0 0.040

Note. Positive and negative trends show increasing and decreasing surface water extents, respectively. Significance is 
indicated with * (p < 0.05). “NA” indicates fewer than 10 observations.

Table 2 
Seasonal and Overall Surface Water Trends for Level I Ecoregions (Omernik, 1987) and the Conterminous United States 
Reported as Mann-Kendall Trend Values
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across the study period (Figure 4-i). In contrast, those in the central US (Figure 4-ii) have increasing surface water 
trends overall and across the seasonal time periods, consistent with the trends of the encompassing Great Plains 
Level I Ecoregion. The Northwestern Great Plains (#43), Nebraska Sand Hills (#44), and High Plains (#25) are 
in this group.

Some Level III Ecoregions exhibit pronounced trends in only one season. In the upper Midwest region surround-
ing the western Great Lakes (Figure 4-iii) several ecoregions have significant decreasing trends during the summer 
but non-significant trends during the other seasons. These ecoregions, which are characterized by high amounts 
of permanent surface water, include the Northern Lakes and Forests (#50), Northern Minnesota Wetlands (#49), 
and North Central Hardwood Forests (#51), and Lake Agassiz Plain (#48). These significant trends are also docu-
mented across the overall time series. Similarly, the Mississippi Alluvial Plain (#73) along the lower floodplain 
of the Mississippi River basin (Figure 4-iv), has a significant increasing trend in the spring, as do the Ouachita 
Mountains (#36) and South Central Plains (#35). Along the Gulf of Mexico, the Western Gulf Coastal Plain (#34) 
also has a significant increasing trend in only one season – the summer – with a non-significant decreasing trend 
in the fall.

Spatial complexity within Level I Ecoregions is apparent in the Eastern Temperate Forests ecoregion, where Level 
III Ecoregions in the eastern portion have seasonally conditioned decreasing surface water trends (Figure 4-v), 
while those in the western portion generally have increasing, though largely non-significant, trends (Figure 4-iv).

3.3.2.  Sen's Slope

Two broad and geographically distinct patterns of surface water slope are present across the US: (a) increasing 
slopes within the central section (including the Great Plains) and (b) decreasing slopes across the eastern and 
western sections (Figure 5). Though the directionality of monthly Sen's trend slope (hereafter slope) matches 
the overall M-K trends (Figure 4e), the magnitude of change varies. Within the central section, the highest slope 
for Level III Ecoregions is in the Northwestern Great Plains (#43; slope = 6.8 km 2/month). The Northwestern 
Glaciated Plains (#42; 1.85 km 2/month), Mississippi Alluvial Plain (#73; 1.64 km 2/month), and Southern Coastal 
Plain (#75; 1.55 km 2/month) followed, though with considerably lower slopes. This pattern of increasing slopes 
exists primarily within the Great Plains Level I Ecoregion, but also extends to the western portion of the Eastern 
Temperate Forests, and along the Atlantic coast.

Much of the eastern, upper Midwest, and northeastern regions of the US largely underwent a decline in surface 
water. The Great Lakes region had three of the strongest negative slopes, specifically the Northern Lakes and 
Forests (#50; −1.95 km 2/month), Lake Agassiz Plain (#48; −1.63 km 2/month), and North Central Hardwood 

Level I Ecoregion surface water summary statistics

Level I Ecoregion
Mean surface water 

extent (km 2)
Minimum 

(km 2)
Maximum 

(km 2) SD (km 2) COV
Percent of ecoregion 

area (%)
Sen's monthly 

slope (km 2/month)

