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A B S T R A C T

Climate change, which impacts the spatial and temporal distribution of water resources, has a significant in-
fluence on the future hydropower generation. Studying the future evolution pattern of hydropower generation
under climate change is of great significance for the medium- and long-term hydropower prediction. The ob-
jective of this paper is to predict the future hydropower generation of large-scale reservoir groups under climate
change. The innovation of this paper is that the macro-scale distributed hydrological model combined with the
optimal operation model of large-scale reservoirs was proposed for hydropower generation prediction. The es-
tablished model considers the specific operation processes of large-scale reservoir groups, including 62 reservoirs
in the case study. First, the Statistical Downscaling Model (SDSM) was built, and the evolution trend of future
rainfall and temperature was predicted. Second, the macro-scale distributed Variable Infiltration Capacity (VIC)
model was built to predict the future runoff. Finally, the optimal operation generation model of large-scale
reservoir groups was established to predict the trends of hydropower generation under climate change. Results
demonstrate that under RCP2.6 scenario, there is no significant increase or decrease trend of hydropower
generation in the future. But under RCP4.5 and RCP8.5 scenarios, the hydropower generation shows a growing
trend, and the increase trend under RCP8.5 scenario is more obvious than that under RCP4.5 scenario. Thus, the
development of hydropower generation is sensitive to climate change. This study can provide a reference for the
long-term prediction of hydropower generation capacity in the upper Yangtze River Basin.

1. Introduction

Hydropower generation plays an irreplaceable role in modern
power system (Feng et al., 2017; Chen et al., 2016; Shi et al., 2019;
Chen et al., 2020). In 2015, China's hydropower installed capacity ex-
ceeded 300, 000 MW (Li et al., 2018). Active development of hydro-
power is an important way to ensure China's energy supply and pro-
mote low-carbon emission reduction (Chen et al., 2013; Chang et al.,
2010). However, climate change directly affects the meteorological
factors such as temperature, rainfall, and evaporation, and indirectly
affects other factors such as soil moisture content and runoff, etc.,
which results in the redistribution of water resources in time and space
and the increase or decrease of the total water resources (Chen et al.,
2010; Huntington, 2006; Shi and Wang, 2015). Further, climate change
has a profound impact on the hydropower generation capacity of basins
(Fan et al., 2018). Therefore, it is of great significance to predict runoff

and hydropower generation under climate change. The existing
methods for predicting the future runoff can be divided into statistical
and data driven approaches and physically based approaches
(Solomatine et al., 2007; Chen et al., 2014a; Nourani et al., 2014). The
former methods mainly include classical regression analysis, back
propagation neural network, nonlinear time series analysis and fuzzy
mathematical mothed, etc., which forecasts future runoff by estab-
lishing the statistical relationship between weather and runoff data
(Chen et al., 2018; Chu et al., 2016; Chen et al., 2014b). The physically
based approaches are based on the hydrological model to simulate the
relationship between rainfall and runoff and deduce the evolution trend
of runoff through the future rainfall. Those methods have certain
physical mechanisms, because they take into accounts the character-
istics of atmospheric circulation, basin runoff generation and con-
fluence, which are now praised by the academia (Nilawar and Waikar,
2019; Liu et al., 2015a; Chen et al., 2012).
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Experts and scholars have conducted a series of studies on the
prediction of hydropower generation under climate change based on
these runoff prediction results. Some scholars have carried out the
prediction of hydropower generation under climate change based on
empirical models such as simplified reservoir regulations and regression
models (van Vliet et al., 2016; Zhou et al., 2015; Liu et al., 2016; Kao
et al., 2015). For example, Liu et al. (2016) predicted the future runoff,
and estimated developed hydropower potential (DHP) under climate
change based on a kind of reservoir regulation rules. Kao et al. (2015)
built a regression model between runoff and hydropower generation to
predict the future hydropower generation. Although these studies have
considered the impact of climate change, they did not consider the
specific process of reservoir operation. In fact, the hydropower gen-
eration capacity is not only related to input factors such as hydro-
meteorology information, but also depends on the basic characteristics
of hydropower stations (Madani et al., 2014). Considering the reservoir
operation process, the hydropower generation process may be simu-
lated more precisely (Qin et al., 2020). Some scholars have predicted
the hydropower generation of single reservoir considering the specific
reservoir operation process under climate change (Qin et al., 2020;
Yang et al., 2015; Raje and Mujumdar, 2010). Raje and Mujumdar
(2010) studied the response of reservoir hydropower generation under
climate change for India's Hirakud reservoir. Yang et al. (2015) pre-
dicted the hydropower generation and water supply of Danjiangkou
Reservoir under climate change by an adaptive multi-objective opera-
tion model. However, these studies only took into accounts the specific
operation process of a single reservoir.
Since the hydropower prediction is a type of dynamic, time-delay

