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• Multi-factor effect in gate-controlled
urban water bloom is intricate.

• Designed holistic framework uncovered
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Intense human disturbance has made algal bloom a prominent environmental problem in gate-controlled urban
water bodies. Urban water bodies present the characteristics of natural rivers and lakes simultaneously, whose
algal blooms may manifest multi-factor interactions. Hence, effective regulation strategies require a multi-
factor analysis to understand local blooming mechanisms. This study designed a holistic multi-factor analysis
framework by integrating five data mining techniques. First, the Kolmogorov–Smirnov test was conducted to
screen out the possible explanatory variables. Then, correlation analyses and principal component analyses
were performed to identify variable collinearity andmutual causality, respectively. After collinearity and mutual
causality were treated prudently by using orthogonalization and instrumental variables, multilinear regression
can be properly conducted to quantify factor contributions to algae growth. Lastly, a decision tree was used inno-
vatively to depict the limiting threshold curves of each driving factor that restricts algae growth under different
circumstances. The driving factors, their contributions, and the limiting threshold curves compose the complete
blooming mechanisms, thus providing a clear direction for the targeted regulation task. A typical case study was
performed in Suzhou, a Chinese city with an intricate gate-controlled river network. Results confirmed that cli-
matic factors (i.e., water temperature and solar radiation), hydrodynamic factors (i.e., flow velocity), nutrients
(i.e., phosphorus and nitrogen), and external loadings contributed 49.3%, 21.7%, 21.3%, and 7.7%, respectively,
to algae growth. These results indicate that a joint regulation strategy is urgently required. Future studies can
focus on coupling the revealed mechanisms with an ecological model to provide a comprehensive toolkit for
the optimization of an adaptive joint regulation plan under the background of global warming.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

With human disturbance, such as pollutant discharge and gate con-
trol, many rivers and lakes in the world (e.g., the Rhine River in Europe
and the Dianchi Lake in China) have experienced persistent algal
blooms, causing serious negative impacts on aquatic ecosystems
(Zheng et al., 2006; Friedrich and Pohlmann, 2009; Xia et al., 2019).
For decades, multiple actions such as source point pollution control,
water transfer, and ecological remediation have been taken by govern-
ments to control algal bloom (Hu et al., 2008; Xie et al., 2009; Xu et al.,
2011; Jiang et al., 2020; Zhu et al., 2021). However, substantialwork still
has to be accomplished (Wang et al., 2019). One of the difficulties of
algal bloom regulation is the mismatch of regulation measures and
bloomingmechanisms. Althoughmany studies have confirmed that hy-
drodynamic factors, nutrients, and climatic factors can affect the growth
of algae (Hilton et al., 2006; Zhou et al., 2017; Cheng et al., 2019; Huo
et al., 2019), differentwater bodies could vary in terms of driving factors
and individual contributions due to different local conditions. Therefore,
a multi-factor analysis must be prioritized to identify the mechanisms
for a new case before conducting any aimless attempt.

River–lake classification typifies two representative kinds of algal
blooms in natural water bodies; however, algal blooms in urban water
bodies show the characteristics of rivers and lakes simultaneously
(Hilton et al., 2006). Similar to rivers, the perimeter–area ratio of
urban water bodies is much larger than that of lakes and reservoirs,
bringing intense substance exchange, including point or nonpoint
source nutrients, in and out of the water body. Similar to lakes and res-
ervoirs, urban water bodies often have poor hydrodynamic conditions,
i.e., low velocity and small fluctuations, as a result of the regulation of
gates, weirs, and pumps for flood prevention and landscaping needs
(Bae and Seo, 2018). Therefore, blooming mechanisms in gate-
controlled urban water bodies could be complex and may manifest
multi-factor characteristics, which are totally different from those in
natural water bodies.

In China, local governments are determined to improve the sensory
quality of urban water environments. Staged achievements have been
made in the urban black-odor water body remediation work
(MOHURD, 2015). However, this work could not solve the eutrophica-
tion problem, which coupled to poor hydrodynamic conditions and im-
proved transparency, would turn urban water bodies even more
suitable for algae growth (Hu et al., 2019). Even worse, algal blooms
can possibly ruin the achievement of urban black-odor water body re-
mediation because of the decay of large quantities of dead algae. On
this basis, algal bloom regulationwill become oneof thehighlights of fu-
ture urbanwater environmentmanagement policies in China (Hu et al.,
2019). Among all the Chinese cities, those in the plain river network
area require algal bloom regulation most urgently. The plain river net-
work area covers the most developed and densely populated regions,
such as the Yangtze River Delta (YRD) and the Pearl River Delta.
Water as a cultural element of these cities has penetrated thousands
of households through the river network. Large-scale algal blooms
could have a strong negative impact on the residents and the economy.

