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A B S T R A C T   

The recent re-eutrophication of Lake Erie suggests an inadequate phosphorus management system that results in 
excessive loads to the lake. In response, governments in Canada and the U.S. have issued a new policy objective: 
40% reductions in total phosphorus (TP) and dissolved reactive phosphorus (DRP) loads relative to 2008. The 
International Organization for Standardization (ISO) 31000 is a risk management standard. One of its analytical 
tools is the ISO 31010:2009 Bowtie Risk Analysis Tool, a tool that structures the cause-effect-impact pathway of 
risk but lacks the ability to capture the probability of reducing risk associated with different management sys
tems. Here, we combined the Bowtie Risk Analysis Tool with a Bayesian belief network model to analyze the 
probability of different agricultural management systems of best management practices (BMPs) to achieve the 
40% reductions in TP and DRP loads using different adoption rates. The commonly used soil conservation BMPs 
(e.g., reduced tillage) have a low probability of reducing TP and DRP to achieve the policy objective; while it can 
achieve the TP load reduction objective at increased adoptions rates >40%, it does not achieve the DRP load 
reduction objective, and in fact has the unintended consequence of increasing DRP loads. If decision makers 
continue to rely on soil conservation BMPs, the trade-offs between meeting objectives of different forms of 
phosphorus will require deciding whether the management priority is to achieve 40% load reduction objectives 
or to prevent further increases in DRP loads, the identified culprit causing the repeated algal blooms. In contrast, 
TP- and DRP-effective BMPS had higher probabilities of achieving the policy objective, especially at increased 
adoption rates >20%. The integration of Bayesian belief networks with the ISO risk management standard allows 
decision makers to determine the most probable outcomes of their management decisions, and to track and 
prepare for less probable outcomes, thereby decreasing the risk of failing to achieve policy objectives.   

1. Introduction 

Eutrophication has remerged as a problem in the western basin of 
Lake Erie, with nuisance algae again threatening ecosystem functions 
and associated services (Michalak et al., 2013; Scavia et al., 2014). The 
decline in Great Lakes ecosystem health triggered a bi-national agree
ment to manage environmental risks that led to the 1972 Great Lakes 
Water Quality Agreement (hereafter the Agreement) and a policy 
objective to limit the amount of phosphorus entering the lakes. A sub
sequent reduction of phosphorus loads to levels below the policy 
objective resulted in a “rapid and profound ecological response” in Lake 
Erie (Michalak et al., 2013), which was considered “one of humankind’s 
greatest environmental success stories” (Matisoff and Ciborowski, 
2005). However, the re-eutrophication of Lake Erie suggests that the 

ecosystem is changing such that the long-standing policy objective was 
no longer reliable for preventing eutrophication and related impacts. In 
response, governments from Canada and the United States once again 
mobilized to tackle the issue from a perspective that considers both total 
phosphorus (TP) and dissolved reactive phosphorus (DRP) management. 
The Annex 4 Nutrient Objectives and Targets Task Team (hereafter the 
Task Team) was assembled to recommend policy objectives for reducing 
the probability of Lake Erie cyanobacteria algal blooms. The Task Team 
recommended 40% reductions in TP and DRP loads relative to 2008 
from all western Lake Erie basin tributaries and the Thames River (EPA, 
2015). This reduction was recommended to achieve a 90% annual 
probability that cyanobacteria blooms in Lake Erie’s western basin 
would be no larger than those observed in 2004 and 2012. 

To achieve the policy objective, the performance of the management 
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measures for reducing phosphorus loads needs to be analyzed and then 
improved. Agriculture and its contribution to non-point phosphorous 
loads to aquatic ecosystems can be managed by regulatory measures (i. 
e., the 2006 Nutrient Management Act) or voluntary measures (best 
management practices; BMPs). To measure the effectiveness of man
agement measures comprised of BMPs, we need to know the percentages 
of phosphorus loads that are reduced by these BMPs. However, there is 
considerable variation in TP and DRP load reductions by individual 
BMPs (Dodd and Sharpley, 2016; Gitau et al., 2005; McElmurry et al., 
2013). The broad ranges in BMP effectiveness for reducing phosphorus 
loads produce a considerable risk of failing to achieve the policy 
objective of 40% reductions in TP and DRP loads. Further, there is a 
potential for some BMPs to reduce TP but to increase DRP loads, thereby 
increasing the likelihood of eutrophication events. Without better pre
dictions of anticipated BMP effectiveness prior to implementation, 
achieving the 40% reductions in TP and DRP loads in agricultural 

tributaries of the Great Lakes may be a “shot in the dark”, with the 
potential to exasperate eutrophication risk and its impacts (Dodd and 
Sharpley, 2015; Sharpley et al., 2009; Smith et al., 2015). In order for 
western Lake Erie basin tributaries to achieve 40% reductions in TP and 
DRP loads while reducing the uncertainty of unintended consequences, 
simple tools are needed that can identify strengths and weaknesses as 
well as gaps and redundancies in the management systems. 

Creed et al. (2016) introduced the use of the International Organi
zation for Standardization (ISO) 31000 Risk Management Standard and 
the ISO 31010:2009 Bowtie Risk Analysis Tool for understanding the 
risk in reducing phosphorus loads to the Great Lakes. However, the 
Bowtie Risk Analysis Tool lacks the ability to estimate the uncertainty in 
the effectiveness of the management measures used to reduce the risk. 
Bayesian belief networks enable characterization of this uncertainty 
Cormier et al. (2018). Here, we illustrate the uncertainty in the perfor
mance of BMPs created by the distribution in the effectiveness and the 

Fig. 1. Grand River watershed in southern Ontario and land cover in 2011 (data source: AAFC (Agriculture and Agri-Food Canada), 2013. Crop Mapping v3.).  
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variable adoption rates of BMPs. We (1) develop a Bowtie Risk Analysis 
Tool-inspired Bayesian belief network to simulate the probability of TP 
and DRP load reductions by BMPs, individually and collectively, and 
then (2) apply the Bayesian belief network to identify BMPs with the 
highest probability of achieving the policy objective of 40% TP and DRP 
load reductions from tributaries draining into Lake Erie. We hypothe
sized that increased adoption of commonly used soil conservation BMPs 
will be effective in achieving the targeted TP and DRP load reductions. 
We applied our Bowtie Analysis Tool using a Bayesian belief network to 
the Grand River watershed in southern Ontario, Canada, an 
agriculture-dominated watershed that, while it drains into the eastern 
basin of Lake Erie, had the data needed to develop and apply the tool. 
Recognizing that BMP effectiveness is context-dependent, the data that 
informed the distribution of BMP effectiveness included studies 
throughout the Great Lakes Basin and in north-eastern USA. 