and nonlinear modeling problem, especially with the rapid increase of
the number of hydropower stations. When establishing the optimal
operation model of large-scale reservoirs, there is a problem of the
“cruse of dimensionality” (Zhou et al., 2018). Moreover, since the in-
telligent algorithm can’t solve the local convergence problem, it is
difficult to establish a mathematical model for predicting the large-scale
reservoirs hydropower generation considering climate change and the
characteristics of reservoirs (Liu et al., 2015b; Afshar, 2013; Moreno,
2009; Li et al., 2014a). In order to alleviate the influence of “cruse of
dimensionality” and simplify the modeling process, the existing hy-
dropower generation capacity prediction methods mainly focus on the
improved DP algorithms, such as the discrete differential dynamic
programming (DDDP) and the progressive optimality algorithm (POA)
(Cheng et al., 2014; Howson and Sancho, 1975). The decomposition-
coordination (DC) is also an effective approach for the optimal opera-
tion of large-scale reservoir groups, which can decompose a large
system into many subsystems and reduce the difficulty of single system
optimal operation (Cohen, 1978; Li et al., 2014b). However, the hy-
dropower generation prediction considering climate change and the
specific operation processes of large-scale reservoirs still needs to be
further studied.
The objective of this paper is to propose a future hydropower gen-

eration prediction method for large-scale reservoirs considering climate
change and specific reservoir operation processes. The innovation of
this paper is summarized as follows. The runoff prediction based on
macro-scale distributed hydrological model combined with the optimal
operation model of large-scale reservoirs was proposed to predict the
future hydropower generation under climate change. Second, the
macro-scale distributed VIC hydrological model of the whole upper
Yangtze River Basin with an area of one million square kilometers was
first established. Third, the optimal operation model of large-scale re-
servoir groups including 62 reservoirs was built. The proposed method
overcomes the limitation that the current generation prediction
methods did not consider the specific operation process or only con-
sider the operation processes of single reservoir.
The main framework of the study is as follows. First, the data of the

General Circulation Models (GCMs) under different Representative
Concentration Pathways (RCPs) emission scenarios was used in this

paper, and the statistical downscaling model was employed for down-
scaling the data of GCMs and predicting the future evolution trend of
rainfall and temperature. Second, the macro-scale distributed VIC hy-
drological model was established to simulate the response of future
runoff to climate change. Third, the optimal operation model of large-
scale reservoir groups in the upper Yangtze River Basin was established.
And based on the simulated runoff data, the trends of future hydro-
power generation in the basin under RCP2.6, RCP4.5 and RCP8.5
emission scenarios were predicted.

