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Abstract
Documenting the patterns of biological diversity on Earth has always been a central challenge in macroecology

and biogeography. However, we are only beginning to generate an understanding of the global patterns and deter-
minants of macrophyte diversity. Here, we studied large-scale variation and community-environment relationships
of lake macrophytes along climatic and geographical gradients using regional data from six continents. We applied
statistical routines typically used in the context of metacommunity studies to provide novel insights into macro-
phyte community compositional patterns within regions worldwide. We found that lake macrophyte meta-
communities followed clumped species replacement structures, suggesting that two or more species groups were
responding similarly to the environment within regions. Underlying such general convergence, our results also
provided evidence that community-environment relationships were largely context-dependent, stressing that no
single mechanism is enough to account for the complex nature of compositional variation. Surprisingly, we found
no general relationships between functional or phylogenetic composition and main metacommunity types,
suggesting that linking multi-trait and evolutionary information to the elements of metacommunity structure is
not straightforward. Our findings highlight that global conservation initiatives and biodiversity protection need to
capture environmental variation at the metacommunity level, and acknowledge the highly context-dependent
patterns in the community-environment relationships of lake macrophytes. Overall, we emphasize the need to
embrace the potential complexity of ecological inferences in metacommunity organization across the globe.
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Regional biotas develop under influences of environmen-
tal, climatic and geographical factors (Willig et al. 2003).
However, much uncertainty remains in our understanding of
their role in affecting local biotic assemblages over large spa-
tial extents, due in part to the lack of comparable and well-
curated data over large areas (Wüest et al. 2020). Conse-
quently, examining the relative importance of these factors
on geographical patterns of community compositional varia-
tion is still central to macroecology and biogeography
(Heino 2011) and a prerequisite for understanding the distri-
bution of biodiversity on Earth (Kreft and Jetz 2007). Recently,
considerable progress has been made toward documenting
large-scale patterns in the biodiversity of terrestrial ecosys-
tems, including woody plants, insect, birds, and mammals
(e.g., Swenson et al. 2012; Cooke et al. 2019). By contrast,
organisms inhabiting inland waterbodies have been far less
studied from the macroecological perspective (see
Heino 2011 and Hortal et al. 2014 for comprehensive
reviews). Given that freshwater ecosystems are typically
more isolated and fragmented than most terrestrial and
marine systems, the underlying factors controlling the
ecogeographical patterns of freshwater biodiversity should
differ from those found in the other two realms of life
(Kinlock et al. 2018). In this regard, generalizations about
ecogeographical rules evidenced using terrestrial plants can
rarely be used to explain distributional patterns and their
underlying mechanisms in freshwater macrophytes (Alahuhta
et al. 2020). These inconsistencies originate from differences
in accessibility to water and atmospheric gases between terres-
trial and aquatic plants, the latter of which also experience less
extreme temperatures in inland waters (Iversen et al. 2019).
However, we are only beginning to generate an understanding
of the global patterns and determinants of freshwater macro-
phyte diversity (Grimaldo et al. 2016; Alahuhta et al. 2017;
Alahuhta et al. 2018a; Murphy et al. 2019). Such a research
program should not only be of interest to macroecologists and
biogeographers, but also to environmental managers and con-
servation practitioners seeking to delineate biogeographical
regions for environmental assessment and conservation
(Bailey 2010).

Given the strong associations between the theoretical
foundations of metacommunity ecology (Leibold
et al. 2004) and modern biogeography (Jocque et al. 2010),
understanding the mechanistic basis of large-scale biogeo-
graphical patterns also necessitates use of hypotheses and
analytical approaches that have been more typically
applied in the analysis of metacommunities at the land-
scape level (Heino et al. 2015a). Metacommunities (i.e., a
set of interacting communities linked by dispersal; Leibold
et al. 2004) show multiple patterns and models in space
and time, ranging from those assuming strong species
interactions to those suggesting idiosyncratic responses to
the environment (Heino et al. 2015a). Indeed, these ideas
intrigued plant ecologists in the first half of the 20th

century, when Clements (1916) and Gleason (1926)
debated the discrete vs. continuous nature of community
boundaries along underlying environmental gradients.
More recently, Leibold and Mikkelson (2002) devised a step-
wise routine based on the three “elements of met-
acommunity structure” (hereafter, EMS)—coherence, species
range turnover and range boundary clumping—to examine
such community patterns. In this approach, random distribu-
tions of species are contrasted with four main idealized
models: nested subsets (Patterson and Atmar 1986), evenly
spaced gradients (Tilman 1982), Clementsian gradients
(Clements 1916), and Gleasonian gradients (Gleason 1926).
These main metacommunity types are broad idealizations of
nature and, hence, multiple subtypes (i.e., quasi-structures)
can also be distinguished (Presley et al. 2010, see Table 1 for a
glossary).