2. Material and methods 

2.1. Test area 

The Grand River watershed of Ontario drains 7120 km2 of predom
inantly agriculturally land into Lake Erie’s eastern basin. On an area 
basis, most of the Grand River watershed is crop (45.2%) and livestock 
(26.7%) land uses. Agriculture in the watershed operates on 6400 farms 
(Statistics Canada, 2006) representing 5100 km2 (Lake Erie Source 
Protection Region Technical Team, 2008), divided almost evenly be
tween livestock, crop, or combined operations (Fig. 1). The Grand River 
watershed discharged 447 metric tonnes of TP in 2008, including 407 
metric tonnes of TP and 109 metric tonnes of DRP from agricultural 
sources (Maccoux et al., 2016). According to the Grand River Water 
Management Plan (2013), the three agricultural activities contributing 
phosphorus loads are mineral phosphorus application, manure phos
phorus application, and livestock phosphorus losses (i.e., livestock 
fouling). As such, the Task Team identified the Grand River as a priority 
watershed for continual and enhanced management and monitoring of 
phosphorus loads. 

2.2. Model structure 

The ISO 31010:2009 Bowtie Risk Analysis Tool shows the risk 
pathway which includes drivers that create pressures, pressures that 
contribute to the risk and the prevention management measures which 
act to reduce these pressures, the risks that remain after the prevention 
management measures have been implemented, the impacts of these 
risks, and the mitigation management measures that act to reduce the 
severity of these impacts (Fig. 2). 

The ISO 31010:2009 Bowtie Risk Analysis Tool was used to organize 
the risk pathway of agricultural phosphorus loads from the Grand River 
watershed to Lake Erie (Fig. 3). The drivers are agricultural activities 
that contribute phosphorus loads. The agricultural activities included 
mineral phosphorus application to crops, manure phosphorus applica
tion to crops, and livestock fouling, with each activity represented by a 
TP load node and a DRP load node in metric tonnes (Fig. 3). The pre
vention management measures to reduce these phosphorus loads to 
acceptable levels are on the left of the bowtie; the focus of this study. The 
prevention management measures were ten BMPs: three phosphorus 
source reduction BMPs (precision feeding of livestock, reduced phos
phorus application rate to crops, and incorporated phosphorus appli
cation below the soil surface of cropland); four phosphorus transport 
reduction BMPs (reduced tillage that combined no-tillage and conser
vation tillage practices, crop rotation, winter cover crops, and contour 
cultivation); and three phosphorus sink enhancement BMPs (grass filter 
strips, forest filter strips, and wetlands). The prevention management 
measures include escalation factors that may undermine the effective
ness of BMPs; however, estimating the effect of escalation factors on 
phosphorus reduction by BMPs was beyond the scope of this study. The 
cumulative effects of agricultural activities are considered within the 
probabilities of achieving the policy objective (i.e., 40% reductions in TP 
and DRP loads from 2008 levels). 

The performance of each BMP within the Bowtie Analysis Tool was 
estimated by Bayesian belief network (Fig. 3), where performance was a 
function of the effectiveness node (i.e., the proportion of phosphorus 
load reduced by the BMP) and the adoption node (i.e., the proportion 

Fig. 2. The ISO 31010:2009 Bowtie Risk 
Analysis Tool analyzes the performance of 
management measures. Drivers are social, 
cultural, economic, and political factors that 
create pressures. Pressures contribute to the 
effect, and prevention management mea
sures act to reduce these pressures. The effect 
is the risk event that results because of the 
residual pressures after implementing the 
prevention management measures. Environ
mental and socio-economic impacts occur 
because of the risk event. Mitigation man
agement measures act to reduce the severity 
of these impacts. Escalation factors are 
outside influences that undermine the per
formance of prevention or mitigation mea
sures (Creed et al., 2016).   
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agricultural areas treated by the BMP) for each agricultural activity. 
Bayesian belief network sub-models included nine BMPs (all but preci
sion feeding) for mineral phosphorus application, all ten BMPs for 
manure phosphorus application, and four BMPs (precision feeding, grass 
filter strips, forest filter strips, and wetland restoration) for livestock 
phosphorus losses. The Bayesian belief network sub-models were 
sequenced based on the position of the BMP along hydrological flow 
paths; this resulted in phosphorus source reduction BMPs first, followed 
by phosphorus transport reduction BMPs, and finally phosphorus sink 
enhancement BMPs. 

The residual TP and DRP loads were the residuals of the 2008 TP and 
DRP loads that remained after reductions from the adoption of one or 
more BMPs for each agricultural activity. The cumulative effect was the 
sum of the residual TP and DRP loads for each of the three agricultural 
activities. The cumulative effects for TP and DRP were discretized into 
three states, representing 40–100% load reductions relative to 2008 (i. 
e., met the policy objective), 0–39% load reductions (i.e., short of the 
policy objective), and <0% load reductions (i.e., increased loads) 
(Fig. 3). The Bayesian belief network model was designed using Netica 
6.05 for Bayes Nets software (Norsys Software Corp, 2018). 