2. Methodologies

2.1. Future rainfall and temperature prediction

General Circulation Models can provide reliable long-term future
climate data according to atmospheric circulation mechanism. The fifth
phase of Coupled Model Intercomparison Project(CMIP5) collected the
results of nearly 60 climate models from 23 climate model groups
worldwide (Klausmeyer and Shaw, 2009). In this paper, the second
generation Canadian Earth System Model (CanESM2) developed by
Canadian Centre for climate Modeling and Analysis was selected, and
its future climate simulation results under three emission scenarios,
namely RCP2.6, RCP4.5, and RCP8.5 were obtained. Studies show that
the CanESM2 model can well simulate climate change in China (Zhang
et al., 2016; Birkinshaw et al., 2017; Chen and Frauenfeld, 2014). Be-
cause the GCMs are large-scale models, it is necessary to be downscaled
to characterize the atmospheric motion laws at small and medium
scales. Downscaling methods can be divided into two categories,
namely statistical downscaling and dynamical downscaling (Wood
et al., 2004; Zorita and von Storch, 1999). Since the dynamical down-
scaling method is complex, the statistical downscaling method was
widely used in hydrology, because of easier construction, less calcula-
tion work and more flexible form (Charles et al., 1999). The SDSM
model was selected to downscale the CanESM2 model, in order to
transform the large-scale atmospheric motion information into climate
information of the study area in this paper.

2.1.1. The principle of the statistical downscaling model
The principle of SDSM model is establishment of the statistical re-

lationship between GCM-derived predictor variables (such as atmo-
spheric pressure, humidity and wind speed) and the weather variables
of the study area (such as daily maximum temperature, daily minimum
temperature and daily rainfall) based on multiple regression analysis
method. Then, the GCM-derived predictor variables were taken as in-
puts of the SDSM model to generate future temperature and rainfall
sequences of the study area.
The core of SDSM model is to establish the statistical relationship

model between the predictor variable (S) and the weather variable (X),
whose equation is given by

=X F S( ) (1)

where F is the statistical relationship between the large-scale pre-
dictor variable set S and the local weather variable X. The performance
of the SDSM model can be evaluated by the determination coefficient,
which is given by
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where X iobs, and X isim, are the observed and predicted values of
output variable at time i; T is the length of the period; and X̄obs and X̄sim
are the mean observed and predicted values of the output variable.
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2.1.2. Screening of predictor variables of SDSM model
The screening of predictor variables is very important for the suc-

cessful construction of SDSM model. Selecting the predictor variables
with higher correlations with weather variables can help improve the
accuracy of simulation. Daily maximum temperature, daily minimum
temperature and daily rainfall were chosen as the weather variables.
Table 1 gives the predictor variables to be screened and their physical
meanings.
Historical data of 26 predictor variables from the National Centers

for Environmental Prediction (NCEP) and historical weather variables
data of the study area can be used as inputs to the SDSM model. The
“Screen Variables” module of the SDSM model was employed to screen
appropriate predictor variables. Based on this module, the statistical
relationship between predictor variables and weather variables can be
established. Then, users can select the appropriate predictor variables
based on the correlation analysis between each predictor variable and
weather variable, and the correlation measuring methods mainly in-
clude partial correlation analysis, seasonal correlation analysis and
scatterplots.
And there are several optimization principles need to be noted in the

process of selection. First, the predictor variables should be able to
reflect the physical mechanism of the change of weather variables.
Second, the results of correlation analysis between them should be
good. Third, the selected predictors should be independent or weakly
correlated. Last, the predictor variables should be common to GCMs
data and NCEP data (Wilby et al., 1998).

2.1.3. Future weather variables prediction
During this section, the future daily rainfall and daily temperature

were simulated according to the established multiple linear regression
model between predictor variables and weather variables. For the si-
mulation of daily rainfall, it can be divided into two parts: the simu-
lation of rainfall incidence, and the simulation of precipitation. The
regression equation of rainfall probability is as follows (Wilby et al.,
1999):

= + +
=

O s Ot
i

n

i i t t0
1

1 1
(3)

where Ot 1 andOt are rainfall probabilities at day t-1 and t; 0 and i
are parameters estimated using linear least squares regression; si is
predictor variable i; t 1 is the regression parameter of day t-1. Whether
rainfall occurs is determined by a random number lt between 0 and 1
that obeys the uniform distribution. If Ot is greater thanlt, there will be
rainfall in day t.
For the value of precipitation, the equation is given by (Wilby et al.,

1999)

= + +
=
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where Ut is the precipitation value of day t; fexp is the empirical
distribution function of precipitation value at day t; is the normal
cumulative distribution function; 0 and i are parameters estimated
using linear least squares regression; is random or modelling error.
For the temperature simulation, it is not necessary to simulate the

possibility of occurrence, but only to simulate the random change of
temperature value, whose calculation is similar to precipitation
(Srikanthan and McMahon, 2001). After the calibration of the SDSM
model, the GCMs data under different RCPs emission scenarios in the
future are used as the inputs to the “Scenario Generator” module of the
SDSM model. The future weather variables data under different RCPs
emission scenarios can be generated.