Although the EMS approach was originally aimed at test-
ing for multiple patterns across a set of local communities
(Leibold and Mikkelson 2002), the same analytical routine
can be adopted to examine distributional patterns across
regions at large biogeographical scales (Heino and
Alahuhta 2015; Schlemmer-Brasil et al. 2017). Nonetheless,
this approach is not without its problems, as outlined
recently by Ulrich and Gotelli (2013) and Schmera
et al. (2018). Their criticism mainly concentrated on the
likely unreliable mathematical mechanisms that give rise
to some idealized structures (Schmera et al. 2018). While
we agree that the EMS framework may be burdened by
anomalies in detecting some empirical patterns
(e.g., checkerboard distributions, Presley et al. 2019), we
argue that its careful non-mechanistic interpretation
and subsequent combination with alternative analytical
approaches should lead to a better understanding of main
macroecological patterns and community-environment
relationships (Meynard et al. 2013; Heino and Alahuhta 2015).
For example, a simultaneous comparison of multiple study
regions may help to elucidate whether compositional varia-
tion is molded predictably by a set of ecological settings or if
that compositional variation is context-dependent (Tonkin
et al. 2016). Those settings could be revealed using ecological
correlates of metacommunity structure similar to functional
traits and phylogenetic distances of species in other contexts
(Heino et al. 2015b; García-Girón et al. 2019a). Surprisingly,
to our knowledge, no single study has assessed both the best
fit patterns of community variation and the ecological fea-
tures of regional metacommunities simultaneously at global
scale.

Here, we present an analysis of geographical variation,
context dependency and community-environment relation-
ships of macrophytes using data from 16 regions worldwide
(Fig. 1a). We specifically examined the following questions:
(1) Which idealized metacommunity model best fits the
empirical data of lake macrophyte metacommunities within
study regions? (2) Are community-environment
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relationships consistent or variable among different
regions? (3) What ecological correlates describing met-
acommunity characteristics (i.e., elevation range, spatial
extent, latitude, longitude, age of the oldest lake within
each region, matrix fill, species richness, functional compo-
sition, and phylogenetic composition) best determine varia-
tion in coherence, species range turnover and range
boundary clumping? Based on evidence from previous stud-
ies (Henriques-Silva et al. 2013; Heino et al. 2015b), we
expected to find clear geographical variation in met-
acommunity structuring, with a change from Gleasonian to
Clementsian gradients from the equator to the poles (H1).
This is because we expected that two or more groups of spe-
cies would respond similarly to the typically harsher environ-
mental conditions in boreal regions, leading to clumped range
boundaries in their geographical distributions (Heino
et al. 2015b). We also hypothesized (H2) that a strong context
dependency would be observed in the community-
environment relationships, not least because the structuring of
lake metacommunities can be highly variable among different
regions (Alahuhta et al. 2017, 2018a; Heino and Tolonen 2017).
In addition, we predicted (H3) that variables describing the eco-
logical features of metacommunities would be good predictors
of the three elements of metacommunity structure, because
multi-trait and evolutionary information should be related to

the predictability of the underlying distributional patterns
(Meynard et al. 2013; García-Girón et al. 2019a).

Methods
Macrophyte data sets and regional characteristics

We analyzed a data set of 16 different study regions
covering six continents across the Earth (Fig. 1a, Supporting
Information Appendix S1 and Fig. S1). The study regions and
field methods have been described previously (Alahuhta
et al. 2018a) and are here outlined briefly to aid understand-
ing of the ecological context of individual regions. We had
strict quality control for selecting each data set: (1) each study
region had to include ca. 30 lakes with similar geographical
distribution from the pool of candidate lakes; (2) all lakes had
to be mostly natural lentic systems (i.e., reservoirs were
excluded); and (3) all macrophyte communities within each
data set had to have been empirically surveyed using similar
methods to maintain data comparability. The selected lakes
ranged from glacial-origin and relatively stable lakes situated
in temperate and boreal zones (e.g., Finland, Sweden, Norway,
Estonia, Denmark, Poland, New Zealand and US states of Min-
nesota and Wisconsin) to semi-arid shallow Mediterranean
lakes (e.g., Morocco and Spain). Most of the study lakes
suffered from various anthropogenic pressures such as water

Table 1. A glossary of the main elements of metacommunity structure and idealized models dealt with in this paper.