Existing studies aremostly concerned about themechanisms of algal
blooms in natural water bodies, such as large rivers, lakes, and estuaries
(Xiao et al., 2017; Shen et al., 2019; Sun et al., 2019), whereas only a few
has investigated algal blooms in gate-controlled urban water bodies.
Hence, this study proposes a holistic multi-factor analysis framework
by integrating multiple data mining techniques for identifying the
local mechanisms of algal blooms in gate-controlled urban water bod-
ies. Suzhou, a YRD city, is selected for a typical case study. Many studies
have already attempted to use one or a few unsupervised data mining
techniques which require no pre-existing labels to identify the driving
factors of algal blooms in natural water bodies and their contributions
(Zhou et al., 2017; Cheng et al., 2019; Wang et al., 2019). However, to
our furthest knowledge, no research has provided a limiting threshold
curve that is practical for algal bloom regulation. Though unsupervised
techniques can help dig out the patterns within the dataset with mini-
mum prior knowledge, supervised techniques are more reliable in a
classification problem (i.e. identifying the blooming samples) with la-
belled data. Thus, Supervised techniques are included in this study to
distinguish the threshold of each driving factor below or over which
algal blooms are more likely to outbreak. Limiting threshold curves
have been maturely applied in some environmental problems, such as
Empirical Kinetic Modeling Approach for ozone control (Gipson et al.,
1981) and Noise Criteria curves for noise control (Beranek, 1957). Our
limiting threshold curve makes an important supplement to the factor
contributions to compose the complete blooming mechanisms, thus
providing a clear direction for the regulation work.

2. Methodology

Data mining techniques based on statistics andmachine learning al-
lows themodel to learn the relationships among variables from numer-
ous observations (Anderson et al., 2010; Wang et al., 2019). These
models are not only computationally efficient but also flexible in
terms of structure, making it adaptable to local blooming characteristics
(Shen et al., 2019). Among data mining techniques, the unsupervised
ones can dig out the linear or nonlinear relationships among variables
and identify the key influential factors of blooms, whereas the super-
vised ones can distinguish blooming (i.e., Chl-a over 30 μg/L defined in
this paper) and non-blooming samples to help predict whether the reg-
ulation strategy can meet the environmental goals.

This study establishes a data mining framework of five techniques.
The framework is intended to be performed on a dataset consisting of a
response variable representing algal growth and possible influential fac-
tors including climate factors, hydrodynamic factors, nutrients external
loadings, and other variables. The response variable can be chlorophyll a
(Chl-a) or algae density, and Chl-a is selected in this study. The variables
representing influential factors are listed in Section 3.2 and Table 1.

The roadmap is displayed in Fig. 1. First, the Kolmogorov–Smirnov
(K–S) test is conducted for the preliminary screening of possible explan-
atory variables affecting algae growth for multilinear regression (MLR).
Then, correlation analysis and principal component analysis (PCA) are
performed to identify collinearity and mutual causality among vari-
ables, respectively. Collinearity and mutual causality can weaken the
performance of an MLR model. Orthogonalization is performed to ad-
dress collinearity, and instrumental variables are constructed to address
mutual causality. Afterward,MLR is performed to estimate standardized
regression coefficients (SRCs). On the basis of SRCs, the individual con-
tribution of each driving factor to algae growth are properly quantified.
Meanwhile, reasonable forms of explanatory variables are also deter-
mined for the decision tree. Lastly, the decision tree uncovers driving
factors' limiting threshold curves that restrict algae growth.

Although the K–S test, correlation analysis, PCA, MLR, and decision
tree are all well-developed techniques that can be found in many text-
books, this study effectively organized them to complement each other
and uncover well-knit blooming mechanisms, including the driving fac-
tors, their individual contributions and the limiting threshold curves.
The framework can be widely applied to different cases to investigate
local blooming mechanisms that benefit the algal bloom regulation.

2.1. K–S test: preliminary screening of possible explanatory variables

TheK–S test discriminates if a variable in two sets are differently dis-
tributed without any prior information about variable distributions
(Conover, 1999). Existing studies have applied the K–S test to compare
the behavior of aquatic organisms in different conditions (Harvey and
Menden-Deuer, 2011), evaluate a water environment model (Duda
et al., 2012), and check data distributions (Parinet et al., 2010). In this
study, K–S test is adopted to examine if a variable is differently
distributed in blooming and non-blooming sets to qualify a possible
explanatory variable.



Table 1
A summary of the monitored dataset.

Variables Abbreviation Periods Frequency Valid
samples

Source

Response
variable

Chlorophyll a (μg·L−1) Chl-a
From 2017.11.04 to
2019.01.16

Biweekly 536
Manual sampling,
Spectrophotometric method

Climatic factors

Water temperature (°C) WT
From 2017.01.01 to
2018.12.31

Daily 536 Suzhou weather station

7-day average solar radiation
(W·m−2)

R7d
From 2017.01.01 to
2018.12.31

Daily 513 Suzhou weather station

7-day precipitation (mm) P7d
From 2017.01.01 to
2018.12.31

Daily 513 Suzhou weather station

Hydrodynamic
factors

Flow velocity (m·s−1) V
From 2017.10.01 to
2018.12.31

Daily 452 Automatic monitoring station

Water level fluctuation (%) ΔH
From 2017.10.01 to
2018.12.31

Daily 452 Automatic monitoring station

Nutrients

Total nitrogen (mg·L−1) TN
From 2017.11.04 to
2019.01.16

Biweekly 276
Manual sampling, filtrated
Alkaline potassium persulfate digestion - UV
spectrophotometric method