2.3. Model parameterization 

2.3.1. Agricultural TP and DRP load nodes 
The total TP and DRP load nodes were estimated using data from 

Maccoux et al. (2016), which reported annual TP loads from 2003 to 
2013 and annual DRP loads from 2009 to 2013 from different tributaries 
to Lake Erie. To evaluate the performance of BMPs in meeting the policy 

objective of 40% reductions in TP and DRP loads from 2008 levels, we 
had to estimate the 2008 DRP load. The 2008 DRP load was estimated as 
the proportion of 2008 TP load equal to the average proportion of TP 
that was DRP from 2009 to 2013. Maccoux et al. (2016) also reported 
separate TP and DRP loads for municipal and industrial areas of the 
Grand River watershed. We assumed that the remaining load was 
contributed by agriculture areas that represented 80% of the Grand 
River watershed area (Grand River Conservation Authority, 2013). 

TP and DRP loads were partitioned into separate mineral phosphorus 
application, manure phosphorus application, and livestock phosphorus 
loss loads to populate the three agricultural activities. Mineral TP and 
DRP application loads were calculated as the products of TP and DRP 
loads and the proportions of agricultural land in the Grand River 
watershed receiving mineral phosphorus applications (2006 Census of 
Agriculture (Statistics Canada, 2006)). Manure TP and DRP application 
loads were calculated as the products of TP and DRP loads and the 
proportions of agricultural land receiving manure phosphorus applica
tions (2006 Census of Agriculture (Statistics Canada, 2006)) minus 
livestock TP and DRP loads from fouling. Livestock TP and DRP loads 
were estimated as the products of TP and DRP loads, the proportion of 
agricultural land receiving manure phosphorus application, and one 
minus the Ontario manure phosphorus recoverability coefficient (i.e., 
the proportion of phosphorus in livestock manure that is recovered from 
animal fouling and then available for application to cropland and pas
tures as fertilizer; the remainder is considered unrecoverable and 
therefore available for runoff; International Crop Nutrient Institute 
(2013)). 

Fig. 3. Structure of the Bayesian belief network for the management of three agricultural activity pressures that contribute TP (blue) and DRP (green) loads to Lake 
Erie on the left, the influence of preventative BMPs in the middle, and the resulting residual TP and DRP risks on the right. Note: this is a conceptual diagram; the 
actual model developed between four and ten BMPs per pressure sequence. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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2.3.2. BMP effectiveness nodes 
Effectiveness nodes for each BMP were estimated with distributions 

that estimated the probability of proportional reductions reported in 
published relevant studies (Table 1). Relevant studies from the Grand 
River watershed were limited; therefore, studies were compiled from the 
Great Lakes region and northeastern United States. Positive load re
ductions indicate load reductions, while negative load reductions indi
cate increases. Proportional load reductions were divided into bins or 
states, including five states with >0 reduction, five states with 
<0 reduction (if appropriate), and one state with 0 reduction (no effect; 
BMP had no further adoption). All distributions of proportional load 
reductions above and below 0 were tested for normality using the Wilk- 
Shapiro test (p < 0.05). For those distributions that passed the normality 
test, effectiveness distributions were generated as a normal distribution 
using the mean, standard deviation, maximum and minimum reductions 
reported in the literature. For those distributions that failed the 
normality test (precision feeding TP, reduced tillage TP, grass filter 
strips TP and DRP, and wetlands TP), distributions were generated using 
the “Learn from Cases” function in the Netica software, which calculates 
the true distribution of the compiled proportional load reduction values 
of each BMP. Effectiveness varied among BMPs and between TP and DRP 
proportional load reduction values. The BMPs appeared more effective 
for TP load reduction than for DRP load reduction: however, the dif
ferences between mean or median TP and DRP load reduction values 
were generally not significant. 

Differences in the means of proportional TP and DRP load reductions 
were tested using two-tailed t-tests (p < 0.1) for BMPs where distribu
tions of both proportional load reductions were normal (i.e., incorpo
rated application, crop rotation, and contour cultivation). Differences in 
the medians of proportional TP and DRP load reductions were tested for 
all other BMPs using Mann-Whitney rank sum tests (p < 0.1). 

Assumptions made in the parameterization of the Bayesian belief 
model and the potential implications of these assumptions are summa
rized in Table 2. 

2.3.3. BMP adoption nodes 
Adoption nodes for each BMP were estimated as distributions 

ranging from 0 to 1 indicating the proportion of agricultural areas that 
could be subjected to or treated by the BMP relative to the area subjected 
to or treated by the BMP in 2008. These proportions were discretized 
into five equal states >0 and one state = 0 (for modeling no increased 
adoption of the BMP). A proportion = 1 assumes that all agricultural 
area that was untreated by a BMP in 2008 could be subjected to treat
ment by that BMP. For wetland restoration, which is constrained by the 
ability of land to support restoration, this assumption does not hold. 
Here, the adoption node was equal to the total possible proportion of 
agricultural area that could adopt wetland restoration, which was 
calculated as follows. First, we generated a map of restorable wetlands 
assuming that tile drainage was the primary mechanism of wetland loss 
in the Grand River watershed; restorable wetlands were identified by 
intersecting a map of farm tile drainage (OMNRR, 2012) with a map of 
pre-settlement wetlands (ca. 1800; Ducks Unlimited, 2010) minus 
present-day wetlands (i.e., 2000–2015; Grand River Conservation Au
thority, 2015). Second, we generated a map of the contributing areas 
draining into each of the restorable wetlands. A hydrologically condi
tioned (Tarboton et al., 1991) 20-m digital elevation model (OMNR, 
2011) was used to calculate the total contributing area as a proportion of 
the total agricultural area (AAFC, 2013) to each restorable wetland. 