Concept Description

Coherence A measure of the degree to which a distributional pattern can be collapsed into a single ordination axis (Leibold

and Mikkelson 2002)

Species range turnover A measure that reflects the tendency for species to replace each other from site to site along an ordination axis

(Leibold and Mikkelson 2002)

Range boundary clumping A measure of the degree to which the boundaries of different species’ ranges are clustered together along an

ordination axis (Leibold and Mikkelson 2002).

Random distribution A random structure exists when there are no gradients or discernible patterns in species distributions among

sites (Leibold and Mikkelson 2002)

Nested subsets A metacommunity structure where species poor sites form proper subsets of species from progressively richer

communities (Patterson and Atmar 1986)

Evenly spaced A metacommunity structure where gradients result in no discrete communities, but species ranges are arranged

more evenly than expected by random chance (Tilman 1982)

Clementsian A metacommunity structure where species respond to environmental gradients as groups, resulting in discrete

communities (Clements 1916)

Gleasonian A metacommunity structure where species respond individualistically to underlying environmental gradients

(Gleason 1926)

Quasi-structure Quasi-structures are intermediate metacommunity types. Quasi-nested metacommunities (i.e., quasi-

hyperdispersed species loss, quasi-random species loss, and quasi-clumped species loss) is the name for cases of

significant positive coherence and non-significant (negative) range turnover. By contrast, quasi-evenly spaced,

quasi-Gleasonian, and quasi-Clementsian structures are the names for cases with positive coherence and non-

significant (positive) range turnover. They can be distinguished based on range boundary clumping (Presley

et al. 2010)

Table adapted from Leibold and Mikkelson (2002), Presley et al. (2010), and Heino et al. (2015b).
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Fig 1. (a) Our study system comprised ca. 30 lakes surveyed in each of the 16 regions (colored triangles) across the world. (b) Schematic representation
describing Leibold and Mikkelson’s (2002) elements of metacommunity structure (i.e., coherence, species range turnover and range boundary clumping).
The combination of coherence, species range turnover and range boundary clumping results in seven main metacommunity types (i.e., random, random
species loss, hyperdispersed species loss, clumped species loss, evenly spaced, Clementsian and Gleasonian; bold font) and six quasi-structures (i.e., quasi-
evenly spaced, quasi-Clementsian, quasi-Gleasonian, quasi-hyperdispersed species loss, quasi-random species loss and quasi-clumped species loss; italic
font). Species × sites distributions corresponding to the principal metacommunity types are represented as follows: columns represent different species
and rows represent sites. Figure modified from Presley et al. (2010) and Henriques-Silva et al. (2013). MI, Morisita’s index.
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extraction, invasive species, nutrient enrichment, and decreased
connectivity, which cannot be avoided in an increasingly
human-dominated world.

Our data set consisted of presence-absence observations of
aquatic macrophyte species (i.e., species that are strongly
bound to aquatic environments; see Kosten et al. 2009). These
species included submerged (elodeids and isoetids), floating-
leaved, free-floating (ceratophyllids and lemnids) and emer-
gent forms (Cook 1999). The species list from each region was
carefully checked to guarantee that inconsistencies were mini-
mal. To do this, non-aquatic helophytes, shore species,
aquatic bryophytes and charophytes were removed from the
final data sets. Similarly, we excluded hybrids, subspecies, and
genus level identifications when species from the same genus
were recorded from the data.

Elements of metacommunity structure (EMS) analysis
using site-by-species incidence matrices

Following the metacommunity framework originally pro-
posed by Leibold and Mikkelson (2002), and thereafter
expanded by Presley et al. (2010) and Henriques-Silva
et al. (2013), we analyzed which metacommunity structure
best fitted lake macrophyte data in each study region across
the globe. To do this, we adopted the “range perspective” in
our analyses (Presley et al. 2010). The metacommunity types
were assessed by analyzing aspects of coherence, species
range turnover and range boundary clumping of site-by-
species presence-absence matrices. Incidence matrices were
first ordinated via reciprocal averaging (CA). This procedure
allowed us to obtain a latent gradient in which sites were
ordered according to species composition and species were
ordered according to site occurrences. After rearranging the
data matrix, we tested the different metacommunity ele-
ments in a hierarchical way, that is, (i) coherence, (2) species
range turnover, and (3) range boundary clumping (Fig. 1b;
Table 1).

