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Abstract: Lake surface water temperature (LSWT) is an important factor in lake ecological environments. It has 10 

been observed that LSWT have followed an upward trend in the last half century, which has had serious impacts on 11 

regional biodiversity and climate. It is important to understand the main reason for this phenomenon in order to have 12 

a basis for controlling and improving the regional ecological environment. In this study, the contribution rates of near 13 

surface air temperature (NSAT), surface pressure (SP), surface solar radiation (SSR), total cloud cover (TCC), wind 14 

speed (WS) and Secchi depth (SD) to LSWT of 11 naturally formed lakes in the Yunnan-Guizhou Plateau are 15 

quantified. The characteristics of and relationships between the various factors and LSWT in lakes of different types 16 

and attributes are revealed. The results show that: (1) from 2001 to 2018, most lakes were warming; the change rate 17 

of LSWT-day was higher than that of LSWT-night. The mean comprehensive warming rate (MCWR) of LSWT-day 18 

was 0.42 �/decade, and the mean comprehensive change rate (MCCR) was 0.31 �/decade; the MCWR of 19 

LSWT-night was 0.19 �/decade, and the MCCR was 0.01 �/decade. NSAT and SSR were most strongly correlated 20 

with LSWT-day/night. There were no large seasonal differences in the correlation between NSAT and LSWT-day, 21 

while seasonal differences in the correlations between NSAT with LSWT-night and SSR with LSWT-day/night 22 

were observed. (2) NSAT and SSR were the most important factors affecting LSWT-day/night changes, with 23 

contribution rates of 30.24% and 44.34%, respectively. LSWT-day was more affected by SP and SSR in small, 24 
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shallow, and low-storage lakes. For larger lakes, LSWT-day was more affected by WS, while LSWT-night was 25 

greatly affected by TCC. Urban and semi-urban lakes were more affected by SSR and NSAT; for natural lakes, the 26 

decreasing SD affected the increases in LSWT, which indirectly reflects the impact of human activities. 27 

LSWT-day/night responded differently to different morphological characteristics of the lakes and different 28 

intensities of human activity. 29 

Keywords: Lake surface water temperature; Plateau lake; Yunnan Guizhou Plateau; Driving factor; Contribution 30 

rate 31 

1 Introduction 32 

Lakes are important ecological resources. The ecological environment of lake is not only associated with the 33 

quality of the regional ecological environment but also the sustainable development of cities (Dokulil, 2014; Zhang 34 

et al., 2015). It can also reflect the status of the regional environment (Dokulil., 2014). Water temperature is a basic 35 

physical property and an important environmental condition. It affects the metabolism of organisms living in the lake 36 

as well as the decomposition of organic materials, and determines the primary productivity of lakes (Sharma et al., 37 

2007). Lake surface water temperature (LSWT) can directly reflect the material and energy exchange processes of 38 

the water-land-atmosphere system, and can also serve as an indicator of climate change and human activities (Yang 39 

et al., 2019; He et al., 2019; Weber et al., 2018; O'Reilly, 2015; Zhang et al., 2016). Changes in the LSWT would 40 

have a dynamic and complex fatal impact on the physical, biological, and chemical processes occurring in the lake 41 

ecological environment (Adrian et al., 2009; O'Reilly et al., 2015). In the past 30 years, the LSWTs of most lakes 42 

around the world have risen rapidly at an average rate of 0.34 �/decade, which could lead to ecological problems 43 

such as the prolongation of the cyanobacteria suitable growth period and the aggravation of eutrophication, 44 
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environmental problems such as the prolongation of the lake thermal stratification period, the increase of 45 

thermocline depth and strength, and hypoxia at the bottom of lakes with increased(O'Reilly., 2015). 46 

The rise in LSWT caused by climate change is a large-scale and long-term effect, which has been confirmed by 47 

many studies conducted around the world (O'Reilly et al., 2003; O'Reilly et al., 2015). However, some serious 48 

ecological environmental problems associated with lakes have been driven by short-term environmental conditions. 49 

Missaghi et al. (2017)  found that the Minnetoka LSWT increased up to 4 � during the ice-free seasons, resulting in 50 

a significant reduction in the size of the freshwater fish habitat. O'Reilly et al. (2003) showed that the Tanganyika 51 

LSWT had been increasing at a rate of 0.1 �/decade since 1913 with climate warming and regional wind speed 52 

reduction. This warming had also affected the stability of the lake, as a result of which, the primary productivity may 53 

have decreased by about 20%, implying a roughly 30% decrease in fish yields. At the same time, lake warming 54 

would lead to an increase in the frequency of cyanobacteria bloom outbreaks by 20% (O'Reilly et al., 2015). Sharma 55 

et al. (2015) constructed a dataset of climate drivers (near surface air temperature, surface solar radiation, cloud 56 

cover) and lake morphology parameters (longitude, latitude, altitude, lake area, etc.) that affected LSWT changes in 57 

291 lakes worldwide (Sharma et al., 2015). Based on this dataset, O’Reilly et al. (2015) demonstrated that the 58 

regional near-surface air temperature and geomorphology had a greater impact on LSWT than other factors. Schmid 59 