5 – Northern Forests 11,441.1 4,706.8 25,413.0 2,251.4 0.20 3.1 −2.3

6 – Northwestern Forested Mountains 5,397.8 2,596.8 7,217.4 805.7 0.15 0.6 −1.6

7 – Marine West Coast Forest 766.9 335.2 1,236.5 131.2 0.17 0.9 −0.1

8 – Eastern Temperate Forests 44,107.3 37,842.3 62,398.0 4,331.5 0.10 1.7 2.5

9 – Great Plains 18,494.6 12,513.1 28,210.1 2,344.7 0.13 0.8 10.4

10 – North American Deserts 11,402.8 9,425.2 14,336.7 996.3 0.09 0.8 0.3

11 – Mediterranean California 2,391.6 1,251.6 5,474.2 879.8 0.37 1.5 −0.5

12 – Southern Semi-Arid Highlands 7.7 0.5 45.8 8.0 1.04 0 −0.001

13 – Temperate Sierras 75.4 18.1 194.7 35.1 0.47 0.1 0.001

15 – Tropical Wet Forests 2,322.0 1,591.6 4,495.9 484.4 0.21 10.3 0.2

Conterminous United States 94,698.3 74,170.1 124,963.8 7,567.6 0.08 1.2 7.9

Note. Mean, standard deviation (SD), and coefficient of variation (COV) are based on annual surface water area from 2003 through 2019. Percent of ecoregion area 
is based on mean surface water extent relative to total area. The Sen's monthly slope references the Sen's slope quantified using all monthly surface water area values.

Table 3 
General Statistics for Level I Ecoregions (Omernik, 1987) and the Conterminous United States
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Forests (#51; −1.1 km 2/month). Regions in the western US also underwent a widespread decline in surface water, 
with the most pronounced decreases observed in the Southwest. Some geographic variability is present across 
two Level I Ecoregions in the West: the Northwestern Forested Mountains and North American Deserts. In the 
North American Deserts, Level III Ecoregions with increasing slopes are generally found across the northern 
portions while decreasing slopes are present in the southern portions. The most extreme decreases occur in the 
Central (#13; −1.44 km 2/month), Mojave (#14; −0.62 km 2/month), and Sonoran (#81; −0.6 km 2/month) Basin 
and Range Ecoregions, though the Arizona/New Mexico Plateau (#22; 0.01 km 2/month) has a slight increasing 
slope. In the Northwestern Forested Mountains, Level III Ecoregions in the northwestern portions generally have 
decreasing surface water slopes while those across the southern and eastern portions have increasing slopes. The 
Temperate Sierras Level I Ecoregion, which only consists of one Level III Ecoregion, has a very low increasing 
slope (<0.01 km 2/month).

3.3.3.  Streamgage Discharge and Surface Water Trend Congruency

Monthly M-K trends for DSWEmod surface water records (i.e., the overall trend) and discharge records were 
compared. As previously noted, a majority rule was applied to summarize the most common discharge trend 

Figure 4.  Seasonal and overall surface water trends in Level III Ecoregions (Omernik, 1987). Locations cited in the text (i–v) are outlined in the winter map (a).
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direction in each ecoregion over the study period. Results indicate a total of 54 (63.5%) Level III Ecoregions 
exhibited either positive (30 Level III Ecoregions) or negative (24 Level III Ecoregions) congruency between 
discharge and DSWEmod trends (Figure 6d). Of the 4,804 qualifying gages used in the national analysis, 59.1% 
(n = 2,840) had a trend direction matching that of the ecoregion that they were located within (Table 4). The 
Temperate Sierras (n = 1 Level III Ecoregion), Mediterranean California (n = 4), Great Plains (n = 16), and 
Northwestern Forested Mountains (n = 12) Level I Ecoregions include the most Level III Ecoregions with the 
same observed trend direction in both tests, with 100%, 100%, 87.5%, and 75% of ecoregions, respectively.

The remaining 30 Level III Ecoregions in the US demonstrate incongruency between discharge trends and 
surface water trends. Most of these ecoregions were located across the Great Lakes region, the southeastern US, 
and portions of the Basin and Range and Pacific Northwest regions of the western US (Figure 6d). In most cases 
(67%), incongruence was characterized by positive streamgage discharge trends and negative DSWEmod trends. 
These ecoregions include 3 (of 3 remaining) Northern Forests ecoregions, 11 (of 15 remaining) Eastern Temper-
ate Forests ecoregions, and 2 (of 2 remaining) Marine West Coast Forest ecoregions. A cluster of ecoregions in 
the Southwest also exhibit poor correspondence, including the Central (#13) and Mojave (#14) Basin and Range 
Level III Ecoregions of the North American Deserts, and the Madrean Archipelago (#79) Level III Ecoregion.