2.3.4. BMP performance nodes 
The performance node refers to proportional reductions of TP and 

DRP loads by BMPs under increase adoption. A distribution of the per
formance for each BMP was generated in Netica by multiplying its 
effectiveness distribution by its adoption distribution, providing an es
timate of its watershed-scale agricultural TP and DRP load reductions. 
The distribution of the performance resembles the effectiveness 

distribution when simulating 100% increased adoption (i.e., 1.0); on the 
other hand, when increased adoption is 0.0, performance is also 0.0, 
regardless of the BMP’s effectiveness distribution. The first residual 
phosphorus load node reflects the initial load and the performance of the 
first BMP in reducing the phosphorus (P) loads (Eqn. (1)): 

Loadn=1( PLoad,Performancen=1)=
(
1 − Performancen=1)× PLoad (1) 

The probability distributions for all subsequent P loads nodes re
flected the residual P loads preceding it and the performance of the 
specific BMP in reducing the P loads (Eqn. (2)): 

P Loadn( PLoadn− 1,Performancen)=(1 − Performancen) × PLoadn− 1 (2)  

2.4. Model application 

Four phosphorus reduction strategies were considered for their 
abilities to increase the probability of meeting the policy objective of 
40% reductions in TP and DRP loads to Lake Erie compared to 2008 
loads: (1) increased adoption of all BMPs; (2) increased adoption of 
commonly used (or promoted) BMPs; (3) increased adoption of BMPs 
effective for TP load reduction only; and (4) increased adoption of BMPs 
effective for DRP load reduction only (Table 3). The commonly used 
BMPs (e.g., soil conservation BMPs) were identified from Filson et al. 
(2009), Lamba et al. (2009), and the Canadian 2006 Census of Agri
culture (Statistics Canada, 2006). TP-effective BMPs were BMPs that 
showed TP load reductions and no TP load increases in all studies used to 
derive the effectiveness nodes. DRP-effectiveness BMPs were those 
BMPs that showed no DRP load increases in the same studies. 

To simulate increased adoption of BMPs in each management sys
tem, BMP adoption nodes were configured to reflect increased adoption 
rates relative to 2008 (i): (1) 0% < i ≤ 20%; (2) 20% < i ≤ 40%; (3) 40% 
< i ≤ 60%; (4) 60% < i ≤ 80%; and (5) 80% < i ≤ 100%. The increased 
adoption of BMPs not suitable to the respective management systems 
remained unchanged (i.e., 1.0 probability of 0% increased adoption). It 
is unrealistic to expect the adoption of all BMPs to increase relative to 
2008, or at the same rate; however, more complicated scenarios with 
variable adoption probabilities were beyond the scope of the present 
study. We designated probabilities for each management system in each 
category of i of achieving ≥40% TP and DRP load reduction objectives 
≥0.900 as highly probable, and ≥0.750 as probable. 

3. Results 

3.1. BMP management strategy effectiveness under increased adoption 
rates 

As rates of BMP adoption relative to 2008 increased from 0 to 100%, 
the probabilities of meeting the TP and DRP policy objectives increased 
and therefore the risks of increased phosphorus loads decreased 
(Table 4). 

3.1.1. Low increased adoption rates (0% < i ≤ 20%) 
At low increased adoption rates relative to 2008 (0% < i ≤ 20%), the 

management system with all BMPs showed a high probability of 
achieving the ≥40% TP load reduction objective (0.913) but not the 
≥40% DRP load reduction objective (0.292), and with a risk of increased 
DRP loads (0.344). The other management systems did not show a high 
probability (>90%) of achieving either the ≥40% TP or DRP load 
reduction objectives (Table 4). Therefore, at low increased adoption 
rates (0–20%), no management system met the criterion of a high 
probability of achieving both TP and DRP load reduction objectives. 

3.1.2. Moderate increased adoption (20% < i ≤ 40%) 
At moderate increased adoption rates relative to 2008 (20% < i ≤

40%), three of four management systems showed high probabilities of 
achieving the ≥40% TP load reduction objective: all BMPs (0.999), TP- 
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Table 1 
Descriptive statistics derived from experimental data, empirical equations, and expert opinion as captured from our literature review for proportional TP and DRP load reductions [0–1] by BMPs, and proportions of 
effectiveness [0–1] for ≤ 0%, >0%, >20%, >40%, >60, >80% load reductions. Significant differences (p < 0.1) in means or medians for individual BMPs are indicated in bold. Soil conservation BMPs are indicated by an 
asterisk. BMP effectiveness compilation sources are numbered and refer to the list of references below the table.  

Best Management Practices Proportional load reduction [0–1]  Proportion of load reduction effectiveness [0–1] References 

Mean Median Max Min Range 95% Credible Interval ≤0% >0% >20% >40% >60% >80% 

Precision feeding TP 0.251 0.222 0.690 0.060 0.630 0.068–0.633 0.000 1.000 0.516 0.161 0.032 0.000 18,23,41,45,49 
DRP 0.181 0.177 0.344 0.110 0.234 0.113–0.302 0.000 1.000 0.200 0.000 0.000 0.000 

Reduced application TP 0.536 0.490 0.765 0.365 0.400 0.377–0.746 0.000 1.000 1.000 0.800 0.300 0.000 10,11,43,47,48 
DRP 0.455 0.500 0.832 − 0.024 0.856 0.027–0.804 0.077 0.923 0.846 0.615 0.231 0.077 

Incorporated application TP 0.355 0.420 0.965 − 0.187 1.152 − 0.144–0.922 0.200 0.800 0.600 0.600 0.200 0.00 5,9,47,52 
DRP 0.660 0.679 0.975 0.053 0.922 0.133–0.954 0.000 1.000 0.909 0.818 0.727 0.364 

Reduced tillage* TP 0.564 0.580 0.950 − 0.220 1.170 − 0.196–0.937 0.032 0.967 0.839 0.677 0.484 0.355 2,3,4,12,16,17,18,20,22,24,28,40,46 
DRP − 1.027 0.300 0.867 − 4.100 4.967 − 2.162–0.789 0.353 0.647 0.588 0.412 0.176 0.059 