& Koster (2016) showed that increases in near-surface air temperature and surface solar radiation were the main 60 

reasons for the increase in LSWT in spring and summer, with contribution rates of 60% and 40%, respectively. In 61 

addition to near-surface air temperature and surface solar radiation, several other factors have also been shown to 62 

affect the LSWT (Schmid & Koster., 2016). Increased wind speed tended to decrease the LSWT due to increased 63 

evaporation (Tanentzap et al., 2008; Valerio et al., 2015; Woolway et al., 2018). Secchi depth can be used to 64 

calculate the light attenuation, and stronger light attenuation was found to cause the LSWT to rise in spring and 65 

summer, but the shallower thermocline caused the LSWT to fall faster in autumn (Heiskanen et al., 2015; Hocking & 66 
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Straskraba., 1999; Rinke et al., 2010). In particular, LSWT values in daytime or nighttime showed different warming 67 

characteristics, and need to be considered separately, especially in small and shallow lakes (Wan et al., 2017; 68 

Woolway et al., 2016). 69 

To sum up, the observation that LSWTs are gradually rising has become a consensus in the academic 70 

community. Climate warming was the main factor leading to increasing LSWTs, but the impact of differences in 71 

spatial heterogeneity on LSWT is also worthy of in-depth study. Therefore, based on previous research (Yang et al., 72 

2016, 2017, 2018, 2019), the 11 naturally formed lakes in the Yunnan Guizhou Plateau were selected for study, the 73 

LSWT change characteristics from January 2001 to December 2018 were analyzed, the contribution rates of six 74 

factors (near surface air temperature, surface solar radiation, etc.) were quantified, and the characteristics and the 75 

relationships of those six factors to different lake attributes and lake types are discussed. This work provides 76 

methodological reference and theoretical support for the analysis of the spatial heterogeneity of regional LSWT 77 

increases. 78 

2 Data and methods 79 

2.1 Study area 80 

The Yunnan-Guizhou Plateau is one of the most typical karst landforms in the world. The 11 naturally formed 81 

plateau lakes support abundant natural resources, diverse ethnic cultures, and unique ecological environments in the 82 

Yunnan-Guizhou Plateau. The differences in lake depth, eutrophication, water quality, and land use types in the 83 

watershed can provide abundant research samples. These lakes reserve nearly 5% of the freshwater resources of 84 

China. They all have a surface area of more than 25 km2, including nine lakes in Yunnan Province (Dianchi, Erhai, 85 

Fuxian, Chenghai, Lugu, Yilong, Qilu, Xingyun, and Yangzonghai Lake), 1 in Guizhou Province (Caohai Lake), and 86 

1 in Sichuan Province (Qionghai Lake). The names and major characteristics of these lakes are shown in Table A1 87 
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and Table A2, respectively, and their geographical locations are shown in Fig. 1. Among these lakes, Fuxian and 88 

Lugu Lakes are the second and third deepest freshwater lakes in China, while Dianchi and Erhai Lakes are the first 89 

and second largest freshwater lakes in Yunnan Province, respectively. Chenghai Lake is the second largest 90 

freshwater lake in western Yunnan Province, and Qionghai Lake is the second largest freshwater lake in Sichuan 91 

Province. Dianchi, Erhai and Fuxian Lakes each has a surface area of more than 200 km2, while the other lakes have 92 

an area of less than 80 km2 each. From 2005 to 2018, the eutrophication status of Dianchi Lake was hyper eutropher, 93 

Fuxian and Lugu Lakes were oligotropher, 3 lakes (Yilong, Qilu and Xingyun Lake) were middle eutropher, and the 94 

other 5 lakes were mesotropher. The annual mean of LSWT-day of 4 lakes (Chenghai, Lugu, Yilong, and Qionghai 95 

Lakes) was higher than 20 °C, while that of LSWT-night of 2 lakes (Lugu and Caohai Lakes) was lower than 10 °C 96 

(Table A2). 97 

 98 
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Fig. 1 The location of study area. 99 

2.2 Data sources 100 

This study collected data, including lake surface water temperature (LSWT), near surface air temperature 101 

(NSAT), surface pressure (SP), surface solar radiation (SSR), total cloud cover (TCC), wind speed (WS), and Secchi 102 

depth (SD) from January 1, 2001 to December 31, 2018. Specific descriptions of the data are presented in Table A3. 103 

For this data set, LSWT values were extracted from MOD11A2 remote-sensing images, which were 8-day and 104 

1-km resolution MODIS/Terra LST level 3 synthetic products, obtained by the NASA Earth Observation System 105 

Data and Information System (EOSDIS). The Modis Reprojection Tool (MRT) resampled the data into the GeoTiff 106 

format, re-projected, created mosaics, and replaced the cloud-affected cell values with Null (Wan et al., 2017). The 107 

time distribution of missing values for remote sensing images is shown in Fig. A1. Missing pixels were filled by 108 

linear interpolation, and the average bias was found to be 1.21 � (RMSE = 2.21, R2 = 0.82). Secchi depth was 109 

derived from MOD09GA remote sensing images, which were daily and 500-m-resolution synthetic products with 110 