4.  Discussion
4.1.  DSWEmod as a Source of Time-Series Data for Tracking Water Dynamics

Our assessment of the utility of DSWEmod surface water maps for monitoring water dynamics included consid-
erations of innate MODIS data properties (i.e., sensor characteristics, masking accuracy, and viewing geometry) 
as well as a determination of how to effectively apply monthly surface water map composites compiled from daily 
MODIS images to describe multi-decadal trends for a large collection of ecoregions that make up the contermi-
nous US.

Extending the regional methods applied to California (Soulard et al., 2022) to a national scale analysis high-
lights the complexity of tracking hydrologic change with MODIS data given moderate spatial resolution, viewing 
geometry challenges, and the presence of seasonal ice and snow in many parts of the US (Pickens et al., 2022). 
Despite these issues, the accuracy assessment of the DSWEmod data returned moderately high overall values for 
most Level I Ecoregions, with a few anomalies, including the Southern Semi-Arid Highlands ecoregion where 
reference data were sparse due to a paucity of sizable water bodies. Overall results were consistent with previ-
ously identified spatial and classification limits, such as the inability to accurately map pixels around water edges 
or smaller water bodies (Soulard et al., 2022). Effects related to the spatial variability of smaller water bodies on 
surface water trends vary by ecoregion, and since smaller, shallow water bodies are typically more responsive to 
transient weather events (i.e., floods or droughts), the absence of such features from our analysis likely limited 

Figure 5.  Sen's trend slope estimates (km 2/month) for DSWEmod-derived surface water extents in all Level III Ecoregions 
(Omernik, 1987). The estimates were grouped into the levels of increasing and decreasing slopes: (i) low, (ii) moderate, and 
(iii) high. Thresholds were manually assigned based on divisions in the data.
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variance and facilitated the identification of long-term surface water trends (Carroll & Loboda, 2017). An alter-
native source like Landsat imagery provides a higher spatial resolution capable of mapping smaller features, but 
MODIS provides a lengthy, continuous data record required for robust trend analysis (i.e., Mann-Kendall). While 
the surface water trends presented in this study primarily reflect only the dynamics of larger water bodies, such 
as lakes, reservoirs, and major rivers, MODIS remains the best available satellite resource for understanding 
contemporary annual and seasonal trends in surface water extent.

A second issue pertaining to the use of MODIS imagery as the foundation of this application is sensor degrada-
tion. Although prior (Collection 5) MODIS performance drift was addressed with radiometric calibration adjust-
ments in the Collection 6 product, we observed remaining problems such as the increased frequency of negative 
values and decreased visible reflectance values over time for the shorter wavelengths of Terra imagery. These 
effects have been independently reported in the literature (e.g., Geng et al., 2019; Xiong et al., 2020, 2019; Zhang 

Figure 6.  Overview of 2003–2019 trends in streamgage discharge and surface water extent across the United States. Trends are calculated for Level III Ecoregions 
(Omernik, 1987) according to (a) the majority of trends for all analyzed gages within each ecoregion (increasing/decreasing) across the monthly discharge records and 
(b) monthly records of DSWEmod surface water. In (c), the location and trend for each included gage illustrate the variability that can exist within ecoregions. The 
congruency map (d) highlights the geographical regions in which monthly gage discharge trends and DSWEmod surface water trends align.
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et al., 2017). Our observations of increasing frequency of negative reflectance values for water bodies corre-
spond with increased flagging of “high aerosol” levels and general declines in visible reflectance near and over 
inland water. Despite the performance degradation, which can be considered an inevitable decline in instrument 
functionality given that the MODIS sensors are operating far beyond the designed 6-year lifespan (Lyapustin 
et al., 2014), the sensors continue to meet predetermined quality standards (Xiong et al., 2020).