Coherence is based on calculating the number of embedded
absences (i.e., gap in a species range) in the ordinated empiri-
cal incidence matrix and then comparing the observed value
to a null distribution of embedded absences from 1000 simu-
lated matrices. A metacommunity is considered to be coherent
when the number of observed embedded absences is lower
than expected by chance. Significantly positive coherence
thus suggests that species distributions are responding simi-
larly to a common environmental gradient represented by the
ordinated site-by-species presence-absence matrix. Non-
significant coherence means that species are distributed at ran-
dom, suggesting that species are not responding to a common
environmental gradient (Leibold and Mikkelson 2002). For
metacommunities with positive and significant coherence, the
range turnover component was tested (Fig. 1b). Species range
turnover was measured as the number of empirical replace-
ments for each possible pair of species and for each possible
pair of sites in the ordinated matrix. Then, the number of

observed replacements was compared to a null distribution
that randomly shifts the entire ranges of species (Leibold and
Mikkelson 2002). Significantly negative turnover (i.e., the
observed replacement is lower than expected by chance) is
consistent with a nested structure (i.e., hyperdispersed species
loss, random species loss, and clumped species loss), whereas
significantly positive turnover (i.e., the number of observed
replacements are higher than expected by chance) indicates
evenly spaced, Gleasonian or Clementsian metacommunity
types. The cases of significant positive coherence and non-
significant turnover can be interpreted as quasi-structures
(Presley et al. 2010). We further analyzed range boundary
clumping using Morisita’s index of dispersion and a subsequent
χ2 test that compares the empirical distribution of range
boundaries to an expected uniform distribution. Index values
significantly larger than “1” indicate clumped range bound-
aries (i.e., Clementsian and clumped species loss structures)
and values significantly less than “1” suggest hyperdispersed
range boundaries (i.e., evenly spaced distribution and hyper-
dispersed species loss structures). Species distributions
that occur independently and idiosyncratically with respect
to each other (i.e., Gleasonian and random species loss
structures) are indicated by a non-significant χ2 test. Corre-
spondingly, quasi-evenly spaced, quasi-Gleasonian, quasi-
Clementsian structures, quasi-hyperdispersed species loss,
quasi-random species loss, and quasi-clumped species loss
can be separated by boundary clumping (Presley et al. 2010;
see Fig. 1b).

The significance of the index values for coherence and
range turnover was tested using the fixed-proportional null
model (Gotelli 2000), where the species richness of each site
is maintained (i.e., row sums are fixed) but species ranges
(i.e., columns) are filled based on their marginal probabilities.
Random matrices for the fixed-proportional null model were
produced by the “r1” method as implemented in the vegan
package (Oksanen 2016). Although the fixed-proportional
null model makes sense ecologically and is not highly sensi-
tive to type I or type II errors (Presley et al. 2009), this model-
ing approach does not involve shifting of ranges and
therefore our findings need to be treated with caution. We
also used a strict and conservative fixed–fixed null model
based on the “quasi-swap” method in the R package vegan to
find out if the null model used affected the results. In the
fixed–fixed null model, both species richness of each site and
species frequencies are maintained. We used 1000 simula-
tions to provide random matrices for testing coherence and
species range turnover. Elements of metacommunity struc-
ture were evaluated for each study region along the first
reciprocal averaging (i.e., correspondence analysis) axis
because we were interested in the most important species
compositional gradient. Analyses of coherence, species range
turnover and range boundary clumping were performed
using the metacom package (Dallas 2013) in the R environ-
ment (R Core Team 2018).
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We also used a Z-score or standardized effect size (SES) for
the indices of coherence and species range turnover for each
individual metacommunity:

SES =
obs−rnd:mean

rnd:sd

where obs is the observed index value, rnd.mean the mean
index value of the null distribution, and rnd.sd the standard
deviation of simulated index values (see Gotelli and
McCabe 2002).

Z-scores allow comparisons among data sets and can thus
subsequently be used in comparative analyses (see Heino
et al. 2015b). Basically, Z-scores between − 1.96 and 1.96 are
non-significant at α = 0.05 and, thus, Z-scores of coherence
and species range turnover can also be used to infer met-
acommunity structures. We also applied the traditional
approach to delineate metacommunity types based on statisti-
cal significance from the randomization tests of coherence
and species range turnover (see above).