Ammonia nitrogen (mg·L−1) NH4
From 2017.11.04 to
2019.01.16

Biweekly 515
Manual sampling, filtrated
Nessler's reagent colorimetric method

Total phosphorus (mg·L−1) TP
From 2017.11.04 to
2019.01.16

Biweekly 507
Manual sampling, filtrated
Ammonium molybdate spectrophotometric method

Nitrogen-to-phosphorus ratio N/P
From 2017.11.04 to
2019.01.16

Biweekly 507 Calculated with NH4 and TP

External loadings
South-or-north dummy
variable

N-S / / 536 /

East-or-west dummy variable W-E / / 536 /

Others Dissolved oxygen (mg·L−1) DO
From 2017.11.04 to
2019.01.16

Biweekly 536
Manual sampling,
Winkler's method
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First, the cumulative frequency distribution function of each influen-
tial factor x in the two sets are calculated and denoted as F1 and F2. Then,
the K–S distance is defined by themaximum difference between F1 and
F2 and expressed as Eq. (1). A multiplier constructed by the number of
valid samples in the two sets is added to give a greater K–S distance to
the factor with more valid samples. Although following analysis may
take different forms of variables, Although the following analysis steps
may take different forms of variables, a rank-preserved transformation
like logarithm does not affect the calculation of K–S distance. From
this perspective, the K–S test is an appropriate method for variable
prescreening.

d ¼ max
x

F1 xð Þ−F2 xð Þf g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
ð1Þ
Fig. 1.Multi-factor an
2.2. Correlation analysis: identification of variable collinearity

The variables selected by the K–S test may be collinear and thus
must be properly handled to ensure a valid MLR. Variable collinearity
means high intercorrelations within a set of explanatory variables. An
MLR model with severe variable collinearity can yield an unreliable es-
timation of coefficients (Farrar and Glauber, 1967). Correlation analysis
can help detect variable collinearity. Two variables with a correlation
coefficient larger than 0.7 are often considered collinear. Collinearity
can be examined by the variance inflation factor (VIF) as well
(Kennedy, 1992).

Correlation coefficients can be calculated using the Pearson or Spear-
man methods. With variables usually in original form, the Pearson
method measures the linear correlation between variables x and y,
which is expressed as Eq. (2) (Pearson, 1895). The Spearman method
alysis roadmap.



4 K. Li et al. / Science of the Total Environment 753 (2021) 141821
uses ranks (i.e., orders) of x and y, R and S to calculate the correlation co-
efficient, which is expressed as Eq. (3) (Spearman, 1904).

ρ x; yð Þ ¼ ∑i xi−xð Þ yi−yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i xi−xð Þ2∑i yi−yð Þ2

q ð2Þ

ρs x; yð Þ ¼
∑i Ri−R

� �
Si−S

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i Ri−R

� �2
∑i Si−S

� �2
r ð3Þ

The Pearson coefficient is sensitive to extreme values as extreme
values sharply deviate froma linear pattern and decrease correlation co-
efficient excessively. During the blooming phase, many extreme values
aremonitored, thus attenuating the applicability of the Pearsonmethod.
On the contrary, extreme values do not change the variable ranks and
thus make no difference to the Spearman coefficient. However, moni-
toring data tend to fall within narrow intervals. Potentialmonitoring er-
rors could lead to discrepancies between the monitored ranks and the
actual situation, resulting in the malfunction of the Spearman coeffi-
cient. Therefore, a compromise in which the two coefficients can be
used together for correlation analysis is encouraged in this study.

2.3. PCA: identification of mutual causality between two variables

Mutual causality between a response variable and an explanatory
variable is likely to undermine the exogeneity prerequisite for MLR.
PCA is introduced to identify mutual causality between two variables.
PCA transforms the data into another orthogonal space where each di-
mension represents a principal component. Principal components are
linear combinations of original variables that can reflect the relation-
ships among variables, including mutual causality (Trevor et al., 2001).

PCA assumes that the information contained in the data is reflected
in the variance and attempts to preserve the maximum information
during transformation. PCA identifies linear combinations of the vari-
ables that display the variance in a descending order, and in this process,
the latter ones should be orthogonal to the former ones, as shown in
Fig. 2(a). These linear combinations are noted as principal components,
of the same number as the variables atmost. Mathematically, each prin-
cipal component corresponds to an eigenvector (v) of the covariance
matrix of the variables, expressed as Eq. (4). Given that the eigenvalues
(λ) are proportional to the variance of the principal components, one's
ratio to the sum of all represents the variance contribution of the corre-
sponding principal component.

cov y; yð Þ cov y; x1ð Þ
cov x1; yð Þ cov x1; x1ð Þ

⋯
⋯

cov y; xnð Þ
cov x1; xnð Þ

⋮ ⋮ ⋱ ⋮
cov xn; yð Þ cov xn; x1ð Þ ⋯ cov xn; xnð Þ

2
64

3
75v ¼ λv ð4Þ
Fig. 2. Simple examples of PCA
PCA preserves most of the information in the first few components
with the largest eigenvalues, and each of them reflects various relation-
ships among variables (Reid and Spencer, 2009). This study intends to
use thefirst two components to investigatemutual causality. That is, op-
posite relationships between Chl-a and an explanatory variable often
imply an existing mutual causality.