2.2. Rainfall-runoff simulation based on the VIC hydrological model

In this study, the VIC hydrological model was used to simulate the
future runoff. This model is a macro-scale distributed hydrological
model, which is generally applied to basins with an area of tens of
thousands of square kilometers. The VIC model can simulate vegetation
transpiration, soil evaporation, canopy evaporation, snow accumula-
tion and ablation, soil freeze–thaw, etc. Thus, it comprehensively
characterizes the transfer paths and processes of various water bodies.
The main modules of the VIC model include evapotranspiration, runoff
generation and runoff confluence. The model transfers the whole basin
into many grids, calculates the runoff generation, and then converts the
output data of each grid into the flow process of the outlet section of the
basin through the ‘Confluence Module’. The input files of the VIC model
include soil data, vegetation data, meteorological forcing data, flow
direction data, basin characteristics data and global parameter files etc.
Parameters of the VIC model which need to be calibrated are shown in
Table 2. After model calibration, the future weather data predicted by
the SDSM model was used as inputs to the VIC hydrological model to
simulate the future runoff.

Table 1
26 predictor variables and their physical meanings.

Predictor variables Physical meanings Predictor variables Physical meanings

mslp Mean sea level pressure p5zh 500hpa divergence
p1_f Near surface geostrophic airflow velocity p8_f 850hpa geostrophic airflow velocity
p1_u Near surface zonal velocity component p8_u 850hpa zonal velocity component
p1_v Near surface meridional velocity component p8_v 850hpa meridional velocity component
p1_z Near surface vorticity p8_z 850hpa vorticity
p1th Near surface wind direction p850 850hpa geopotential height
p1zh Near surface divergence p8th 850hpa wind direction
p5_f 500hpa geostrophic airflow velocity p8zh 850hpa divergence
p5_u 500hpa zonal velocity component prcp precipitation
p5_v 500hpa meridional velocity component s500 500hpa relative humidity
p5_z 500hpa vorticity s850 850hpa relative humidity
p500 500 hPa geopotential height shum Near surface specific humidity
p5th 500hpa wind direction temp Near surface air temperature

Table 2
Parameters of the VIC model which need to be calibrated.

Parameters Meanings Ranges of
values

b Variable infiltration curve parameter (0,1)
Ds Fraction of Dm where non-linear base flow begins (0,1)
Dm Maximum velocity of base flow (0,30)
Ws Fraction of maximum soil moisture where non-

linear base flow occurs
(0,1)

d1 Depth of the first layer of soil(m) (0,0.5)
d2 Depth of the second layer of soil(m) (0,2)
d3 Depth of the third layer of soil(m) (0,4)
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The univariate search technique was used to calibrate the para-
meters of VIC model, and the Nash-Sutcliffe efficiency (NSE) and the
relative error (eall) of the observed and simulated flow data were chosen
to assess the performance of the model.
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where Qt
obs is the observed streamflow data at time t; Qt

sim is the
simulated streamflow data at time t; and Qobs is the mean value of ob-
served streamflow data.
In the process of parameter calibration, the sensitivity analysis

method based on perturbation analysis was used to analyze the sensi-
tivity of parameters (Choi and Choi, 1992). The formula is given as
follows:
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where Ssen is the sensitivity index; n is the number of tests for the
selected parameter; Ri and Pi are the evaluation index and the para-
meter value in the ith test respectively; +R ¯i i, 1 and +P ¯i i, 1 are the average
value of the evaluation index and the parameter value in the ith and
i + 1th tests respectively. The larger the sensitivity index value is, the
more sensitive the parameter is. If the sensitivity index value is more
than 1, it means that this parameter is a sensitive parameter.