Our internal qualitative and quantitative checks suggest that the issues above do not appear to occur abundantly 
enough to make a noticeable impact on map accuracy and trend determination for most of the US, but we did 
observe slightly higher error frequency in certain locations, giving us concern about sensor degradation. We 
posit that less-optimal mapping performance in the East, the Southwest, and within the Southern Semi-Arid 
Highlands Level I Ecoregion, where a combination of sensor degradation and cloud shadow effects, such as 
during the summer monsoon season, may have resulted in increasing errors of commission throughout the study 
period. We describe possible future image processing improvements in Section 4.4. An additional consideration 
of DSWEmod utility in this study was the determination of how well daily optical data could be leveraged for 
trend detection across the US. We summarized cloud, snow, and ice obstruction over the DSWEmod time series 
to assess the benefits of daily acquisitions compared to less frequent observations. Our analysis succeeded in 
mapping water features with MODIS across all seasons, but certain seasonal effects persisted. For example, 
the winter months (December – February) had overall higher proportions of obscured pixels over much of the 
US due to increased cloud and snow/ice cover, as well as lower sun angles which result in higher numbers of 
terrain-shaded (i.e., masked) pixels in the DSWE algorithm; widespread NoData values were also present in the 
spring and fall seasons – typically limited to March (spring) and November (fall) – across portions of the northern 
and northeastern US. These issues led to poor data quality over part of the time series and constrained subsequent 
trend analysis to spring, summer, and fall in those areas. While our MODIS approach overcomes cloud, snow, and 
ice obstruction issues across the US for most of the year, these results highlight the difficulty in assembling clear, 
high-frequency views of the landscape with optical satellite data, even with the availability of daily acquisitions.

4.2.  Trends in Surface Water Patterns

The intent of our trend analysis was to distinguish monotonic trends in surface water extents over the 17-year time 
frame of this study. At a broad geographical scale (Level I Ecoregions), our results show that much of the west-
ern and eastern US has undergone a decline in surface water, while the Great Plains generally have had positive 
trends. These findings are largely consistent with those from other studies of recent water dynamics (e.g., Zou 
et al., 2018).

Level I Ecoregion trend congruency summary

Level I Ecoregion
Count of Level III 

Ecoregions
Percent of Level III Ecoregions with 

congruent trends (%) Number of gages tested
Percent of gages with 
congruent Trend (%)

5 – Northern Forests 4 25 200 49.5

6 – Northwestern Forested Mountains 12 75 675 61.5

7 – Marine West Coast Forest 3 33.3 131 41.2

8 – Eastern Temperate Forests 33 54.5 2189 52.8

9 – Great Plains 16 87.5 804 73.4

10 – North American Deserts 10 60 504 60.9

11 – Mediterranean California 4 100 244 78.7

12 – Southern Semi-Arid Highlands 1 0 12 41.7

13 – Temperate Sierras 1 100 30 56.7

15 – Tropical Wet Forests 1 0 15 40

Conterminous United States 85 63.5 4804 59.1

Note. Percentage of gages with congruent trends refers to gages that had congruent trends with the surface water trend of the Level III Ecoregion.

Table 4 
General Statistics for Each Level I Ecoregion (Omernik, 1987) and the Conterminous United States Summarizing DSWEmod Surface Water and Streamgage 
Discharge Trend Congruency Among Respective Level III Ecoregions
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A fundamental difficulty with detecting trends is that abrupt, irregular variations may obscure an existing trend 
or contribute to the erroneous determination of one (Frei & Schar, 2000). While M-K tests are robust to the 
influence of outliers, short-term dynamics on overall trends are relevant in places like the lower Mississippi River 
basin, which had extensive floods in April and May of 2008, 2011, 2016, 2018, and 2019 (National Weather 
Service, 2019). Our tests found a significantly increasing surface water trend in the spring for the Mississippi 
Alluvial Plain (#73) Level III Ecoregion (Figure 4) coinciding with large-scale inundation events in the latter half 
of the study period.