2.4. MLR: determining the reasonable form and the contribution of each
driving factor to algae growth

2.4.1. Theory
MLRuses a linear equation to describe the relationships between po-

tential explanatory variables (x1,…,xn) and response variable y
(i.e., Chl-a), expressed as Eq. (5), where ε is the residual item, and the
unknown parameters (b0,b1,…,bn) are estimated via the least square
method (Wooldridge, 1960). With the help of t-test on the estimated
parameters and model fitness index (i.e., the adjusted R2), significant
explanatory variables (driving factors) of algae growth and their rea-
sonable forms can be eventually determined. Lastly, the individual con-
tribution of each driving factor can be calculated based on SRCs, as
expressed in Eqs. (6) and (7) (Saltelli et al., 2004).

y ¼ b0 þ b1x1 þ…þ bnxn þ ε ð5Þ

b0i ¼ b̂i �
σ xi

σy

����
���� ð6Þ

φSRC
i ¼ b̂

0
i

∑ib̂
0
i

ð7Þ

An appropriate application of MLR must satisfy three prerequisites
(Wooldridge, 1960). First, the predicted residuals must be individually
identically distributed asN(0,σ). Second, severe collinearity seldom ex-
ists among explanatory variables, which would otherwise yield unreli-
able results. Third, all the included explanatory variables must be
exogenous relative to the response variable, i.e., ρ(xi,ε), which would
otherwise lead to biased estimators. Mutual causality may undermine
the exogeneity prerequisite. Although numerous studies preferred
pure MLR to explain and predict the variation trend of Chl-a (Cho
et al., 2009; Franklin et al., 2020; Liu et al., 2014), the above prerequi-
sites were often neglected.

2.4.2. Jarque–Bera test
The Jarque-Bera (J-B) test on the predicted residual helps check

whether the first prerequisite is fulfilled (Jarque and Bera, 1980). The
J-B test statistic is defined by Eq. (8), where n is the number of observa-
tions, and S and K are the sample skewness and sample kurtosis, which
are calculated by Eqs. (9) and (10), respectively. If the test statistic is
(a) and decision tree (b).
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significantly greater than zero, then the predicted residual does not
obey a normal distribution.

JB ¼ n
6

S2 þ 1
4

K−3ð Þ2
� 	

ð8Þ

S ¼
1
n
∑n

i¼1 εi−εð Þ3

1
n∑

n
i¼1 εi−εð Þ2

h i3=2 ð9Þ

K ¼
1
n
∑n

i¼1 εi−εð Þ4

1
n∑

n
i¼1 εi−εð Þ2

h i2 ð10Þ

2.4.3. Mutual causality and instrumental variables
A valid approach to address mutual causality is to introduce an in-

strumental variable w that meets ρ(xi,w) ≠ 0 and ρ(w,ε) = 0. By
performing linear regression of xi on w, and then substituting bxi for xi
to performMLR on y, expressed as Eqs. (11) to (13), the mutual causal-
ity can be removed as ρ bxi, ε� � ¼ ρ w, εð Þ ¼ 0. Correlation analysis on w
and the predicted residual can help to check if the exogeneity is fulfilled.

xi ¼ a0 þ a1wþ δ ð11Þ

x̂i ¼ â0 þ â1w ð12Þ

y ¼ b0 þ…þ bi−1xi−1 þ bix̂i þ biþ1xiþ1 þ…þ bnxn þ ε ð13Þ

2.4.4. Collinearity and orthogonalization
Given that the collinear variables contain the same information

about the response variable, their independent impacts on the response
variable are less reliably estimated in comparisonwith those in the non-
collinear case. To eliminate collinearity, the orthogonalization proce-
dure can create transformed variables that are uncorrelated with each
other (Klein and Chow, 2013). For any two correlated variables xi and
xj in the Euclidean space, orthogonalization is conducted as Eqs. (14)
and (15). After orthogonalization, the information contained in the cor-
related part is entirely removed from xj; thus, ρ exi,exj� � ¼ 0.

~xi ¼ xi ð14Þ

~xj ¼ xj−
x j; ~xi

 �
~xi; ~xih i ~xi ð15Þ

2.5. Decision tree: determining the limiting threshold of each driving factor

Decision trees are a simple but effective technique for solving classi-
fication problems (Breiman et al., 1984), and have been used to classify
algal bloom species from remote sensing images (Ghatkar et al., 2019).
However, no research has ever used decision tree to investigate bloom-
ing mechanisms.

Decision trees make a tree-like classification routine by successively
looking for the optimal division of the optimal factor to achieve the best
purity of one sample subset. In the end, all samples are subdivided in the
form of a binary tree (Fig. 2(b)). The purity of the sample subset is mea-
sured by information entropy, which is expressed as Eq. (16), where p
and 1− p are the proportions of the two categories in the sample sub-
set, respectively, andw provides one category with a proper weight for
an imbalanced classification problem. If the sample subset has only one
category, then S=0; If the two categories each counts a half, then S=1.
For a decision tree that is well trained, i.e., can effectively distinguish
which category a sample belongs to, the corresponding division criteria
are the limiting thresholds of the driving factors. Following the division
criteria, an unknown sample ends in a leaf of the tree, whosemajority is
the predicted category of the sample.