Community-environment relationships
Community-environment relationships within the study

regions were compared based on a set of a priori determined
lake-level variables. Physico-chemical variables consisted of lake
area (km2), Secchi depth (m) and water total phosphorus con-
centration (mg L−1). These three physico-chemical variables
were chosen because they often account for significant varia-
tion in community structure of lake macrophytes (see Alahuhta
et al. 2018b), and correlate with other hydromorphological and
water chemistry variables that were not available for all study
regions (e.g., Kosten et al. 2009). Physico-chemical variables
were surveyed and determined following similar procedures
within each study region (Supporting Information Appendix
S1). Climate variables included atmospheric annual mean tem-
perature (�C), annual temperature range (�C), and annual pre-
cipitation (mm) defined for each study lake based on 30 years
average values (1 km resolution data) obtained from the
WorldClim (Hijmans et al. 2005). Climate variables were not
only a surrogate for thermal energy availability (Alahuhta
et al. 2017) and water-level fluctuation (Carpenter et al. 2011),
but also for nutrient and material loading from the catchment
(Sahoo et al. 2015).

Our main statistical method to explore community-
environment relationships within regions was canonical corre-
spondence analysis (CCA), which is a constrained extension
of reciprocal averaging (Legendre and Legendre 2012), thus
providing a link to the EMS analysis. We used the intraset cor-
relations between environmental variables and site scores
along the first two ordination axes to infer which factors were
best related to variation in community composition and com-
pare whether the same environmental drivers were important
in each study region (see Heino et al. 2015b). Note, however,
that we cannot associate a given metacommunity type

specifically to environmental drivers, not least because there is
no evidence that a particular mechanism can map onto a par-
ticular structure. CCAs were run with the “cca” function using
the R package vegan.

Comparative analyses
We used simple linear regression to analyze variation in the

Z-scores of coherence, the Z-scores of species range turnover
or the index of range boundary clumping with a set of ecologi-
cal correlates (i.e., predictor variables) describing met-
acommunity characteristics (see below). Standardized effect
sizes of each metacommunity element (Yi) were log-
transformed [min (Ymax + a = 1) ! log (Yi + a)] before analyses
to improve normality and reduce skewness.

We first summarized regional environmental information
within convex hulls encompassing the minimum area con-
taining all surveyed lakes within each region. For each study
region, we defined elevation range within the convex hull (m),
area of the convex hull (km2), latitude of the convex hull (from
centroid), longitude of the convex hull (from centroid), and esti-
mated the maximum lake age within a particular region (see
Supporting Information Appendix S1 and Table S1 for variable
information). These variables can indirectly affect lake macro-
phytes by indicating variation in habitat suitability (Alahuhta
et al. 2017), dispersal limitation (García-Girón et al. 2019b),
environmental heterogeneity (Downing and Rath 1988), and
temporal availability for colonization sources (Alahuhta
et al. 2018a). Second, we used matrix fill (i.e., the proportion
of “1 s” in the site-by-species incidence matrix) and species
richness because data set characteristics may have strong
effects in comparative analyses of metacommunities (Heino
et al. 2015b). Third, we considered several key functional traits
(Supporting Information Appendix S2, Table S2 and Fig. S2) to
provide information on multiple ecological aspects of each
metacommunity (Heino et al. 2015b) and to give a broad char-
acterization of the realized niche of the species. We then used
the mixed-variables coefficient of distance (i.e., a generaliza-
tion of Gower’s distance; Borcard et al. 2011) to extract a func-
tional distance matrix across the 16 data sets using the “daisy”
function in the R library cluster (Maechler et al. 2014). The
phylogenetic composition of each study region was addressed
using the phylogenetic fuzzy-weighting method implemented
in the PCPS package (Debastiani 2018). To do this, we used a
molecular-based phylogeny for aquatic macrophytes recently
developed by García-Girón et al. (2020) (for details on phylo-
genetic reconstruction, see Supporting Information Appendix
S3 and Fig. S3). Thereafter, the pairwise output values for the
functional distance matrix were synthesized into principal
coordinate analysis (PCO) following Duarte et al. (2012). The
scores of each single metacommunity along PCO1, PCO2,
PCPS1, and PCPS2 components were then used to indicate the
combined functional (i.e., PCO) and phylogenetic (i.e., PCPS)
features of each metacommunity (Supporting Information Appen-
dix S4 and Fig. S4).
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Results
The Z-scores of coherence from fixed-proportional

(i.e., “r1”) or fixed–fixed (i.e., “quasi-swap”) null models were
strongly correlated (rp = 0.93, p < 0.001), and the same was
true for the Z-scores of species range turnover (rp = 0.73,
p < 0.01). Accordingly, we focused on the results based on the
fixed-proportional method because most previous studies have
used it in the context of the EMS analysis (Heino et al. 2015b;
Gascón et al. 2016; Schlemmer-Brasil et al. 2017). There was
wide variation in the Z-scores of coherence, the Z-scores of
species range turnover, and the index of range boundary
clumping among the metacommunities (Table 2). However,
the EMS analysis showed consistent patterns among study
regions, resulting in three observed metacommunity types
(Fig. 2 and Table 2). We found that Clementsian structure
(n = 8) was the most common, followed by quasi-Clementsian
(n = 7) and clumped species loss (n = 1) metacommunity
types. In other words, most metacommunities were
responding to latent environmental gradients, here represen-
ted by the first CA axis; groups of species had coincident range
boundaries in each metacommunity; and species composition
changed consistently in similar places of the underlying envi-
ronmental gradient.