2.3. Establishment of the optimal operation model of large-scale reservoirs

The objective of the optimal operation model is to maximize the
annual hydropower generation of large-scale reservoirs. The future
runoff data simulated by the VIC model under different carbon emission
scenarios were used as the inputs to the optimal operation model of
large-scale reservoirs. DP is a powerful method in solving operation
problem, however it is not applicable in this problem because of the
“curse of dimensionality”. So the discrete differential dynamic pro-
gramming (DDDP) combined with the large-scale system decomposed-
coordinating (LSSDC) method proposed by Li et al. (2014) were em-
ployed to solve the optimal models in order to deal with the di-
mensionality problems. The detailed information of the model is given
below.
(1) Objective function: maximization of the annual hydropower

generation
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= =

E N t N A H Qmax ,
i

S
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where E is the annual hydropower generation of large-scale re-
servoirs; S is the total number of reservoirs; T is the total number of
periods; Nij is the hydropower production of reservoir i at time j; Ai is
the hydropower production coefficient of reservoir i; t is the time step
of each period; Hij is the available net head of reservoir i at time j; and
Qij

N is the water discharge for hydropower generation of reservoir i at
time j.
(2) The function is subject to the following constraints, including

water level limits, reservoir discharge limits, hydropower generation
limits, and water balance equation, etc.

① Water level limits:

Z Z Zij ij ij
min max (9)

= =Z Z Z Z,i i
I

iT i
F

0 (10)

where Zij is the water level of reservoir i at time j; Zij
max and Zij

min are
the upper and lower water level limit of reservoir i at time j; and Zi

I and
Zi

F are the initial and final water levels of reservoir i during the oper-
ating period.

② Reservoir discharge limits:

Q Q Qij ij ij
min max (11)

where Qij is the water discharge of reservoir i at time j; Qij
max and

Qij
min are the upper and lower water discharge limit of reservoir i at time

j.
③ Hydropower generation limits:

N N Nij ij ij
min max (12)

where Nij
max and Nij

min are the installed capacity and minimum hy-
dropower output constraints of reservoir i at time j.

④ Available net head of reservoirs:

= + +H Z Z f Q( ) 2 ( )ij ij i j i
QZ

ij, 1 (13)

where Hij is the available net head of reservoir i at time j; Zij and
+Zi j, 1 are the water levels of reservoir i at the beginning of time j and

j + 1, respectively; and fi
QZ is the function of downstream water level

and water discharge.
⑤Water balance equation:

= ++V V I Q t( )i j ij ij ij, 1 (14)

where Vij and +Vi j, 1 are the storages volumes of reservoir i at the
beginning of time j and j + 1, respectively; and Iij is the inflow of re-
servoir i at time j.

⑥ Hydraulic connections between upstream and downstream re-
servoirs:

= +I Q Bij
k

kj ij
i (15)

where i is the set of the all nearest reservoirs upstream of reservoir
i; Qkj is the water discharge of reservoir k at time j; and Bij is the local
inflow of reservoir i at time j.

⑦Nonnegative constraints: all variables in the model should be
greater than or equal to 0.
After the establishment of the optimal large-scale reservoir opera-

tion model, the future runoff sequences predicted by the VIC model
were used as the inputs of the operation model to calculate the hy-
dropower generation of the large-scale reservoirs.

3. Case study

The Yangtze River originated from the Geladandong peak of the
Tanggula mountains. In the upper basin, its main tributaries include
Yalong River, Minjiang River, Wujiang River and Jialing River. The
upper Yangtze River Basin was selected as a case study, which located
in the southwest of China. It is a big basin of one million square kilo-
meters which accounts for about 10% of China's land area, and involves
nine provinces, municipalities and autonomous regions. The topo-
graphy of the basin is diverse, including plateau (the Qinghai-Tibet
Plateau), basin (the Sichuan Basin), etc. Affected by the subtropical
monsoon and the Qinghai-Tibet Plateau high-cold climate, rainfall and
hydropower resources here are abundant, and meanwhile the climate
here is very sensitive. Yichang station is the outlet of the upper Yangtze
River Basin, and there are another six stations along the Yangtze River
namely Shigu, Panzhihua, Xiluodu, Xiangjiaba, Zhutuo and Cuntan
stations considered in this study, as shown in Fig. 1.
The historical NCEP re-analysis data of prediction variables