S ¼ −
wp

w−1ð Þpþ 1
log2

wp
w−1ð Þpþ 1

þ 1−p
w−1ð Þpþ 1

log2
1−p

w−1ð Þpþ 1

� 	
ð16Þ

Decision trees are a supervised learning method for which
overfitting should be avoided during training. Continuously partitioning
the training set until each leaf has only one sample results in a perfectly
correct classification although at the cost of a terribly poor prediction
ability for any unknown sample. Such result occurs because the moni-
toring errors of individual samples would eventually cover the overall
features of the sample set. Therefore, the maximum depth of the tree
or the minimum size of the leaf need to be assigned to stop tree-
building before overfitting.

A five-fold cross validation method is applied to decide the optimal
values of hyperparameters, including the maximum depth of the tree,
the minimum size of the leaf, and the class weight w, with the help of
grid search. The dataset is split into five sets. Each of them is kept for
model validation with the other four sets for model training. The aver-
age performance on five validation sets discriminates the best combina-
tion of hyperparameters. Five-fold cross validation canmake themost of
data, is tolerant to noise, and can ease the overfitting problem (Kohavi,
1995).

3. Case study overview

3.1. Study site

Suzhou is a famous YRD city (Fig. 3(a)). The city is typical of the plain
river network area, whose terrain slopes gently with over 20,000 rivers
and a water surface rate of 15.4%. The red polylines in Fig. 3(b) outlines
the central urban district with a total area of 78 km2. The subtropical
monsoon climate brings about an annual average temperature of ap-
proximately 16.6 °C and an average precipitation of approximately
1163mm. In addition, the recent four decades witnessed a temperature
rise of nearly 0.1 °C/year. For the sake of flood prevention and landscape
needs, the government has built eight hydro-junctions, two large weirs,
two diversion channels, and numerous pumps and gates to control the
water in and out of the central urbandistrict, as shown in Fig. 3(c). How-
ever, such intense interventions on the hydrodynamic factors along
with the increasing pollution and climate warming have made algal
bloom a severe threat for the ecosystem in the urban river network as
well as the Lake Taihu. Although a few regulation strategies like water
diversion and off-site processing have been implemented recently, the
monitored Chl-a still exceeds the regulation goal, i.e., over 30 μg/L on av-
erage. This situation requires an urgent understanding of the local
blooming mechanisms to guide further regulation work.

3.2. Dataset

This study monitored 23 typical river sections in the central urban
area, as labelled in Fig. 3(c). After the first trial on Nov. 4, 2017 at several
sections, the monitoring work persisted from January 16, 2018 to Janu-
ary 16, 2019, biweekly. During the first three months, monitoring work
were disrupted at times at some sections. Finally, a total of 536 samples
were collected. Considering the monitoring cost and complexity, only
about 25% of the samples were selected for microscopic counting of
algae species. The results showed that the Cyanobacteria accounted
for about 60%–97% of the total number of algae cells. Chl-a was chosen
to represent algae growth. Beside Chl-a, other monitored variables in-
cluded hydrodynamic factors (i.e., flow velocity (V) and water level
fluctuation (ΔH)), climatic factors (i.e., water temperature (WT),
seven-day precipitation (P7d), and seven-day average solar radiation
(R7d)), nutrients (i.e., total nitrogen (TN), ammonia nitrogen (NH4),



Fig. 3. Descriptions of the study sites.
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and total phosphorus (TP)), and dissolved oxygen (DO). TN, TP, and
NH4 were tested after having the water sample filtered to exclude the
nitrogen and phosphorus contained in the algal cell. The atomic ratios
of nitrogen to phosphorous (N/P ratio) were also calculated for analysis.
As the number ofmissing values of TN counts almost a half, theN/P ratio
was calculated with NH4 after examining the linear correlation of TN
and NH4.

Dummy variables indicating categories are often introduced to
combine quantitative and qualitative information in a regression
model (Wooldridge, 1960). They can help to better describe
response variable and omitting them can cause biased estimates of
other coefficients in linear regression. Two dummy variables, namely
N–S and W–E, were introduced by dividing the central urban area
into four regions, i.e., northwest (N–S = 0 and W–E = 0), northeast
(N–S = 0 and W–E = 1), southwest (N–S = 1 and W–E = 0), and
southeast (N–S = 1 and W–E = 1) (Fig. 3(c)). In consideration of
the concentric urban expansion history of the city, differences in
other information, such as land use, water surface rate, drainage
system, and human activities among the four regions, could be
ignored. Thus, N–S and W–E mainly reflect whether and which
diversion plays a role, respectively. The contrasts between the
background and external loadings in the two water diversions are
displayed in Fig. 4.