MODIS/Terra’s surface reflectance level-3. A long short-term memory (LSTM) network was used to derive these 111 

values with a high accuracy (Bias = 0.21 m, RMSE = 0.14, MAE = 0.11), and the method used for this is described 112 

detail in Appendix B. The data for near-surface air temperature (Bias = 1.21 �), surface pressure (Bias = 131.16 Pa), 113 

surface solar radiation (Bias = 48.28 W/m2), total cloud cover (Bias = 9.32%), and wind speed (Bias = 1.91 m/s) were 114 

obtained from the ERA-Interim dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF), 115 

and wind speed values were calculated from the u and v wind speed components (10-meter u/v-wind component), as 116 

shown in Eq. (1). Specifically, WSi is the wind speed on the ith day, while u and v are the 10-meter u/v-wind 117 

components, respectively. 118 

 WSi=�ui
2+vi

2 (1) 
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2.3 Methods 119 

2.3.1 Trend analysis method 120 

Theil-Sen slope (TSSlope) estimation is a nonparametric estimation method that was used here to estimate the 121 

change rate (CR) of time-series data. This estimation method can handle censored regression models and is 122 

insensitive to outliers. For skew and heteroscedastic data, it is more accurate than non-robust simple linear regression, 123 

even for normally distributed data, and non-robust least squares. This method has obvious advantages, especially for 124 

data with chaotic properties. The expression for the Theil-Sen slope is given in Eq. (2), where median is the median 125 

function, xi and xj are series data, ti and tj are the time points corresponding to the series data, n is the series length, 126 

and i and j are the series number (1≤i<j≤n). When TSSlope > 0, this indicates an upward trend; otherwise, it indicates a 127 

downward trend. The higher the value of |TSSlope|, the stronger the trend. 128 

 TSSlope=median(
xj-xi

tj-ti
) (2) 

In order to express the change rates of parameters in different scales, this paper uses a comprehensive change 129 

rate (CCR), which avoids the limitations of a single dimension. The comprehensive change rate was calculated as the 130 

average of the annual change rate (TSyear), the seasonal (spring, summer, autumn and winter) change rate (TSseason), 131 

and the monthly (January to December) change rate (TSmonth), as shown in Eq. (3), where mean represents the mean 132 

function and the mean comprehensive change rate (MCCR) is the average CCR of 11 lakes. For the mean 133 

comprehensive warming rate (MCWR), only the warming rates are considered and the cooling rates are excluded. 134 

 TSComprehensive=mean(TSyear+TSseason+TSmonth) (3) 

2.3.2 Contribution analysis method 135 

The ∆R2 values of multivariate regressions were used to calculate the contribution rates. A detailed description 136 

of this analysis method is presented in Appendix B (2.4 Multivariate regression analysis). ∆R2 can be used to 137 
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describe the explanatory power of a newly added independent variable to the dependent variable, as shown in Eq. (4). 138 

Here, Rbefore
2  is the R2 of the original regression model and Rafter

2  is the R2 of the regression model after adding the 139 

new independent variable. 140 

 ∆R2=Rafter
2 - Rbefore

2  (4) 

2.3.3 Correlation analysis method    141 

Pearson’s correlation coefficient is one of the metrics used to describe the relationships among the variables. 142 

This comparison method uses the covariance matrix of the data to evaluate the strength of the relationship between 143 

two vectors. Normally, the Pearson’s correlation coefficient between two variables αi and αj can be calculated as 144 

shown in Eq. (5), where cov(αi,αj) is the covariance, var(αi) is the variance of αi, and var(αj) is the variance of αj. 145 

Pearson’s correlation coefficient was also used in cross-correlation analysis (Podobnik et al., 2008).  146 

 R(αi,αj) =
cov(αi,αj)

�var(αi)×var(αj)
 (5) 

3 Results 147 

3.1 Characteristics of Lake Surface Water Temperature 148 

The LSWT of the 11 lakes showed an overall upward trend, and the warming rate of LSWT-day was higher than 149 

that of LSWT-night (as shown in Fig. 2 and Fig. A2). In LSWT-day, Lugu and Yangzonghai Lakes showed a 150 

downward trend, while in LSWT-night, Qilu, Xingyun, and Yilong Lakes showed a downward trend, among which 151 

Qilu and Yilong Lakes exhibited particularly sharp declines (as shown in Table A4). 152 

(1) Monthly Analysis 153 

From 2001 to 2018, the monthly mean LSWT-day values of Yangzonghai and Lugu Lakes showed a downward 154 

trend (CRYZHL=-0.14 �/decade, CRLGL=-0.27 �/decade) with a mean cooling rate of -0.2 °C/decade. The remaining 155 
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nine lakes showed an upward trend with a mean warming rate of 0.41 °C/decade and a mean change rate of 156 

0.3 °C/decade. The monthly mean LSWT-night in four lakes (Dianchi, Xingyun, Qilu, and Yilong Lakes) showed a 157 

downward trend (CRDCL=-0.01 �/decade, CRXYL=-0.12 �/decade, CRQLL=-0.46 �/decade, CRYLL=-0.98 �/decade) 158 

with a mean cooling rate of -0.39 �/decade. The other 7 lakes showed an upward trend with a mean warming rate of 159 

0.17 �/decade and a mean change rate of -0.03 �/decade. In LSWT-day, all lakes showed a downward trend from 160 

December to April and an upward trend in the other months (from May to November). In LSWT-night, 11 lakes 161 

showed an upward trend in May and September to October, and a downward trend in the other months of the year 162 