Crop rotation TP 0.753 0.728 0.980 0.534 0.446 0.550–0.964 0.000 1.000 1.000 1.000 0.750 0.375 11,12,21 
DRP 0.467 0.525 0.550 0.325 0.225 0.332–0.545 0.000 1.000 1.000 0.667 0.000 0.000 

Winter cover crops* TP 0.620 0.480 0.940 0.286 0.654 0.307–0.920 0.000 1.000 1.000 0.800 0.400 0.400 4,18,26,38,42,53 
DRP 0.337 0.265 0.727 0.000 0.727 0.021–0.701 0.000 1.000 0.500 0.500 0.375 0.000 

Contour cultivation* TP 0.446 0.370 0.930 0.080 0.850 0.106–0.881 0.000 1.000 0.792 0.458 0.250 0.125 12,16,21,22,36 
DRP 0.533 0.375 0.925 0.030 0.895 0.315–0.904 0.000 1.000 1.000 0.333 0.333 0.333 

Grass filter strips* TP 0.578 0.552 0.950 0.104 0.846 0.190–0.933 0.000 1.000 0.978 0.731 0.452 0.194 1,6,7,8,13,14,15,16,17,22,29,30,31,33,37,44,51 
DRP 0.261 0.434 0.957 − 2.580 3.537 − 2.296–0.931 0.179 0.821 0.732 0.554 0.286 0.125 

Forest filter strips* TP 0.651 0.694 0.976 0.300 0.676 0.324–0.954 0.000 1.000 1.000 0.778 0.556 0.444 15,29,31,36,39 
DRP 0.702 0.738 0.990 0.277 0.713 0.319–0.970 0.000 1.000 1.000 0.800 0.800 0.300 

Wetlands* TP 0.414 0.310 0.980 − 0.540 1.520 − 0.486–0.958 0.133 0.867 0.500 0.433 0.367 0.200 9,16,22,25,27,34,50 
DRP 0.350 0.402 0.900 − 0.270 1.170 − 0.125–0.825 0.105 0.895 0.368 0.526 0.053 0.053 

1 Abu-Zreig et al. (2003) 
2 Andraski et al. (1985) 
3 Andraski et al. (2003) 
4 Angle et al. (1984) 
5 Baker and Laflen (1982) 
6 Barfield et al. (1998) 
7 Blanco-Canqui et al. (2004) 
8 Boyer (2006) 
9 Braskerud et al. (2005) 
10 Bundy et al. (2001) 
11 Burwell et al. (1975) 
12 Chesapeake Bay Program (1987) 
13 Daniels and Gilliam (1996) 
14 Dillaha et al. (1989) 

15 Doyle et al. (1977) 
16 DPRA Inc. (1989) 
17 Eghball et al. (2000) 
18 Ghebremichael and Watzin (2010) 
19 Ghebremichael et al. (2008) 
20 Ginting et al. (1998) 
21 Haith and Loehr (1979) 
22 Hamlett and Epp (1994) 
23 Hanrahan et al. (2009) 
24 Hansen et al. (2000) 
25 Jordan et al. (2003) 
26 Klausner et al. (1974) 
27 Kovacic et al. (2000) 

28 Laflen and Tabatabai (1984) 
29 Lee et al. (2003) 
30 Lee et al. (1998) 
31 Lee et al. (2000) 
32 Lim et al. (1998) 
33 Magett et al. (1989) 
34 Mitsch et al. (1995) 
35 Mostaghimi et al. (1988) 
36 Novotny (1994) 
37 Payer and Weil (1987) 
38 Pesant et al. (1987) 
39 Peterjohn and Correll (1984) 
40 Phillips et al. (1993) 

41 Pomar et al. (2011) 
42 Reddy et al. (1978) 
43 Schuman et al. (1973) 
44 Schwer et al. (1989) 
45 SERA 17 (2009) 
46 Seta et al. (1993) 
47 Tabbara (2003) 
48 Westerman et al. (1985) 
49 Wu, Z et al. (2000) 
50 Yates and Prasher (2009) 
51 Young et al. (1980) 
52 Zhao et al. (2001a,b) 
53 Zhu et al. (1989)  
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effective BMPs (0.994), and DRP-effective BMPs (0.936). At these 
increased adoption rates, the three management systems also showed 
higher probabilities of achieving the ≥40% DRP load reduction objec
tive: all BMPs (0.760), TP-effective BMPs (0.840), and DRP-effective 
BMPs (0.866); each also showed low probabilities (≤0.087) of 
increased DRP loads. In contrast, moderate increased adoption of the 
management system with the commonly used BMPs showed a higher 
probability of achieving the ≥40% TP load reduction objective (0.822), 
but a low probability (0.105) of achieving the ≥40% DRP load reduction 
objective and a moderate probability of increased DRP loads (0.577) 
(Table 4). Therefore, at moderate increased adoption rates (20–40%), all 
BMPs, TP-effective BMPs, and DRP-effective BMPs met the criterion of a 
high probability of achieving both the TP and DRP load reduction ob
jectives, but the commonly used BMPs did not. 

3.1.3. High increased adoption (i > 40%) 
At high increased adoption rates (i > 40%) relative to 2008, all four 

management systems showed high probabilities for achieving the ≥40% 
TP load reduction objective (1.000). At these increased adoption rates, 
three of four management systems also showed high probabilities of 
achieving the ≥40% DRP load reduction objective: all BMPs (≥0.961), 
TP-effective BMPs (≥0.982), and DRP-effective BMPs (≥0.999). Each of 
these management systems also showed low probabilities (≤0.016) of 
increased DRP loads. In contrast, high increased adoption of the man
agement system with the commonly used BMPs showed a high proba
bility of achieving the ≥40% TP load reduction objective (≥0.996), but a 
low probability of achieving the ≥40% DRP load reduction objective (i. 
e., 0.323 at 40% < i ≤ 60%, 0.504 at 60% < i ≤ 80%, and 0.641 at i >
80%), and a continued risk of increased DRP loads (i.e., 0.385 at 40% <
i ≤ 60%, 0.276 at 60% < i ≤ 80%, and 0.198 at i > 80%) (Table 3). At 
high increased adoption rates, all BMPs, TP-effective BMPs, and DRP- 
effective BMPs met the criterion of a high probability of achieving 
both the TP and DRP load reduction objectives, but the commonly used 
BMPs did not. 