Community-environment relationships varied among indi-
vidual metacommunities and did not allow us to single out a
few environmental drivers among the set of available pre-
dictor variables (Fig. 3), suggesting that specific details of

community-environment relationships were largely context
dependent. For instance, Secchi depth had the highest effect
on variation in community composition in China (CCA1),
whereas temperature range and precipitation were strongly

Table 2. Results of the EMS analysis for each individual study region. These results were based on the fixed-proportional null model.
Interpretations followed Presley et al. (2010). Significant results (* p≤0.05; ** p≤0.01; *** p≤0.001) are marked in bold font.

Coherence Species range turnover Boundary clumping
InterpretationAbs Coh Z Sim mean Sim sd Rep Tur Z Sim mean Sim sd Index

Brazil, coastal lakes 122 −6.54*** 200 12 1480 0.73 1183 405 3.06*** Q-Clementsian

Brazil, Parana river floodplain 300 −2.18*** 468 77 2140 1.36 1843 219 1.65* Q-Clementsian

China 131 −4.87*** 204 15 2356 1.95 1459 458 1.63** Q-Clementsian

Denmark 495 −10.24*** 874 37 19,357 2.49* 14,406 1988 1.97*** Clementsian

Estonia 426 −8.05*** 619 24 10,238 1.53 7921 1513 1.47*** Q-Clementsian

Finland 566 −8.37*** 792 27 18,936 1.78 14,302 2606 1.28** Q-Clementsian

Florida 247 −7.68*** 439 25 8765 4.57*** 4460 942 2.47*** Clementsian

Hungary 336 −7.04*** 505 24 11,462 2.01* 8267 1592 1.37* Clementsian

Minnesota 472 −9.11*** 718 27 17,643 3.43*** 10,688 2027 1.75*** Clementsian

Morocco 158 −12.78*** 567 32 8599 1.71 7414 694 1.67*** Q-Clementsian

New Zealand 156 −9.91*** 384 23 7587 2.56* 5205 929 2.19*** Clementsian

Norway 168 −6.18*** 273 17 1911 −2.79** 3608 607 1.42*** Nested*

Poland 370 −7.32*** 575 28 7878 1.46 6137 1193 2.06*** Q-Clementsian

Spain 338 −7.79*** 595 33 13,473 3.08** 8657 1564 1.88*** Clementsian

Sweden 564 −9.05*** 890 36 27,480 3.78*** 17,343 2683 1.54*** Clementsian

Wisconsin 543 −12.3*** 912 30 26,894 2.31* 19,990 2985 1.38*** Clementsian

Abs, the number of embedded absences; Coh, coherence; Q, quasi; Sim mean, mean of the simulated null matrix; Sim sd, standard deviation of the simu-
lated null matrix; Rep, number of species replacements; Tur, species range turnover.

*Nested, clumped species loss (sensu Presley et al. 2010).

Fig 2. Metacommunity structures (Clementsian, circle; quasi-Clementsian,
square; clumped species loss, triangle) of the 16 study regions plotted in
the space of the Z-scores of coherence and species range turnover. Bub-
ble size denotes the index of range boundary clumping. Dashed lines indi-
cate Z-scores between − 1.96 and 1.96. See Fig. 1a for color scales
corresponding to the study regions.
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related to community composition in Wisconsin (CCA1) and
New Zealand (CCA2), respectively. Similarly, total phospho-
rus, lake area and mean temperature were particularly impor-
tant in Florida (CCA1), Morocco (CCA1), and Finland (CCA2),
respectively.

Simple linear regressions showed that no ecological feature
of metacommunities was significantly associated with varia-
tion in the Z-scores of coherence, the Z-scores of species range
turnover or the index of range boundary clumping (Table 3).
This indicated that the single components of the EMS analysis
were not necessarily strongly related to ecological correlates
describing metacommunity characteristics.