Detailed information of the dataset is summarized in Table 1.
4. Results and discussion

4.1. What are the possible explanatory variables to algae growth?

The blooming and non-blooming sampleswere taken as the two sets
for the K–S test. The K–S distance and its significance are shown in Fig. 5.
Variables significant at 10% level or abovewere selected (with red check
mark) for the following analysis: For climatic factors, WT and R7d were
kept. For hydrodynamic factors, only Vwas kept. For nutrients, TN, NH4,
and TPwere all kept. For external loadings, N–Swas kept for greater im-
portance to Chl-a comparedwithW–E. DO is also included in the subse-
quent analysis. The reason of higher significance of N–S is shown in
Fig. 4: Chl-a concentrations in water diversions were higher than that
in the background, thus significantly increasing the Chl-a concentration
in the northern area, except in May 2018. In this month, no significant
difference between the Chl-a concentrations were observed in the two
diversions. Thus, whether implementing diversion or not played a
more important role than the difference between the two implemented
diversions.

4.2. Which variables have serious collinearity that may disturb MLR?

Prior to correlation analysis, a logarithm was taken for Chl-a and V to
narrow their orders of data magnitude. The results are displayed in Fig. 6,



Fig. 4. Contrasts between the background and water diversion loadings.
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where the upper right triangular part presents the Spearman coefficients,
and the left lower triangular part shows the Pearson coefficients.

The variables significantly correlated to ln(Chl-a) for both methods
were ln(V), R7d, WT, and N–S. Two pairs of variables, namely, TN-NH4
and R7d-WT, had a correlation coefficient of over 0.7. For the first pair
of collinear variables, given that TN contained nearly half of the missing
values (Table 1), the subsequent analysis steps directly omitted it. For
the second pair of collinear variables, one can choose either omitting
R7d or eliminating the information that R7d affectsWT by orthogonaliza-
tion, considering that solar radiationwould affect water temperature. Or-
thogonalization result is expressed as Eq. (17), whereWT′ denotes water
temperature that is free from the effect of solar radiation. In addition, NH4
and TP also brings a glimmer of concern about collinearity. Nevertheless,
after orthogonalization and omitting TN, the VIFs of NH4 and TP were
only 2.12 and 1.95, respectively (Fig. 6); these values are both less than
10, thus indicating an ignorable collinearity (Kennedy, 1992).

WT0 ¼ WT−0:0823� R7d ð17Þ

Although DO is a product of algae photosynthesis rather than an in-
fluential factor of algae growth, this section kept the results of DO. Its
Fig. 5. Comparison o
correlations with nutrients provide a valid approach for reducing possi-
ble mutual causality between Chl-a and nutrients, which is discussed in
Section 4.3.

4.3. Which variables have a serious mutual causal link with Chl-a?

All variables excluding DO (WT was replaced by WT′) were adopted
for PCA. The first two principal components, whose total variance contri-
butions were 51.56%, are depicted in Fig. 7. The first principal component
accounted for 32.72% contribution, in which the coefficients of WT, R7d,
NH4, and TP had the same signs with ln(Chl-a), whereas the coefficients
of ln(V) and N–S had the opposite signs with ln(Chl-a). This component
well generalized the local blooming mechanisms that high temperature,
intense solar radiation, and affluent nutrients all promoted algae growth,
whereas high velocity restricted algae growth. The negative correlation
between ln(Chl-a) and N–S is discussed in Section 4.4. The second princi-
pal component accounted for 18.84% contribution, in which the coeffi-
cients of ln(Chl-a) and nutrients had opposite signs.

Different signs between ln(Chl-a) and nutrients in the first and the
second components implied the mutual causality between the two, es-
pecially during algal bloom or decay phases. Without question,
f K–S distances.



Fig. 6. Results of correlation analysis. The upper triangular parts are the results of the Spearman method, and the lower triangular parts are the results of the Pearson method. VIFs are
attached on the right of the correlation coefficients in a tabular format.
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nutrients promote algae growth. However, during the bloom or decay
phase, algae overconsume or release nutrients, thus overturning the
causality between Chl-a and nutrients. Therefore, instrumental vari-
ables should be introduced in place of the original nutrient terms,
i.e., NH4 and TP, to reduce the mutual causality in the bloom and
decay phases of algae. According to literature (Wu et al., 2012;
Crossman et al., 2019), DO is a good index for distinguishing the
bloom and decay phases. In fact, during the bloom phase, algae photo-
synthesis produces oxygen and oversaturates DO; whereas during the
decay phase, the decomposition process of algal cells depletes DO.
Hence, algae growthhas opposite effects on the variations of DO andnu-
trients; this difference in effects could be proven by the significantly
negative correlations between DO and nutrients in this study (Fig. 6)
and indicates that the cross terms of DO and nutrients can be possible
instrumental variables.
Fig. 7. Results of the first tw
Based on the above discussion, stepwise regression on four cross
terms of nutrients andDO (with orwithout logarithmic transformation)
was performed. Two instrumental variables NH4′ and TP′ as expressed
in Eqs. (18) and (19) were determined. Whether NH4′ and TP′ have a
stronger explanatory power to algae growth compared with NH4 and
TP would be verified in the next section, i.e., MLR.

NH40 ¼ 1:4737þ 0:0998� DO� ln NH4ð Þ
þ 0:1810� DO−0:5030� ln DOð Þð Þ �NH4;R2

¼ 0:67 ð18Þ

TP0 ¼ 0:3149þ 0:0619� ln DOð Þ � ln TPð Þ
þ 0:1892� DO−0:3398� ln DOð Þð Þ � TP;R2

¼ 0:71 ð19Þ
o components in PCA.