3.2. Trade-offs between TP and DRP reduction objectives 

At low increased adoption rates (0% < i ≤ 20%), the management 
system with all BMPs showed the highest probability of achieving the 
≥40% TP load reduction objective (0.913), but among the lowest 
probabilities of simultaneously achieving the ≥40% DRP load reduction 
objective (0.292). At low increased adoption rates, this management 
system had a low but not insubstantial probability of increasing the DRP 
load (0.344). Between the management systems based on TP- and DRP- 
effective BMPs, the TP-effective BMPs showed marginally higher prob
abilities of achieving both the ≥40% TP load reduction objective (0.715 
compared to 0.430 for DRP-effective BMPs) and the ≥40% DRP load 
reduction objective (0.373 compared to 0.265 for DRP-effective BMPs) 
at low increased adoption rates. Both the TP- and DRP-effective BMPs 

Table 2 
The assumptions and their implications of data used to parameterize the Bayesian belief network model.   

Assumption Implication 

Agricultural TP and 
DRP load nodes 

Data for the 2008 TP load to each of the three agricultural activities did not 
exist; we assumed the total load to the three agricultural activities was 
apportioned on an area basis. 

The relative contribution of TP from different agricultural activities to the 
cumulative effect may not be accurate. 

The Ontario average manure phosphorus recoverability coefficient is 
directly applicable to the Grand River Watershed 
Livestock fouling load which is probably over estimated. 

The proportion of initial TP load contributed by TP and DRP loads from 
manure application to crops and livestock fouling (which were estimated in 
part using Ontario’s manure phosphorus recoverability coefficient) are 
likely under or over estimated as it is likely that the Grand River-specific 
manure phosphorus recoverability coefficient deviates from the Ontario 
average. 

Data of the relative proportion of DRP in the TP load for 2008 did not exist; 
we assumed it was the same as the relative proportion of DRP in the TP load 
for 2008. 

We may have over or under-estimated the DRP load in 2008. 

BMP effectiveness 
nodes 

Data on the effectiveness coefficients for BMPs in the Grand River 
watershed were incomplete; we supplemented this information with data 
from other watersheds within the Great Lakes Basin as well as other 
watershed within north-eastern US. 

The BMP effectiveness distributions used in the study are the best available 
but may not be representative of the Grand River watershed (future research 
need). 

BMP effectiveness data for TP reduction using crop rotation BMP were not 
available; we assumed the particulate phosphorus represented the 
dominant fraction of the TP load in crop systems. 

Phosphorus load reduction may be over-estimated by the crop rotation BMP. 

BMP effectiveness data for TP and DRP reduction were limited for mineral 
and manure phosphorus reduction; we combined data and generated a 
single BMP effectiveness for manure and mineral phosphorus. 

Phosphorus load reduction may be over-estimated for manure phosphorus 
and under-estimated for mineral phosphorus. 

BMP effectiveness data were generated from input/output loads or 
present/absent BMP studies. We assumed that the implemented BMPs 
intercepted 100% of farm runoff and therefore 100% of phosphorus load 
was treated (i.e., no phosphorus bypassed the BMPs). 

BMP effectiveness may have been over-estimated, unless farmers implement 
BMPs to treat 100% of the hydrological flow path. 

We assumed that BMP performance is equal to Effectiveness*(Adoption), 
and if adoption = 1 (100%), then performance = effectiveness. 

BMP performance would equal BMP effectiveness only if the BMP treated 
100% of the hydrological flow path. BMP performance may over-estimate 
phosphorus load reductions in watershed discharge. 

We assumed that BMPs were implemented to spatially targeted to intercept 
the hydrological flowpath. 

If BMP implementation is spatially random, then the effectiveness would be 
lower, especially at lower rates of adoption.  

Table 3 
Management options with selected BMPs. For each option, further adoption was 
simulated for the selected BMPs while adoption of unlisted BMPs remained 
unchanged or avoided.  

Management 
System 

Suitable Best Management Practices 

All BMPs Precision feeding, reduced application, incorporated 
application, reduced tillage, crop rotation, winter cover crops, 
contour cultivation, grass filter strips, forest filter strips, 
wetlands 

Commonly used 
BMPs 

Reduced application, reduced tillage, crop rotation, grass filter 
strips 

TP-effective BMPs Precision feeding, incorporated application, crop rotation, 
winter cover crops, contour cultivation, grass filter strips, 
forest filter strips 

DRP-effective 
BMPs 

Precision feeding, incorporated application, crop rotation, 
winter cover crops, contour cultivation, forest filter strips.  
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showed low-to-zero probabilities of increased TP or DRP loads (≤0.073) 
at low increased adoption rates. The management system with the 
commonly used BMPs showed the lowest probabilities of achieving 
either the ≥40% TP (0.175) or the ≥40% DRP (0.021) load reduction 
objectives at low increased adoption rates, and also showed the highest 
probability of increased DRP loads (0.752). 