Discussion
While a relatively large number of studies have exam-

ined geographical variation in species richness across large
spatial resolutions and extents (e.g., Raes et al. 2018; Mur-
phy et al. 2019), fewer studies have examined species com-
positional variation worldwide based on local resolution

(e.g., a lake) in the freshwater realm. In this regard, our study
is unique in bringing together the three elements of met-
acommunity structure (i.e., coherence, species range turnover
and range boundary clumping) and the varying ecological set-
tings of multiple study regions to infer large-scale patterns
and community-environment relationships of lake macro-
phytes across the world. Such a combination of techniques
allowed us to better understand patterns in lake macrophyte
metacommunities and the factors governing these patterns
worldwide. We found mostly Clementsian (n = 8) and quasi-
Clementsian (n = 7) metacommunity structures in the regions
of our empirical data set, a finding which did not support our
hypothesis of geographical variation in metacommunity types
(H1). We also revealed highly context-dependent patterns
in the community-environment relationships between dif-
ferent study regions, confirming our second hypothesis
(H2). Unexpectedly (H3), our results also indicated that the
three elements of metacommunity structure were weakly
related to the predictor variables describing ecological fea-
tures of metacommunities.

Fig 3. Community-environment relationships along the first two CCA axes as evidenced by intraset correlations between each variable predictor
(a, Secchi depth; b, total phosphorus; c, lake area; d, mean temperature; e, temperature range; f, precipitation) and the ordination axes (CCA1, orange;
CCA2, green). See Fig. 1a for abbreviations.
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Local communities show clumped boundaries but respond
differently to environmental gradients

Species may experience environmental gradients as gradual
or more-or-less discrete boundaries depending on species-
specific characteristics (e.g., tolerance to abiotic factors and
habitat specialization; Valanko et al. 2015). In our present
study, Clementsian and quasi-Clementsian gradients were the
most commonly found metacommunity types within regions
along the ≈ 10,000 km latitudinal gradient. The idea of
Clementsian gradients suggests that there are two or more
groups of species (i.e., species associations) showing similar
responses to the environment (i.e., species distributions are
generally coherent), and that the responses differ among
groups (Clements 1916). Consequently, the quasi-
Clementsian structures observed here were probably the result
of an artifact because species niche breadth extended beyond
the range in which species turnover is significant (Presley
et al. 2010), affecting the identification of boundaries in some
study regions (Gascón et al. 2016). The Clementsian
(or sometimes the quasi-Clementsian) pattern is commonly
found in metacommunity studies conducted in aquatic sys-
tems, and both have already been reported in comparative
analyses of lake biotas (Heino et al. 2015a,b), as well as for
stream invertebrate metacommunities in Central Germany
(Tonkin et al. 2016), Amazonian stream damselflies
(Schlemmer-Brasil et al. 2017), soft-sediment benthic inverte-
brates from the Baltic Sea (Valanko et al. 2015), Hungarian
stream fishes (Er}os et al. 2014), and Mediterranean wetland

microcrustaceans (Gascón et al. 2016). However, it is still par-
ticularly striking that environmental variation has such an
important role in structuring lake macrophyte meta-
communities in different biogeographical realms of the Earth
(here, Palaearctic, Nearctic, Neotropical, Indomalayan, and
Australasian). This finding may be related to the fact that lake
systems and their drainage basin characteristics are inherently
highly heterogeneous (Downing et al. 2006) and, hence,
responses of macrophyte species groups to environmental var-
iation are typically more complex than a simple gain or loss of
species along major biologically-important thresholds (sensu
Heino et al. 2015a).

Behind such general convergence, the disagreement among
important community-environment relationships also high-
lights that no single mechanism (i.e., a single constraining
environmental factor) is enough to account for the complex
nature of compositional variation and metacommunity
organization. Instead, it appears that metacommunity
(i.e., regional) structuring of lake macrophytes is highly diffi-
cult to predict. This has been demonstrated in two recent
global-scale studies that showed variable patterns in the fac-
tors shaping species-based beta diversity (Alahuhta et al. 2017)
and community composition (Alahuhta et al. 2018a). What-
ever the case, our study results agree with previous works in
which climate and water quality were found to be primarily
related to variation in macrophyte community composition at
regional scales (Capers et al. 2010; García-Girón et al. 2019a,b;
García-Girón et al. 2020). However, these findings should be
interpreted with caution due to differences in sample timing
between macrophytes and lake-level environmental variables
in our study. Similarly, factors other than environmental fil-
tering may also affect metacommunity structure. For example,
connectivity among lakes and associated dispersal events may
interfere with the environment in determining community
composition by hindering species’ tracking of local and cli-
matic conditions (see García-Girón et al. 2019b). Nevertheless,
associating the effects of dispersal with the idealized met-
acommunity types may be difficult, even if they existed
(Meynard et al. 2013). Meanwhile, previous works using the
same test data set showed that environmental filtering over-
came the effects of potential connectivity in explaining local
communities across the globe (Alahuhta et al. 2018a; García-
Girón et al. 2020). We thus suggest that environmental differ-
ences between sites remain the main structuring force within
lake macrophyte metacommunities worldwide, although indi-
vidual metacommunities may respond differently to major
limiting or constraining environmental gradients.