Given that the onset and duration of droughts are typically more gradual and extended than flooding events, 
decreasing time-series are less likely to be affected by the types of abrupt, stochastic variations that confound 
the detection of increasing trends (Shao & Kam, 2020). We observed significant decreasing overall and seasonal 
water trends for many Level III Ecoregions in the Southwest, an area undergoing a long-term (>100  years) 
drought (Figure 4) (Cayan et al., 2010; Cook et al., 2015; MacDonald et al., 2008; Seager et al., 2013). Similarly, 
we identified significant decreasing trends in several Level III Ecoregions in the Southeast, as well as within the 
western Great Lakes region during the summer. Specifically, summer surface water coverage decreased at a rate 
of 1.95 km 2/month in the Northern Lakes and Forests Level III Ecoregion (#50).

Continued surface water monitoring may identify changes in these trends in the future. For example, long-term 
climate projections across the Midwest suggest earlier surface water flows in the spring, coupled with increased 
temperature and decreased precipitation during the summer, which may reduce stream flow and surface water 
locally (Byun et al., 2019; Byun & Hamlet, 2018). Additionally, Topp et al. (2021) identified ongoing transitions 
in the seasonality of algal blooms across portions of the Midwest, where the phenology pattern is shifting at some 
locations from spring to summer presence. Changes in the concentrations of nutrient enrichment in the water 
(Carpenter & Pace, 2018) would theoretically result in reductions in the classification of DSWEmod water during 
certain seasons as a result of mixed vegetation/water pixels and may be partially driving a decreasing summer 
trend.

General surface water metrics (i.e., minimum, maximum, mean, coefficient of variation) of each regional time 
series may also supplement trend analyses by helping illustrate both inter-annual effects (e.g., climate variabil-
ity) and seasonal effects (e.g., seasonal variability of precipitation and evaporation). For example, minimum 
and maximum water extents in the Northern Forests (which includes parts of Minnesota, Wisconsin, Mich-
igan, Massachusetts, Pennsylvania, and New York) represent the seasonal alternation between frozen winter 
conditions and peak summer water area (Pickens et al., 2022), while in Mediterranean California they represent 
summer drought and rainy winter conditions. Applying 204 monthly observations derived for each ecoregion in 
the US to analyze annual trends, seasonal trends, and punctuated changes within the time series provides a great 
opportunity to explore the role of seasonal weather (i.e., precipitation, evapotranspiration, the timing of snow 
and snowmelt), climate trends, biophysical and hydrological characteristics, and human drivers (i.e., demand, 
purveyance, etc.) on regional surface water in the 21st century. The core analyses included in this application do 
not focus on quantifying the sensitivity of water bodies to regional drivers yet represent a starting point for using 
satellite imagery to chronicle the rates and trends of surface water change in the US that can feed into a more 
robust analysis of cause and effect.