(January to April, June to August, and November to December). 163 

(2) Seasonal analysis 164 

From 2001 to 2018, the mean LSWT-day in 2 lakes (Yangzonghai and Lugu Lakes) decreased 165 

(CRYZHL=-0.03 �/decade, CRLGL=-0.25 �/decade) and the mean cooling rate was -0.14 �/decade. The mean 166 

warming rate in the other lakes (9 lakes) was 0.44 �/decade and the mean change rate was 0.34 �/decade. The mean 167 

LSWT-night in 3 lakes (Xingyun, Qilu, and Yilong Lakes) decreased (CRXYL=-0.06 �/decade, 168 

CRQLL=-0.26 �/decade, CRYLL=-0.89 �/decade) with a mean cooling rate of -0.4 �/decade, while the other lakes (8 169 

lakes) showed an upward trend with a mean warming rate of 0.28 �/decade and a mean change rate of 170 

0.09 �/decade. 171 

In the spring, the mean LSWT-day of four lakes (Yangzonghai, Lugu, Qionghai, and Caohai Lakes) showed a 172 

downward trend (CRYZL=-0.84 �/decade, CRLGL=-1.27 �/decade, CRQHL=-0.1 �/decade, CRCAHL=-0.65 �/decade), 173 

while the other 7 lakes showed an upward trend with a mean warming rate of 0.64 �/decade, mean cooling rate of 174 

-0.71 �/decade, and mean change rate of 0.15 �/decade. The mean seasonal LSWT-day of 2 lakes (Erhai and Lugu 175 

Lakes) showed a downward trend (CREHL=-0.53 �/decade, CRLGL=-0.62 �/decade), while the other 9 lakes showed 176 

an upward trend with a mean warming rate of 0.9 �/decade. The mean cooling rate was -0.58 �/decade, and the 177 
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mean rate of change was 0.63 �/decade. In autumn, these lakes all showed an upward trend in LSWT-day, with a 178 

mean warming rate of 0.7 �/decade; in winter, the LSWT-day of four lakes (Fuxian, Qilu, Yilong, and Caohai Lakes) 179 

showed an upward trend (CRFXL=0.08 �/decade, CRQLL=0.28 �/decade, CRYLL=0.06 �/decade, 180 

CRCAHL=0.34 �/decade). The other 7 lakes showed a downward trend, with a mean warming rate of 0.19 �/decade, 181 

a mean cooling rate of -0.3 �/decade, and a mean change rate of -0.12 �/decade. 182 

The mean LSWT-night in spring of 2 lakes (Qilu and Yilong Lakes) showed a downward trend 183 

(CRQLL=-0.51 �/decade, CRYLL=-0.62 �/decade), while the other lakes (9 lakes) showed an upward trend, with a 184 

mean warming rate of 0.17 �/decade, a mean cooling rate of -0.39 �/decade, and a mean change rate of 185 

0.35 �/decade. The mean LSWT-night in summer of 4 lakes (Yangzonghai, Erhai, Lugu, and Caohai Lakes) showed 186 

an upward trend (CRYZHL=0.07 �/decade, CREHL=0.05 �/decade, CRLGL=0.2 �/decade, CRCAHL=0.37 �/decade), 187 

while the other 7 lakes showed a downward trend, with a mean warming rate of 0.17 �/decade, a mean cooling rate 188 

of -0.52 �/decade, and a mean change rate of -0.27 �/decade. The seasonal mean LSWT-night of 2 lakes (Yilong 189 

and Qionghai Lakes) showed a downward trend in autumn (CRYLL=-0.49 �/decade, CRQHL=-0.19 �/decade), while 190 

the other nine lakes showed an upward trend, with a mean warming rate of 0.5 �/decade. The mean cooling rate was 191 

-0.34 �/decade and the mean change rate was 0.35 �/decade. The seasonal mean LSWT-night of five lakes (Dianchi, 192 

Xingyun, Qilu, Yilong, and Qionghai Lakes) in winter showed a downward trend (CRDCL=-0.02 �/decade, 193 

CRXYL=-0.09 �/decade, CRQLL=-0.58 �/decade, CRYLL=-1.05 �/decade, CRQHL=-0.08 �/decade), while the other 194 

six lakes showed an upward trend. The mean warming rate was 0.19 �/decade, the mean cooling rate was 195 

-0.36 �/decade, and the mean change rate was -0.06 �/decade. 196 

(3) Annual analysis 197 

The annual mean LSWT-day in Lugu Lake showed a downward trend (CRLGL=-0.02 �/decade). The mean 198 

warming rate of the other lakes was 0.46 �/decade, and the mean change rate was 0.41 �/decade. The annual mean 199 
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LSWT-night in 2 lakes (Qilu and Yilong Lakes) showed a downward trend (CRQLL=-0.27 �/decade, 200 

CRYLL =-0.61 �/decade) with a mean cooling rate of -0.44 �/decade. The other lakes showed an upward trend, with 201 

a mean warming rate of 0.24 �/decade and a mean change rate of 0.12 �/decade. 202 