Table 2
Comparison of different MLR models.

Variables (1) (2) (3) (4)

Climatic factors WT 0.0951*** 0.0785***
WT′ 0.0951*** 0.1000***
R7d −0.0027** 0.0052*** 0.0046***

Nutrients NH4 0.0311** 0.0284** 0.0311**
NH4′ 0.0496***
TP 0.2372** 0.1854* 0.2372**
TP′ 0.4576***

Hydrodynamic factor ln(V) −0.2184*** −0.2226*** −0.2184*** −0.1971***
External loadings N-S −0.2446*** −0.2559*** −0.2446*** −0.2397***
Constant 0.2257 0.2131 1.0494*** 1.1137***
Adjusted R2 0.432 0.425 0.432 0.457
AIC 1091 1096 1091 1072
BIC 1119 1120 1119 1110

Note: *, **, and *** mean the estimated coefficient is significant at 10%, 5%, and 1% levels, respectively.
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4.4. What are the driving factors and their contributions to algae growth?

Based on the previous analysis steps, MLR consideredWT, R7d, NH4,
TP, ln(V), and N–S, including the adjusted substitutes (i.e., WT′, NH4′,
and TP′ as the explanatory variables), with ln(Chl-a) as the response
variable. The best model was determined by model comparison, as
shown in Table 2.

Model (1) was a baseline model with all variables in original forms.
The sign of R7dwas negative inModel (1), opposite to our priori knowl-
edge. The possible reason is the existence of collinearity between WT
and R7d. Therefore, Model (2) directly omitted R7d, whereas Model
(3) replaced WT with WT′. The three fitness indices, i.e., adjusted R2,
Akaike information criterion (AIC), and Bayesian information criterion
(BIC), all showed preference for Model (3) over Model (2), as Model
(2) might suffer from omitted relevant variable bias. Compared with
Model (1), the adjusted R2, AIC, and BIC in the two models were identi-
cal because orthogonalization brings no extra information toModel (3).
However, on account of elimination of collinearity, coefficient of R7d in
Model (3) showed greater significance and the coefficient became pos-
itive, which is in conformity with common sense.

Based on Model (3), Model (4) further adopted instrumental vari-
ables to replace the original nutrient terms. Compared with Model (3),
Model (4) increased adjusted R2 by 2.5% and reduced AIC and BIC by
19 and 9, respectively. So far, the explanatory power of Model (4) has
been comparable with complex machine learning and mechanism
models (Wu and Xu, 2011; Park et al., 2015). Moreover, in comparison
with that inModel (3), the regression coefficients of nitrogen and phos-
phorus in Model (4) increased by 59.5% and 92.9%, respectively. These
results showed stronger positive effects of nutrients on algae growth
that were weakened by mutual causality, which was diminished effec-
tively by the instrumental variables in Model (4). In addition, no signif-
icant correlation was detected between the instrumental variables and
Fig. 8. Contributions of the influen
the predicted residuals of Model (4), indicating that NH4′ and TP′ satis-
fied the prerequisites of a qualified instrumental variable. The p-value of
the J–B test was almost zero, indicating that the predicted residuals
followed a normal distribution. Therefore, Model (4) satisfied all the
three prerequisites of a reasonable MLR model. Hence, this study pre-
ferred Model (4) as the final model. Meanwhile, the reasonable forms
of the explanatory variables, i.e., ln(V), WT′, R7d, NH4′, TP′, and N–S,
were also determined. N–S had a negative estimated coefficient, indicat-
ing that an exogenous algae input would result in a worse aquatic eco-
system in the northern area (i.e., N–S = 0). In fact, compared with the
background of the central urban district, water in the diversions had
higher Chl-a concentrations (Fig. 4(a)). Therefore, off-site processing
is urgently required to facilitate the function of water diversion.

The SRC contribution ratios of the six driving factors are shown in
Fig. 8. Sorted from largest to smallest, the order of the SRC contribution
ratios is as follows: climatic factors, hydrodynamic factor, nutrients, and
external loadings. As MLR considered all explanatory variables simulta-
neously, SRC contribution ratios could exclude the variable interactions
and therefore reflect the individual contribution of each driving factor
(Saltelli et al., 2004).

Nearly half of the contributions came from climatic factors, thus
emphasizing the importance of temperature and solar radiation to
algae growth. Although the regulation work can hardly control the
climatic factors directly, the potential negative impact of the global
warming trend on the current aquatic ecosystem in Suzhou cannot
be ignored. In addition, a few indirect regulation approaches are
still accessible; an example is green infrastructure (GI) placement,
which is greatly beneficial to cooling the local climate by mitigating
the urban heat island effect (Norton et al., 2015). The effects of hy-
drodynamic factors and the nutrients were nearly equal, and the ex-
ternal loadings contributed 7.7%. These results raised the need of
multifactor joint regulation.
tial variables to algae growth.



Fig. 9. Results of decision tree.
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4.5. What is the limiting threshold of each driving factor?