4.3.  Streamgage Discharge and Surface Water Congruency

The use of continuous DSWEmod monthly composites to calculate seasonal and overall trends for every Level 
III Ecoregion represents a new way of quantifying surface water dynamics in the US. It is logical to compare 
these trends to other established approaches to identify where similarities and differences exist. One of the most 
commonly used hydrologic observation tools in the US is the USGS streamgage network, which includes over 
10,000 active gages with thousands more that measured data at some point during our study period (USGS 
NWIS,  2022d). To compare datasets, we calculated discharge trends across all available qualifying gages to 
create a synoptic view of flow for each ecoregion. We then compared discharge trend direction (i.e., increasing 
or decreasing) to surface water trend direction to identify regions where the drivers that affect flow may also 
have a similar influence on water area, as well as areas where trend direction differed over the study period. 
We defined congruency to exist when the majority of streamgage discharge trends in a given ecoregion show 
similar directionality as the DSWEmod-derived surface water trend in the same ecoregion. Using this approach, 
we  determined that most (e.g., 63.5%) ecoregions had congruent trends. On a more granular level, nearly 60% of 
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the individual gages used in this analysis exhibited the same trend direction as DSWEmod for the ecoregions in 
which they were located. Patterns of congruency differed according to trend direction. Thirty of the 41 Level III 
Ecoregions (73.2%) with positive overall DSWEmod trends also had positive discharge trends. Similarly, over 
80% (n = 1,325 of 1,647) of the gages tested within these ecoregions had increasing discharge. There was slightly 
less congruency for decreasing trends. We found that 24 of 44 Level III Ecoregions (54.5%) with decreasing 
DSWEmod trends also had decreasing discharge trends. At the gage level, over 70% of the streamgages within 
these 24 ecoregions had decreasing trends. Collectively, these results indicate that surface water trends captured 
by DSWEmod align with streamgage trends across a large portion of the US.

Increasing trends were quantified for both surface water and discharge across the Great Plains and middle Rocky 
Mountain highlands. The areal extents of the water bodies that run through the Great Plains (e.g., Missouri 
River) are controlled by precipitation that is coincident with late-season snowmelt originating from the Rocky 
Mountains (Quiring & Kluver, 2009), potentially driving coinciding changes in both discharge and surface water 
area. For the western uplands of the US, south Texas, and much of California, both DSWEmod and discharge 
had decreasing trends, suggesting similar surface water and discharge dynamics in this region as well. While the 
63.5% of ecoregions with congruent trends may indicate that both streamflow and surface water dynamics are 
largely responding to the same drivers, we also acknowledge that congruency may arise from independent drivers 
that coincidentally result in similar trends. However, in the absence of benchmark studies of nationwide surface 
water trends that would allow for more definitive confirmation, positive results in a given ecoregion allow a 
measure of confidence that the DSWEmod time series may be a reasonable proxy for gage-based measurements.

Conflicting trend directions, on the other hand, may reflect that, (a) external influences render either DSWEmod 
or discharge time series less appropriate for assessing surface water dynamics, (b) the drivers that influence each 
dataset may not be aligned, or (c) the two modes of measuring water change may be capturing different char-
acteristics of water (i.e., flashier discharge on smaller streams vs. large water body dynamics). Discharge trend 
direction and surface water trend direction did not match for the remaining 31 Level III Ecoregions. Incongruent 
trends are found regionally across the Great Lakes, the Southeast, and portions of the West. In many of these 
cases of dissimilar trends, decreasing surface water is paired with increasing streamflow. One potential explana-
tion for the lack of consistency has been discussed previously; namely, that detecting surface water trends with 
MODIS data may be hindered by either atmospheric effects or sensor-specific considerations such as look angle 
and instrument degradation. The DSWEmod imagery time series might thus be an incomplete record of true 
surface water dynamics in these areas. For instance, portions of the Great Lakes have experienced increases in 
extreme precipitation frequency (Paxton et al., 2021). Short-term periods of maximum discharge of surface water 
following extreme precipitation events may be missed using optical remote sensing datasets if there is extended 
cloudiness (Huang et al., 2018).