(4) Comprehensive change rate analysis 203 

The comprehensive change rate of LSWT-day in 2 lakes (Yangzonghai and Lugu Lakes) showed a downward 204 

trend (CRYZHL=-0.1 �/decade, CRLGL=-0.25 �/decade) with a mean cooling rate of -0.17 �/decade. The other lakes 205 

showed an upward trend with a mean warming rate of 0.42 �/decade. The mean change rate was 0.31 �/decade. The 206 

comprehensive change rate of LSWT-night in 3 lakes (Xingyun, Qilu, and Yilong Lakes) showed a downward trend 207 

(CRXYL=-0.1 �/decade, CRQLL=-0.4 �/decade, CRYLL=-0.94 �/decade) with a mean cooling rate of -0.48 �/decade, 208 

while the other lakes showed an upward trend with a mean warming rate of 0.19 �/decade. The mean change rate 209 

was 0.01 �/decade. 210 

 211 
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Fig. 2 LSWT-day/night trend for 11 lakes. The comprehensive change rate was represented by marks (circles and 212 

triangles) size, and the trend was represented by different colors. 213 

3.2 Correlation and contribution rate 214 

3.2.1 Correlation analysis  215 

The Pearson’s correlation coefficient analysis results for six factors for each lake and the monthly mean 216 

LSWT-day/night are shown in Fig. 3. For the 11 lakes, the correlation between NSAT and LSWT was the highest 217 

(RNSAT-day=0.83, RNSAT-night=0.81), followed by that between SSR and TCC (RSSR-day=0.46, RTCC-day=0.54, 218 

RSSR-night=0.66, RTCC-night=0.38). SD was the lowest (RSD-day=-0.017, RSD-night=0.026), while SP and WS were 219 

negatively correlated (RSP-day=-0.46, RWS-day=-0.19, RSP-night=-0.32, RWS-night=-0.19). 220 

According to the analysis for each lake, the factors with Pearson’s correlation coefficients higher than 0.6 were 221 

considered as high correlation factors (as shown in Table A5). For LSWT-day, the most highly correlated factors of 222 

Yilong and Caohai Lakes were found to be SP, SSR, and NSAT; for Xingyun and Yangzonghai Lakes, SP and 223 

NSAT; for Qilu Lake, NSAT; for Lugu Lake, SSR; and for the other five lakes (Dianchi, Fuxian, Erhai, Chenghai, 224 

and Qionghai Lakes) the high correlation factors were found to be NSAT and TCC. For LSWT-night, the high 225 

correlation factors of Yilong Lake were SP, SSR and NSAT, those of Fuxian and Chenghai Lakes were NSAT, those 226 

of Erhai Lake were NSAT and TCC, and those of the other 7 lakes (Dianchi, Xingyun, Qilu, Yangzonghai, Lugu, 227 

Qionghai, and Caohai Lakes) were SSR and NSAT. 228 

Of the correlations between different factors and LSWT-day (as shown in Fig. A3(a) ~ (f)), those of SP and 229 

TCC were lower, but relatively higher in summer; those of SSR and NSAT were higher, especially in winter, but 230 

lower in summer and autumn; those of SDs in all four seasons were close, slightly higher in winter, and relatively 231 

lower in spring and summer; that of WS was lower in summer, but higher in other seasons. 232 
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In terms of the correlations between different factors and LSWT-night (as shown in Fig. A3(g) ~ (l)), the four 233 

seasons resulted in clear changes, except for SD and WS. The correlation with SD in spring was lower, but higher in 234 

autumn and winter. The correlation with WS was higher in spring, but the correlation values in other seasons were 235 

close. In autumn, SP showed an opposite correlation compared to the other seasons, that is, higher in autumn and 236 

lower in other seasons. The correlation coefficients of SSR were closer in autumn and winter, as were those in spring 237 

and summer. The correlation with NSAT was higher in winter, lower in summer, and close in spring and autumn. 238 

The correlation coefficients of TCC were close in summer and winter, but higher in autumn. 239 

Cross-correlation analysis results are shown in Table A6, and all factors were found to be statistically 240 

significant (α<0.05) except SD. In general, TCC exhibited a first-order lag, SSR and SP for LSWT-day exhibited 241 

first-order lead, SSR exhibited 5th-order lag for LSWT-night, and WD exhibited 2nd-order lag (for LSWT-day) and 242 

8th-order lag (for LSWT-night). The different factors almost maintained the same time-lag at different scales. It is 243 

necessary to mention that SP exhibited a different time-lag in each lake type. In terms of LSWT-day, the natural 244 

lakes (Yang et al., 2019) were different from the other types. Urban and semi-urban lakes (Yang et al., 2019) 245 

exhibited 5th-order lag, while natural lakes exhibited 1st-order lead. For LSWT-night, semi-urban and natural lakes 246 

were close, with 5th/4th-order lag respectively, while urban lakes showed 2nd-order lead. The trend in the 247 

cross-correlation coefficients was almost same as that in the Pearson’s coefficients, but the values were higher.  248 

 249 

Fig. 3 The Pearson’s correlation coefficient analysis results for six factors of each lake with monthly mean 250 

LSWT-day/night. 251 
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3.2.2 Contribution rate analysis 252 