Chl-a and the six explanatory variables were adopted for the con-
struction of decision tree. Considering that the logarithmic form does
not affect the classification result, this study included WT, V, and N–S
in original form for convenience of the regulation work. MLR proved
that the instrumental variables of nutrients had a stronger explanatory
power for algal bloom comparedwith the original forms; thus, the deci-
sion tree involved the instrumental variables of NH4 and TP for classifi-
cation. A total of 110 samples, including 21 blooming ones, were
excluded because each of them contained at least one missing feature.
The five-fold cross validation, together with the grid search methods,
optimized the three hyperparameters, namely, maximum depth of the
tree, minimum size of the leaf, and weight of the blooming samples, as
3, 3, and 5, respectively. The results are shown in Fig. 9. N–S and R7d
were not selected as division criteria by the decision tree. Of the 94
blooming samples, only five samples, i.e., 5.3%, were misclassified.

The decision tree first chose V to divide the samples into nearly lami-
nar or turbulent flow conditions. The proportion of blooming samples in
the left subtree, i.e., nearly laminar flow condition, was much higher
than that in the right subtree. WT continued to divide each subtree into
low or high temperature conditions. Among them, subtrees (b) and
(d) in the high temperature condition covered 94.7% of the blooming
samples. Lastly, subtrees (a)–(d) were further divided by NH4′, TP′, TP′,
Fig. 10. Threshold curves of nutrient
and V, respectively. Interestingly, the TP′ threshold of subtree (b) was
55% less than the TP′ threshold of subtree (c). Note that subtree (b) was
of nearly laminar flow and high temperature, whereas subtree (c) was
of turbulent flow and low temperature. Therefore, in subtree (b) whose
hydrodynamic condition and climatic factor were conducive to algae
growth, a low concentration of phosphorus would suffice to induce
blooming. This result qualitatively revealed the local compensation law
of different influential factors. Huo et al. (2019)made similar conclusions
based on mathematical models and scenario analysis.

By numerically solving Eqs. (18) and (19), the thresholds of NH4′
and TP′ turned into the threshold curves of NH4 and TP as a concave
function of DO (Fig. 10), thus restricting algae growth under different
V and WT conditions. The two ends of the curves corresponded to the
blooming and decay phases, and in conformity, presented stricter nutri-
ent criteria to restrict algae growth. Although subtree (d) did not have a
nutrient threshold, it was under the turbulent flow–high temperature
condition, just between the conditions in subtrees (b) and (c). Hence,
subtree (d) could also be in the TP limited state, with its curve between
curves (b) and (c).

4.6. Prospect of multi-factor joint regulation on algal bloom

The above five sequential steps have revealed the complicated
mechanisms of algal bloom by quantifying the factor contributions
s under different circumstances.



Fig. 11. A guiding roadmap of application of blooming mechanisms in multi-factor joint algal regulation.
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and the limiting threshold curves. On this basis, this study called for a
multifactor joint algal regulation and drew a guiding roadmap, as
shown in Fig. 11. Corporative measures from different sections should
be considered to addressmultiple factors that affect algae growth simul-
taneously. For example, wastewater treatment plant (WTP) technique
upgrading reduces the source-point pollutant loadings, whereas sedi-
ment dredging lessens endogenous pollution, as well as facilitates hy-
drodynamic conditions by decreasing the channel roughness. The
limiting threshold curves of the driving factors provide the joint regula-
tion plan with a clear target. An ecological model is an important simu-
lation tool for the optimization of a joint regulation plan. Regardless of
whether it is based on machine learning or mechanisms, the model
should characterize the local blooming mechanisms well. Moreover,
the prominent effect of climatic factors pinpoints the challenge from
global warming, suggesting future uncertainty as an important part in
the optimization of an adaptive regulation plan.

5. Conclusions

With the help of multi-factor analysis by integrating multiple data
mining techniques, this study concludes that the algal blooms in the
river network of the Suzhou central urban districts were susceptible to
climatic factors (i.e., water temperature and solar radiation), hydrody-
namic factor (i.e., flow velocity), nutrients (i.e., phosphorus and nitro-
gen), and external loadings; this order is sorted from largest to
smallest on the basis of contribution ratios. In addition, the limiting
threshold curves of each driving factor that might restrict algae growth
under different circumstances were identified for the targeted algae
regulation. Multifactor features make the blooming mechanisms in
gate-controlled urban water bodies different from those in natural
water bodies. For many other gate-controlled urban water bodies, the
local bloomingmechanisms can also be explored by sequentially apply-
ing the five techniques. Then, a joint regulation plan could be designed
and optimized by associating an ecological model.

In addition to the multi-factor mechanisms, the results also identi-
fied globalwarming as one of the greatest threats to aquatic ecosystems
and sketched a compensation law of different factors. Given that direct
regulation on water temperature is substantially difficult, stricter regu-
lation strategies on the other factors are necessary under the back-
ground of global warming. Limited by the availability of project data,
this study only used one-year biweekly data. Nevertheless, abundant
monitoring sites compensate for the insufficient time span. Future stud-
ies based on long-term monitoring are favorable to further quantify a
local compensation law. Adaptive joint regulation on algal bloom
under the guidance of local blooming mechanisms is also a promising
direction for the improvement of the sensory quality of urban water
environments.
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