Another plausible explanation for mismatched streamgage and DSWEmod trends is that their dynamics may be 
driven by decoupled, independent factors that yield divergent results. For instance, variations in the manage-
ment of water resources and climate stresses can impact water storage and surface flows differently. Across 
both the Central and Mojave Basin and Range Level III Ecoregions, water levels for many primary water bodies 
including Lake Mead (NASA,  2021), Mono Lake (Mono Basin Clearinghouse,  2021), Walker Lake (USGS 
NWIS, 2022b), Pyramid Lake (USGS NWIS, 2022c), and the Great Salt Lake, which can undergo significant 
reductions in the surface area following a minimal drop in water surface elevation (USGS NWIS, 2022a; Utah 
Water Science Center,  2021), have experienced regular declines in water level over the study period. These 
declines have occurred despite reductions in the total percentage of urban water use in large regional cities (i.e., 
Los Angeles, Phoenix, Las Vegas) during the 21st century (Richter et al., 2020), coupled with reductions in the 
amount of irrigated water use in southwestern states (though not including California) as a result of improvements 
in technology and management practices (Mpanga & Idowu,  2021). However, increasing discharge trends at 
some gages have been observed along the Jordan River upstream of the Great Salt Lake (USGS gage 10171000; 
M-K trend = 0.039), the Truckee River upstream of Pyramid Lake (10351700; 0.018), and the Walker River 
upstream of Walker Lake (10301600; 0.014) over the same period. A similar pattern may be present across 
portions of the Southeast, which has had documented decreases in water quantity, groundwater, and low-flow 
streamgage records (Engström et al., 2021; Richey et al., 2015; Stephens & Bledsoe, 2020), matching the decreas-
ing trends seen in the DSWEmod time series, though in contrast to a majority of trends in discharge. Unlike the 
extended droughts that encompass the Southwest, this region experiences a greater frequency of short-term “flash 
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droughts” and extreme wet events impacting both surface and groundwater flows (Engström et al., 2021; Labosier 
& Quiring, 2013).

Spatial biases may have also influenced the outcome of the trend analysis. HUCs are spatially disconnected 
from ecoregions, and discharge within an overlapping HUC may not always represent surface water conditions 
occurring within the respective ecoregion. As an example, gage trends across the Southeast (Figure 6c) suggest 
that this region may be more susceptible to spatial variability in trend direction that is not displayed at an ecore-
gion scale. The spatial distribution of streamgages is another source of potential discordance. Since streamgages 
cannot feasibly be installed on every waterway, the priority is to place them in locations that better inform human 
water management needs (Krabbenhoft et al., 2022), which inherently leads to spatiotemporal gaps in parts of 
the US. Spatial and temporal gaps are more common across portions of the central and western HUCs of the 
US, where lower correlations are present between gaged and ungaged locations and the ability to estimate flows 
at ungaged locations is limited (Kiang et al., 2013). This point-based sampling differs from the comprehensive 
DSWEmod product, which provides wall-to-wall measurements of surface water dynamics. Our decision to retain 
streamgages with discharge above the bottom quartile threshold also biased the analysis toward larger order 
waterways. While both factors may make the comparison approach slightly less suitable in parts of the country 
with spatiotemporal gaps, we feel that the selection criteria allow us to create a more equitable comparison with 
the moderately sized water bodies that we mapped with MODIS.

We do not explore the full range of reasons for congruent or incongruent trends between the two measurement 
approaches since an in-depth review of the individual drivers in every ecoregion is beyond the scope of this paper. 
However, describing the relationship between instrumented surface water flows and DSWEmod across various 
landscapes may be helpful for water management applications inside the US, while also justifying the use of 
satellite imagery as a proxy for trends derived from in-situ measurements in parts of the US where the landscape 
is not consistently covered by clouds, snow, or ice.

4.4.  Future Directions and Applications

There are ample possibilities for reducing errors in MODIS-derived maps and employing different analytical 
approaches to glean additional insights into the causes and patterns of surface water change. Improvements in 
the preprocessing of MODIS data will provide future opportunities to verify the existence and magnitude of any 
subtle trends detected here. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm 
is a sophisticated method for cloud detection, aerosol retrieval, and atmospheric corrections; its application to 
Collection 6 data has improved the accuracy of measured surface reflectance values to the extent that MAIAC 
data are now the standard dataset for MODIS-based studies of land-surface dynamics (Lyapustin et al., 2018). 
We intend to generate updated DSWEmod layers with MAIAC data once they are available through the GEE 
public catalog.