The overall contribution rates of each factor to LSWT-day/night are shown in Fig. 4. The multiple linear 253 

regression equations are shown in Table A7 (Eq. (A1) ~ (A2)). 254 

In these equations, LSWTday and LSWTnight represent LSWT-day and LSWT-night, respectively. Two equations 255 

can express the contributions of six variables to LSWT-day/night, which were 61.94% and 64.40%, respectively; the 256 

remaining 38.06% and 35.60% contributions are attributed to other factors. For LSWT-day, NSAT, SSR, and TCC 257 

contributed 42.79%; for LSWT-night, NSAT and SSR contributed 44.34%; for LSWT-day and LSWT-night, NSAT 258 

contributed the most (ConRday =18.50 %, ConRnight = 30.41%), followed by SSR (ConRday =11.74 %, ConRnight 259 

=13.93 %), while WS contributed the least (ConRday =6.11 %, ConRnight = 0.00%). 260 

The mean contribution rates of the six factors to LSWT-day/night were found to be 81.02% and 75.96%, 261 

respectively, and that of NSAT was the highest (ConRday = 34.85%, ConRnight = 32.77%); SSR and TCC exhibited 262 

the second highest rates (ConRSSR-day=13.62%, ConRSSR-night=21.88%, ConRTCC-day=16.05%, ConRTCC-night=8.84%); 263 

that of SD was the lowest (ConRday = 0.19%, ConRnight = 0.17%). For LSWT-day, NSAT, TCC, SSR and SP were the 264 

main impact factors (ConRday = 76.16%). For LSWT-night, NSAT and SSR were the main impact factors (ConRday = 265 

54.65%). For all 11 lakes, the contribution rates of each factor to LSWT-day/night were different, as shown in Table 266 

A8. The variables with contribution rates higher than 10% were regarded as the main impact factors. 267 

 268 

Fig. 4 The overall contribution rate of six factors to LSWT-day/night for 11 lakes. 269 
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4 Discussion 270 

From 2001 to 2018, the LSWT-day/night values of most lakes showed a warming trend. The mean 271 

comprehensive change rate of LSWT-day was 0.31 �/decade, which is approaching global lake warming rates 272 

(O'Reilly., 2015). The mean comprehensive change rate of LSWT-night was 0.01 �/decade, the mean 273 

comprehensive change rate of NSAT was 0.25 �/decade, and the mean comprehensive change rates of NSAT and 274 

LSWT-day were relatively close. The rising trend of LSWT-day in the 11 naturally formed lakes was consistent with 275 

that observed in most lakes in the world (O'Reilly et al., 2015). The governance plan for urbanization expansion put 276 

forward by the government had a certain impact on LSWT changes in the watershed. The average altitude of the 277 

Yunnan-Guizhou Plateau is about 1881 m, and the solar radiation in the east is lower than that in the west. The 278 

distribution of solar radiation is relatively uniform in each month of the year. The population distribution is relatively 279 

concentrated in the low-altitude areas of central and southeast Yunnan. With serious urbanization and expansion, the 280 

number of impervious surfaces increased, resulting in increased runoff temperature. The influence of human 281 

activities had caused changes in the regional land surface temperature, humidity, air convection, and other factors 282 

related to urban surface area, resulting in urban heat island and rain island effects (Lawrence., 1971; Jáuregui & 283 

Romales., 1996; Adamowski & Prokoph., 2013), which in turn affected the LSWT. Furthermore, in the past thirty 284 

years, the total area of lakes in the Yunnan-Guizhou Plateau showed a trend of rising first and then falling, which was 285 

mainly attributed to the four-year lingering drought and man-made damage to the lake environment from 2009 to 286 

2012 (Xiao et al., 2018). The main reason for the decrease in lake area was urban expansion, and lake shrinkage 287 

would also cause the LSWT rise. The spatial heterogeneity of the LSWT changes was related to lake morphology 288 

parameters (Woolway & Merchant, 2017, 2018) and human activities (Yang et al., 2019).  289 
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4.1 Lake surface water temperature variation characteristics of Different lake types  290 

In previous studies (Yang et al., 2019), the 11 lakes considered here were divided into three types: urban lakes 291 

(Dianchi and Qilu Lakes), semi-urban lakes (Erhai, Yilong, Qionghai, Yangzonghai, and Caohai Lakes) and natural 292 

lakes (Fuxian, Xingyun, Lugu, and Chenghai Lakes). On this basis, LSWT-day/night change trends in different lake 293 

types were analyzed (as shown in Fig. 5). For LSWT-day, all the three lake types exhibited rising values, the 294 

comprehensive warming rate of urban lakes was higher than that of the others, and the warming rates of semi-urban 295 

and natural lakes were almost the same (CRUL=0.58 �/decade, CRSUL=0.25 �/decade, CRNL=0.26 �/decade). For 296 

LSWT-night, urban and semi-urban lakes showed a cooling trend, while natural lakes showed a warming trend 297 

(CRUL=-0.19 �/decade, CRSUL=-0.0039 �/decade, CRNL=0.12 �/decade), and the cooling rates of Qilu and Yilong 298 

Lakes were higher (CRQLL=-0.4 �/decade, CRYLL =-0.94 �/decade). Apart from these lakes (Qilu and Yilong Lakes), 299 

urban and semi-urban lakes showed warming trends (CRUL=0.03 �/decade, CRSUL=0.23 �/decade). 300 