At increased adoption rates (20% < i ≤ 40%), the trade-offs between 
achieving the ≥40% TP vs. the ≥40% DRP load reduction objectives 
effectively disappeared for three of the four management systems (all 
BMPs, TP-effective BMPs, and DRP-effective BMPs). The management 
system with the commonly used BMPs, however, continued to show a 
higher probability of achieving the ≥40% TP load reduction objective 
(0.822) than the ≥40% DRP (0.105) load reduction objective, and with 
the highest probability of increased DRP loads (0.577). At > 40% 
increased adoption rates, this pattern persisted for the management 
system with the commonly used BMPs, with an increasing probability of 
achieving the reduction objectives in TP loads (from 0.996 to 1.000) and 
DRP loads (from 0.323 to 0.641), and a decreasing probability of 
simultaneously increasing the DRP loads (0.577–0.198). 

4. Discussion 

With Lake Erie returning to a eutrophic state and threatening to 
compromise valued ecosystem services, Governments from Canada and 
the United States have mobilized to reduce TP and DRP loads from 
agricultural tributaries to the lake. Management of the agricultural 
phosphorus load in the Lake Erie basin has historically been driven by a 
focus on the reduction of TP loads, but this has been insufficient for 
preventing re-eutrophication and nuisance algae (Stumpf et al., 2012; 
Michalak et al., 2013). The Task Team recommended 40% reductions in 
TP and DRP loads relative to 2008 from all western basin tributaries and 
the Thames River that drain into Lake Erie (EPA, 2015). The adoption of 
risk management frameworks, such as the ISO 31000 Risk Management 
Standard, has been proposed to assess the risk of failing to achieve the 
40% reductions in TP and DRP loads (Creed et al., 2016). Bayesian belief 
networks have been advocated for use within risk management frame
works (Cormier et al., 2018) to quantify the uncertainty in these risk 
assessments. Here, we developed and then applied the ISO 31010:2009 

Bowtie Analysis Tool using a Bayesian belief network to show managers 
how to reduce the risk of failing to achieve the TP and DRP load 
reduction objectives by including uncertainty in the performance of 
management systems as determined by the adoption and effectiveness of 
BMPs. 

4.1. Findings 

By considering the uncertainty in the performance of BMPs being 
used to achieve the policy objective of 40% reductions in TP and DRP 
loads, we were able to reveal important findings. Namely, at low 
increased adoption rates, no management system had a high probability 
(90%) of achieving 40% reductions in both TP and DRP loads. At higher 
increased adoption rates, the TP- and DRP-effective management sys
tems had high probabilities of achieving both the TP and DRP load 
reduction objectives, and therefore should be promoted. However, the 
commonly used BMPs had a high probability of achieving the 40% 
reduction in TP loads, a low probability of achieving the 40% reduction 
in DRP, and an unintended consequence of a moderate probability of 
increasing DRP loads, and therefore should not be promoted at any 
increased adoption rate. 

4.2. Need for increasing adoption rates 

To achieve both the TP and DRP load reduction objectives, managers 
should consider programs to increase adoption rates of BMPs. Currently, 
the likelihood of increased adoption rates is low (Kalcic et al., 2016). For 
increased adoption to be feasible, an understanding of the factors that 
influence farmers’ decisions is required. In a survey of Ontario farmers 
by Statistics Canada (2011), the primary reasons for non-adoption of 
BMPs were economic pressures (54% of farmers), time required to 
implement and maintain BMPs (20.1%), lack of technical information on 
BMP function, implementation, and maintenance (9.3%), and other 
reasons (15.4%). For some farmers, financial incentives would increase 
adoption rates. Financial incentives and an appreciation and under
standing of farmer personalities, motivations, business models, and 
influencing social circles is necessary to increase the engagement of 
farmers in protecting the Great Lakes and thereby to increase the 

Table 4 
Probabilities [0–1] of achieving ≥ 40% TP and DRP load reduction objectives, reductions short of objectives (0–39%), and increased loads (<0%) under different 
increased adoption rates relative to 2008 (i) for each BMP management system (≤20%: 0% < i ≤ 20%; ≤40%: 20% < i ≤ 40%; ≤60%: 40% < i ≤ 60%; ≤80%: 60% < i 
≤ 80%; ≤100%: 80% < i ≤ 100%). Management systems that were highly probable (≥0.900) of achieving ≥ 40% reductions shown in bold with dark shading. 
Management systems that were probable (≥0.750) of achieving ≥ 40% reductions shown in bold with light shading.  

Load Reduction (%) All BMPs increased adoption rates Commonly used BMPs increased adoption rates 

≤20% ≤40% ≤60% ≤80% ≤100% ≤20% ≤40% ≤60% ≤80% ≤100% 

TP ≥40 0.913 0.999 1.000 1.000 1.000 0.175 0.822 0.996 1.000 1.000 
0–39 0.087 0.001 0.000 0.000 0.000 0.825 0.178 0.004 0.000 0.000 
< 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
95% Credible 
Interval 

41–98% 41–99% 41–99% 41–99% 41–99% 1–64% 7–98% 41–98% 41–99% 42–99% 

DRP ≥40 0.292 0.760 0.961 0.991 0.998 0.021 0.105 0.323 0.504 0.641 
0–39 0.346 0.153 0.023 0.005 0.0015 0.227 0.318 0.292 0.220 0.161 
< 0 0.344 0.087 0.016 0.004 <0.001 0.752 0.577 0.385 0.276 0.198 
95% Credible 
Interval 

− 1991- 
94% 

− 1477- 
98% 

40–98% 41–99% 42–99% − 2015 
-34% 

− 2008- 
74% 

− 1956- 
95% 

− 1906- 
97% 

− 1854- 
98% 

Load Reduction(%) TP-effective BMPs increased adoption rates DRP-effective BMPs increased adoption rates 
≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% ≤20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% 

TP ≥40 0.715 0.994 1.000 1.000 1.000 0.430 0.936 1.000 1.000 1.000 
0–39 0.285 0.006 0.000 0.000 0.000 0.570 0.064 0.000 0.000 0.000 
< 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
95% Credible 
Interval 

41–98% 42–99% 42–99% 42–99% 42–99% 1–80% 13–98% 42–99% 42–99% 42–99% 

DRP ≥40 0.373 0.840 0.982 0.998 1.000 0.265 0.866 0.999 1.000 1.000 
0–39 0.554 0.133 0.015 0.0018 0.000 0.735 0.134 0.001 0.000 0.000 
< 0 0.073 0.027 0.003 <0.001 0.000 0.000 0.000 0.000 0.000 0.000 
95% Credible 
Interval 

1–98% 5–98% 42–99% 42–99% 42–99% 1–70% 15–98% 42–99% 42–99% 42–99%  
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likelihood of voluntary adoption of BMPs. 