Additionally, we can apply a variety of approaches in future analyses to better understand the causes and patterns 
of surface water dynamics and change. A multi-variate approach could quantify simultaneous drivers, while 
the removal of managed water bodies, which are more strongly influenced by water management than weather 
(Fergus et al., 2020), may help to isolate climate responses. For more static water bodies such as lakes and reser-
voirs, which DSWEmod is more adept at identifying due to pixel size limitations, lagged drivers are shown to 
be valuable in driving surface water extent dynamics (Heimhuber et al., 2017) and may be worth considering 
in future analyses. Other changes in LULC can have underlying impacts on surface water dynamics, including 
changes in urban area (e.g., expansion and intensity), agricultural practices (e.g., irrigation, evapotranspiration), 
vegetation cover and type (e.g., water use), and could improve our understanding of regional drivers of surface 
water (Schilling et al., 2008; Stonestrom et al., 2009). These options may prove effective for quantifying how 
surface water extents change in response to human and natural factors across some of the ecoregions with more 
complex hydrologic dynamics. Finally, the national scale of the trend analysis and discharge comparison does not 
allow for the full exploration of the regional disconnect between different types of water metrics. Future research 
could focus on evaluating the role of common streamflow drivers (Slater & Villarini, 2017) on surface water 
trends to identify if similar statistical relationships extend between each time series.
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5.  Conclusions
Our research approach was effective in determining three main aspects of surface water dynamics across the US: 
(a) a general overview of surface water presence and yearly variability, (b) seasonal and overall trends of surface 
water summarized at the ecoregion scale, and (c) a test of the congruency between trends of streamgage discharge 
and surface water, also summarized by ecoregion. The results of this study have identified regional and localized 
trends in surface water extents and provide a basic overview of where and to what extent trends in surface water 
and discharge align over the past two decades.

This investigation represents an important step toward quantifying multi-temporal surface water trends based 
on monthly imagery data, setting the stage for future work that integrates localized human activities into more 
robust casual analyses. Comparing streamgage discharge and satellite-derived maps indicates that fluctuations in 
streamflow and surface water area are linked in most of the US; the trend direction in DSWEmod and streamgage 
records were congruent in more than 60% of US ecoregions. The positive surface water and discharge trends in 
the Great Plains over the study period reaffirm prior findings of an increase in surface water across the central and 
upper Midwest in recent decades (Gupta et al., 2015; Zou et al., 2018). In this study, surface water area across the 
Great Plains Level I Ecoregion increased at a rate (e.g., Sen's slope) of 124.8 km 2/year, leading to a substantial 
increase in surface water that may be, in part, due to an increase in regional precipitation over the same period 
of time (Thornton et al., 2020). Negative trends within selected Level III Ecoregions across the West include the 
Central Valley of California (−3.2 km 2/year), the Mojave Basin and Range (−7.5 km 2/year), and the Sonoran 
Basin and Range (−7.2 km 2/year), coinciding with discharge records in each ecoregion showing declines over the 
same period. While trends align in many parts of the US, our analysis does also find that parts of the country had 
poor correspondence between trends in DSWEmod and streamgage discharge, including sections of the Great 
Lakes and Southeast. By providing possible explanations for this without fully resolving underlying drivers, we 
lay out a roadmap for future applications focused on regional causal processes.

Assembling clear views of the landscape at a monthly timestep broadens opportunities to monitor intra- and 
inter-annual trends and identify differences between heterogeneous ecosystems. Understanding the underlying 
driving forces that contribute to these changes is far more challenging, but this work presents a template for 
future examinations that can incorporate a larger suite of possible explanatory variables and account for regional 
differences. While the linkage between streamflow and surface water area is not absolute across ecoregions, our 
comparison highlights how satellite records can complement streamgage measurements and help create a more 
complete understanding of water dynamics at the regional scale. Dissimilar trends suggest that it is premature 
to  conclude that MODIS-based surface water maps can serve as a proxy for streamflow in all parts of the world, 
but these data can provide other valuable insights on long-term trends, especially in regions without long periods 
of snow or cloud cover.

Data Availability Statement
Data products for this research can be found on the U.S. Geological Survey ScienceBase public data repository 
(Petrakis et al., 2021).
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