Considering the correlations between each factor and LSWT-day, the seasonal differences in SP and NSAT 301 

were small, while the values for urban and semi-urban lakes were higher than those of natural lakes. The SD of 302 

natural lakes was higher than that of the other lakes, and the WS of semi-urban lakes was higher, especially in the 303 

winter. SSR and TCC changed greatly with the season. The SSR was higher in spring and winter for natural lakes, 304 

while summer and autumn showed higher values for urban and semi-urban lakes. For TCC, semi-urban lakes were 305 

higher in spring, natural lakes were higher in summer, urban and semi-urban lakes were higher in winter, and TCC 306 

showed little variation in autumn. SP and NSAT were closely related to the urban heat island effect (Adamowski & 307 

Prokoph., 2013) and were greatly affected by human activities, so natural lakes showed lower values than the other 308 

lakes. The SD of the natural lakes was higher, and the fluctuation range was larger than that of the other lakes, so the 309 

correlation coefficients of SD for urban and semi-urban lakes were lower. Most of the semi-urban lakes were located 310 

in the southern part of the Yunnan-Guizhou Plateau, which is the low-altitude region. WS was affected by terrain and 311 
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climate, and values were smaller (Fan & Thomas., 2013). With dense cities, WS and LSWT were more affected by 312 

human activities, so the correlation was higher than for the other areas. TCC was closely related to the rain island 313 

effect (Lawrence., 1971; Jáuregui & Romales., 1996). In winter, urban heat emissions were higher than in other areas, 314 

so the natural lakes exhibited lower values. 315 

In LSWT-night, there were little seasonal differences for SP and SD. SP was higher in natural lakes, SD was 316 

higher in urban and semi-urban lakes, and SSR was higher in natural and urban lakes. NSAT was higher in the 317 

natural lakes, WS in summer was higher in natural and urban lakes, and changed little in the other lakes, while WS 318 

was relatively higher in the natural lakes. TCC changed more. In spring and summer, urban and semi-urban lakes 319 

exhibited higher TCC, autumn was gentle, and in winter TCC was higher for natural lakes. The intensity of human 320 

activity is greatly reduced at night, but still remains much higher in the urban areas than in other areas (Cao et al., 321 

2009), especially in summer and autumn; therefore, urban and semi-urban lakes were more affected by human 322 

activities. NSAT was more sensitive to human activities than LSWT (Ye et al., 2013). The correlation between 323 

LSWT-night and NSAT (urban and semi-urban lakes) was lower than for natural lakes, and the influence of human 324 

activities at night cannot be ruled out. NSAT in non-urban areas at night was affected by fewer other factors, so the 325 

correlation coefficient for natural lakes was higher. 326 



18 
 

 327 

Fig. 5 The Pearson’s correlation coefficient analysis results for six factors of each lake type with seasonal mean 328 

LSWT-day/night. 329 

In terms of the contribution of each factor to the LSWT of different lake types, the regression equations are 330 

shown in Table A7 (Eq. (A3) ~ (A8)), and the contribution rates are shown in Table A9. The overall contribution of 331 

the six factors for the three lake types was higher than 60%, while the urban lakes exhibited the highest values 332 

(ConRall-day=83.60%, ConRall-night=78.49%). For urban and semi-urban lakes, the main factors affecting LSWT-day 333 

were found to be SSR, NSAT, and TCC, of which NSAT was the most important impact factor (ConRUL=43.49%, 334 

ConRSUL=38.12%). SSR and NSAT were found to be the main factors affecting LSWT-night, with contributions 335 

reaching 65.95% and 56.52%, respectively. For natural lakes, the impact of the six factors on LSWT-day was small. 336 

The main contributing factors were SP, SSR, TCC, and SD. The contribution rate of the main factors was 52.18%. 337 

SP, NSAT, and SD were determined to be the main factors affecting LSWT-day, with a contribution rate of 64.56%. 338 

Schmid & Koster (2016) showed evidence that SSR and NSAT were the main influencing factors of LSWT, and that 339 
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the contribution rate of SSR was ~60%, while that of NSAT was ~40%. These results are slightly different from ours. 340 

The above results show that the driving factors and their contributions are not the same for different types of lakes, 341 

which might be related to the intensity of human activity and the distribution of differences in lake morphology. 342 

4.2 Lake surface water temperature variation characteristics with different morphological 343 

Becker & Daw (2005) and Woolway & Merchant (2017, 2018) showed that the morphological characteristics 344 

of lakes had a significant impact on LSWT, and the main influencing factors included lake area, depth, and storage. 345 

In this paper, the 11 lakes were divided into three types by K-Means clustering with these factors, as shown in Table 346 

A10. The areas of Fuxian, Dianchi, and Erhai Lakes are all greater than 200 km2, while the areas of the other lakes 347 

were within 25~80 km2. The storage and depth of Fuxian Lake are the highest of the 11 lakes. Dianchi and Erhai 348 

Lakes are close to the urban area. In LSWT-day, Dianchi, Erhai, and Fuxian Lakes were mainly affected by NSAT, 349 

TCC, and WS, while NSAT and TCC had particularly high contribution rates (ConRNSAT2=28.57%, 350 

ConRNSAT3=37.20%, ConRTCC2=23.30%, ConRTCC3=26.91%), while other lakes were mainly affected by SP, SSR, 351 