4.3. Need for shift from soil conservation to TP- and DRP -effective BMPs 

Managers have relied on reduced tillage BMPs to achieve the TP load 
reduction targets (Coelho et al., 2012; Sharpley et al., 2012). Reduced 
tillage reduces the intensity, depth, and time of tillage to maximize 
productivity while reducing soil disturbance, thereby reducing partic
ulate phosphorus loads (FAO, 2012). Voluntary implementation of 
reduced tillage resulted in a 75% reduction in TP loads and a 50% 
reduction in DRP loads from Lake Erie’s largest agricultural tributaries, 
the Maumee and Sandusky Rivers (c.f. Dolan and Chaptra, 2012; Mac
coux et al., 2016), between 1975 and 1995. However, after 1995, 
simultaneous with the peak adoption of the reduced tillage BMP, a 
substantial upward trend in DRP loads occurred while TP loads 
remained low (Richards and Baker, 2002; Sharpley et al., 2012). Some 
criticize that reduced tillage BMPs increased DRP loads (e.g., Laflan and 
Tabatabai, 1984; Gaynor and Findlay, 1995; Ghebrenichael and Watzin, 
2010; Smith et al., 2015; Dodd and Sharpley, 2016) and contributed to 
the re-eutrophication of Lake Erie (Baker et al., 2014; Scavia et al., 
2014). While reduced tillage limits soil erosion, it also reduces the 
incorporation of phosphorus fertilizers into the soil, thereby reducing 
the opportunity for phosphorus to sorb to sediments and instead to 
runoff as DRP in precipitation events (Dodd and Sharpley, 2014; 
Kleinman et al., 2011). Innovative BMPs specifically designed to manage 
legacy phosphorus with phosphorus sorption soil amendments have 
recently been advocated (Penn et al., 2007; Stoner et al., 2011; Qin et al., 
2018); however, more research is needed to investigate the effectiveness 
of these phosphorus control structures. 

Managers should consider increased promotion and adoption of TP- 
and DRP-effective BMPs to achieve the policy objective of 40% re
ductions in TP and DRP loads. Increased adoption of TP-effective BMPs 
at rates ≤20% created higher probabilities of achieving both TP and DRP 
load reduction objectives than adoption of DRP-effective BMPs at 
similar rates. While it may be expected that increased adoption of TP- 
effective BMPs could have adverse implications for DRP loads (Klein
man et al., 2015), the probabilities of increased DRP loads were low at 
all increased adoption rates. TP- and DRP-effective BMPs were equally 
effective in achieving TP and DRP load reduction objectives at adoption 
rates >20%, but with no difference in reducing the risk of elevated DRP 
loads. While increased adoption of DRP-effective BMPs was the only 
management option that was completely effective at avoiding increased 
DRP loads, the trade-off was lower probabilities of achieving TP load 
reduction objectives at increased adoption rates ≤40%. 

4.4. Model assumptions 

This study demonstrates the importance of increasing adoptions 
rates and shifting from “binary (yes or no)” to “probabilities” of the 
effectiveness of BMPs to inform setting of and achieving policy objec
tives. By integrating Bayesian belief networks into a risk management 
framework, managers are able to assess the risk of failing to achieve 
their policy objectives by determining the most probable outcomes of 
their management decisions, while tracking and preparing for less 
probable outcomes. However, to move this demonstration to practice, 
further data are needed. We had to make several model assumptions that 
may have led to an over- or under-estimation of the probabilities of 
reductions in TP and DRP loads. A lack of data was the main reason for 
the model assumptions, which required us to combine data, substitute 
data, and to broaden the geographic scope from where data were 
compiled. 

Future research is needed to obtain these data and to include the 
incorporation of information on: (1) the effectiveness of BMPs under 
different contexts and under changing climatic conditions (e.g., a lack of 
relevant effectiveness data prevented us from including tile drainage in 
our analysis); (2) the lifespans of BMPs and the influence of BMP 

maintenance on BMP effectiveness; and (3) the proportion of agricul
tural runoff that is intercepted and treated by BMPs (e.g., a lack of 
spatially distributed data and models prevented us from tracking the 
movement of phosphorus within watersheds and therefore incorpo
rating spatiotemporal dimensions into the effectiveness distributions for 
BMPs). 

5. Conclusion 

We face a high risk of failing to achieve the international policy 
objective of 40% reductions of total phosphorus (TP) and dissolved 
relative phosphorus (DRP) loads to reduce the probability of increased 
cyanobacteria algal blooms in Lake Erie. Our risk analysis of an agri
cultural tributary revealed that the continued use of soil conservation 
best management practices (BMPs) designed to reduce TP and DRP loads 
to surface waters may itself by a contributor to the re-eutrophication and 
harmful algal blooms in Lake Erie. Using a probability threshold of 
>90%, continued adoption of the no-tillage or reduced tillage BMP will 
be effective at achieving the >40% reduction in TP loads but only if 
adoption rates increase by >40%. At the same time, it will not be 
effective at achieving the >40% reduction in DRP loads; in fact, there is 
a substantial probability that it will increase DRP loads. In contrast, a 
shift towards TP- or DRP-effective BMPs will be effective, particularly at 
increased adoption rates >40%. Our risk analysis suggest that farmers 
should switch to BMPs that lower both the TP and DRP loads and be 
incentivized to increase their adoption rates. 
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