Metacommunity characteristics are poorly related to
variation in coherence, species range turnover, and range
boundary clumping

We found that the three elements of metacommunity
structure were weakly correlated to the ecological variables
describing individual metacommunity characteristics. In a

Table 3. Results of simple linear regression models for the Z-
scores of coherence, the Z-scores of species turnover and the
index of range boundary clumping. Simple linear regressions
showed no significant relationships (p>0.05 in all cases).

Coherence Turnover
Boundary
clumpling

Elevation range

of convex hull

−0.23 0.12 −0.13

Area of convex hull −0.06 0.39 −0.19
Latitude of convex hull −0.25 0.00 −0.51
Longitude of convex hull 0.15 −0.15 −0.27
Estimated maximum

lake age within

convex hull

−0.39 0.05 0.22

Matrix fill 0.21 −0.26 −0.22
Species richness −0.44 0.35 −0.38
PCO1 0.12 −0.09 0.43

PCO2 −0.01 0.00 0.36

PCPS1 −0.06 −0.22 0.23

PCPS2 −0.38 0.08 −0.16

PCO1 and PCO2, axes describing the principal coordinates of the func-
tional distance matrix; PCPS1 and PCPS2, axes describing the principal
coordinates of phylogenetic structure.
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recent study, Heino et al. (2015b) suggested that the ecological
factors underlying variation in coherence, species range turn-
over, and range boundary clumping should not be inferred
too strongly in isolation, because it is their combined influ-
ence which distinguishes different metacommunity structures.
Previous studies suggested that accounting for trait and phylo-
genetic composition may provide more accurate predictions of
metacommunity organization by approximating species
niches similarities and evolution (Gianuca et al. 2018; García-
Girón et al. 2019a). This is because functional traits and evolu-
tionary legacy are key in determining diversity patterns within
and among communities and species replacement along envi-
ronmental gradients (de Bello et al. 2017). Interestingly, how-
ever, we found no general relationships between functional or
phylogenetic composition and metacommunity structures. A
reason for this lack of relationship may be that two or more
groups of species sharing a common response to underlying
environmental thresholds comprised either functionally dis-
similar or distantly related macrophyte taxa. This finding con-
tradicts our initial expectations and suggests that linking
multi-trait and evolutionary information to the elements of
metacommunity structure is not necessarily straightforward
(but see Meynard et al. 2013). Nonetheless, we cannot exclude
the possibility that future macrophyte studies decoupling trait
and phylogenetic information at the metacommunity level
will uncover hidden signals underlying species coexistence
and replacements along major environmental gradients (see
de Bello et al. 2017).

Conclusions
From a methodological perspective, our study shows

that the simultaneous evaluation of the elements of met-
acommunity structure (i.e., coherence, species range turnover,
and range boundary clumping) and the ecological settings of
metacommunities can enhance our ability to understand
large-scale patterns and community-environment relation-
ships across the globe. More specifically, we found that our
empirical data set fitted best Clementsian and quasi-
Clementsian metacommunity types within regions, suggesting
that lake macrophyte communities follow clumped species
replacement structures. This information is relevant to the
current debate about conservation of freshwater biodiversity,
and we advance the notion that it needs to capture environ-
mental variation at the metacommunity level (Socolar
et al. 2016). Behind such general convergence of met-
acommunity types, our results also provide evidence that
community-environment relationships are shaped by multiple
environmental factors within regions. This finding suggests
that individual metacommunities may respond differently to
major limiting or constraining environmental thresholds,
emphasizing the need to embrace the potential complexity of
ecological inferences in metacommunity organization world-
wide. We propose that future studies should examine the

effects of climatic conditions, historical events and vicariance
biogeography on species associations consistently occurring
and disappearing at similar locations along the latitudinal gra-
dient. Such an approach may not only provide insightful
information about the evolutionary or physiological trade-offs
associated with important ecogeographical thresholds (see
Heino and Alahuhta 2015), but also offer a means of testing
the very foundations of biogeographical regionalization and
inferring major breakpoints in lake macrophyte community
composition at global scale.
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