NSAT, and TCC, of which NSAT had the highest contribution rate (ConRNSAT1=35.06%). In LSWT-night, Dianchi, 352 

Erhai, and Fuxian Lake were mainly affected by SSR and NSAT. Under the impact of TCC, NSAT had a high 353 

contribution rate (ConRNSAT2=27.05%, ConRNSAT3=38.13%), while other lakes were mainly affected by SSR and 354 

NSAT, with a contribution rate of 56.02%. Even if the attributes of the lakes were different, NSAT was still the most 355 

important factor affecting LSWT, and SSR was the second main factor. In the small, shallow, and low-storage lakes, 356 

LSWT-day was more affected by SP and SSR. For large lakes (Fuxian, Dianchi, and Erhai Lakes), WS had a greater 357 

impact on LSWT-day/night. 358 

In summary, considering the dual impact of human activities and climate change, urban and semi-urban lakes 359 

more strongly influenced by human activities were more affected by SSR and NSAT. And the contributions of the 360 
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six factors were higher in these two lake types, indicating that the urban heat island effect caused by the expansion of 361 

impervious surface area and the increase in surface runoff temperature in the areas with more human activities 362 

resulted in higher LSWT warming rates. For LSWT-day, TCC was also a factor with great influence. More 363 

cloud-enhanced atmospheric counter radiation and atmospheric insulation enabled NSAT to stay in a higher state. 364 

For natural lakes, SP and SD were both important factors for LSWT. SD can directly reflect the water quality of a 365 

lake and indirectly reflect the changes in lake water quality caused by human activities. The impact of NSAT on 366 

LSWT-day was smaller, which indicates that lakes were more sensitive to natural factors in the case of less point 367 

source pollution and a lake less affected by human activities. Moreover, the higher contribution rate of SD also 368 

reflected the fact that lakes were more affected by humans.  369 

5 Conclusion 370 

Based on the dataset of LSWT-day/night, SP, SSR, NSAT, TCC, WS, and SD, this paper analyzed the 371 

LSWT-day/night values of the 11 major naturally formed lakes in the Yunnan-Guizhou Plateau from January 1, 2001 372 

to December 31, 2018, explored the main driving factors affecting the change of LSWT-day/night, and quantified the 373 

impact degree of each factor. The characteristics of and relationships between the factors affecting LSWT in lakes of 374 

different types and attributes were revealed, which will provide new insight for further research into lake 375 

environments. 376 

(1) In the past 18 years, the LSWT-day/night values of all 11 lakes showed a warming trend, and LSWT-day 377 

was higher than LSWT-night. In terms of LSWT-day, nine lakes exhibited rising temperatures with a mean 378 

comprehensive warming rate of 0.42 �/decade, while Yangzonghai and Lugu Lakes showed downward trends. In 379 

LSWT-night, 8 lakes showed upward trends, with a mean comprehensive warming rate of 0.19 �/decade, while 380 

Xingyun, Qilu, and Yilong Lakes showed decreasing trends. 381 
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(2) The results of correlation analysis showed that NSAT and LSWT day/night had the strongest correlation for 382 

all the 11 lakes (RNSAT-day=0.83, RNSAT-night=0.81), while the correlations between TCC and LSWT-day and SSR and 383 

LSWT-night were the second largest (RTCC-day=0.54, RSSR-night=0.66). Correlation analysis for each lake showed that 384 

NSAT and LSWT-day were the most strongly correlated, while SSR and SP were the second most strongly 385 

correlated pair. On the seasonal scale, the correlations between NSAT and LSWT-day were constant over each of the 386 

four seasons, while the correlations between NSAT and LSWT-night, SSR and LSWT-day/night varied greatly.  387 

(3) Contribution rate analysis showed that NSAT and SSR were the most important factors affecting 388 

LSWT-day/night, and their contribution rates reached 30.24% and 44.34%, respectively. The LSWT-day values of 389 

smaller, shallower, and lower-storage lakes were more affected by SP and SSR. For larger lakes, the LSWT-day 390 

values were more affected by WS; the LSWT-night values were more affected by TCC. The influence of SSR and 391 

NSAT in urban and semi-urban lakes was more serious, which indicates that the urban heat island effect caused by 392 

the expansion of impervious surfaces and increases in runoff surface temperature in areas with higher degrees of 393 

human activity are responsible for higher LSWT warming rates. For natural lakes, the decrease in SD was important 394 

to the increase in LSWT, which indirectly suggests that the impact of human activities on the water quality of lakes 395 

has caused the LSWT to warm. 396 
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Appendix A. Supplementary chart 402 

Supplementary chart related to this paper can be found at 403 

https://pan.baidu.com/s/1pTr4qN78V-rTnwmrWV5TQg (Extract code: g3u0). 404 

Appendix B. Supplementary method description 405 

Supplementary method description of Secchi depth inversion related to this paper can be found at 406 

https://pan.baidu.com/s/1Dmxx95UYU-Qeu6vmVp9asg (Extract code: 9sw2). 407 
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Highlights:  

� The heterogeneity of LSWT warming of 11 major plateau lakes were discussed  

� 6 main factors impact on LSWT were analyzed quantitively 

� LSWT changing heterogeneity was revealed from lake type and morphometry perspective 
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