(https://www.esrl.noaa.gov/), the historical rainfall and temperature
data of the basin derived from the China Meteorological Data Center
(http://data.cma.cn), and the future prediction variables data of
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CanESM2 under three different emission scenarios downloaded from
the Canadian Centre for Climate Modelling and Analysis (https://www.
canada.ca/en.html), were used for the establishment of the SDSM
model. The historical rainfall data, temperature data, runoff data of the
basin and the DEM elevation data of 30 km spatial resolution from
Geospatial Data (http://www.gscloud.cn), vegetation data from the
University of Maryland (http://glcf.umd.edu/data/) and soil data from
the Food and Agriculture Organization of the United Nations (http://
www.fao.org/geonetwork) were used for the establishment of the VIC
model. And the characteristic curves of 62 reservoirs in the upper
Yangtze River Basin were collected to establish the optimal operation
model of large-scale reservoirs. The study area and the scheme of the
large reservoir system are given in Figs. 1 and 2.

4. Results and discussions

First, the SDSM model was established to predict the rainfall and
temperature sequences under different emission scenarios; second, the
VIC hydrological model was established to predict the future runoff;
and third the optimal operation model of large-scale reservoirs was
established to predict the future hydropower generation ability of the
study area.

4.1. Future rainfall and temperature prediction

The NCEP re-analysis data (the predictor variables) and the histor-
ical rainfall and temperature data (the weather variables) were taken as
inputs of SDSM model. The statistical relationship between the pre-
dictor variables and the weather variables were established based on
SDSM model. The daily data from 1970 to 1999 were used for model

Fig. 1. The upper Yangtze River Basin and its corresponding gauging stations.

Fig. 2. Locations of reservoirs in the study area.
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calibration, and the daily data from 2000 to 2005 were used for model
validation. Then the statistical relationships between the predictor
variables and basin’s rainfall and temperature data were determined.
The determination coefficients (R2), fitted curves slopes (a) and root
mean square errors (RMSE) of the observed and simulated monthly data
at each station in both calibration and validation periods were calcu-
lated, as shown in Table 3 and Figs. 3 to 4.
It can be seen from Figs. 3 and 4 and Table 3 that the simulation

results of temperature at each station are excellent in both calibration
and validation periods. Most of the determination coefficients are above
0.95, and the slopes of the curves are within the range of 0.901 to
1.013. And the RMSE values of daily maximum and minimum tem-
peratures at each station are between 0.878 ~ 1.481℃ and
0.697 ~ 1.403℃ respectively. The simulation results of daily minimum
temperature show a better performance than those of daily minimum
temperature, for its determination coefficients are generally higher in
both calibration and validation periods. Meanwhile, the RMSE values of
daily minimum temperature at most stations are also lower than that
those of daily maximum temperature in both calibration and validation
periods. For rainfall simulation, the result is not as good as that of
temperatures, since the rainfall simulation is more complex and discrete
(Zhang et al., 2016; Hassan et al., 2014). The determination coefficients
of rainfall at most stations reach 0.75 in both calibration and validation
periods, except for Zhutuo station, and the slopes of the curves are
within the range of 0.746 to 1.090. RMSE values of rainfall simulation
at each station are acceptable, which are within 10% of the observed
precipitation in both calibration and validation periods. For Zhutuo
station, the rainfall simulation results are not so good, which may be
affected by regional factors, such as topography.
For the whole basin, the performance of the SDSM model is also

good. The determination coefficients of rainfall are all above 0.90, and
the determination coefficients of maximum and minimum temperatures
are generally above 0.95 in both calibration and validation periods. The
RMSE values of the whole basin are also lower than those of most single
stations. For rainfall simulation, the RMSE values are within 5% of the
observed precipitation; and for temperature simulation, the RMSE va-
lues are less than 1.0℃. The variation range of monthly mean maximum
and minimum temperatures were within ± 0.15℃, and the variation
range of monthly rainfall is from −2mm to 11.4 mm in calibration
period. In general, the simulation results of the SDSMmodel are perfect,
and it and can be used for the future climate simulation of the study
area.
Then, the future periods were divided into three stages, namely

2020 s (2018–2044), 2050 s (2045–2071) and 2080 s (2072–2100). The
CanESM2 predictor variables data from 2018 to 2100 were taken as
inputs of the SDSM model to predict the daily rainfall, daily maximum

and minimum temperatures in the future period under different emis-
sion scenarios. The predicted annual weather variables of the whole
basin are given in Fig. 5.
As shown in Fig. 5, the predicted weather variables data are fluc-

tuated in different degrees. The rainfall data under RCP8.5 scenario
shows a significant increasing trend, while the rainfall data under
RCP2.6 scenario and RCP4.5 scenario shows a slight increasing trend.
The trends of the temperature are similar to those of rainfall. Moreover,
it is demonstrated that the main variation of rainfall during a year is
basically concentrated in flood season. To the contrary, the variations of
temperature is opposite, which change significantly in dry season.
These results are similar to those of previous studies (Zhang et al.,
2016). Taking the weather variables from 1970 to 2005 as baseline
period, the trends of rainfall and temperature in each future period
were analyzed, and results of the whole basin are given in Table 4.
As shown in Table 4, the maximum change rate of rainfall is19.90%,

which occurred in 2080 s, and the maximum change rates of maximum
and minimum daily temperatures are 8.24% and 18.74% respectively,
both occurred in 2080 s. For RCP2.6 scenario, the trends of rainfall and
the temperature increase first and then decrease, and the decrease of
temperature is slightly larger. For RCP4.5 scenario, the rainfall and the
temperature increase all the time. For RCP8.5 scenario, all the weather
variables show an increasing trend, and their growth rates are much
more rapid than those under RCP4.5 scenario, which agrees with the
analysis of Tao et al. (2015).

4.2. Future runoff prediction

The VIC model was built to simulate the rainfall-runoff relationship.
The DEM data was used to calculate the stream networks and obtain the
sub-basin boundaries according to Shigu, Panzhihua, Xiluodu,
Xiangjiaba, Zhutuo, Cuntan and Yichang stations. The basin area was
transformed into grids of 0.5°×0.5° that can be distinguished by the
VIC model, and the stream directions of each grid were calculated by
the D8 algorithm. Then the vegetation and soil data, including the types
and parameters of vegetation and soil, were extracted to each grid and
the meteorological forcing data of weather stations were interpolated to
each grid as well. Some of the input files are given in Figs. 6–8 and
Tables 5 and 6.
The observed weather variables and runoff data from July 1, 2014

to June 30, 2017 was used for model calibration, and the data from July
1, 2017 to June 30, 2018 was used for model validation. In the cali-
bration process, the sensitivity of each parameter was analyzed. The
daily Nash efficiency coefficient NSE was selected as the evaluation
index, and Ssen was the sensitivity index. Results of each station are
shown in Table 7.

Table 3
Determination coefficients, fitted curves slopes and root mean square errors of each station.

Periods Stations Monthly rainfall Monthly mean daily maximum temperature Monthly mean daily minimum temperature
R2 a RMSE R2 a RMSE R2 a RMSE

Calibration period Shigu 0.899 0.941 12.69 0.957 0.952 1.351 0.983 0.981 1.091
Panzhihua 0.806 1.038 49.68 0.912 0.901 1.217 0.982 0.979 0.861
Xiluodu 0.902 0.962 20.02 0.940 0.930 1.106 0.985 0.984 0.749
Lizhuan 0.863 0.878 28.68 0.967 0.967 1.156 0.985 0.986 0.781
Zhutuo 0.652 0.827 41.16 0.963 0.964 1.464 0.977 0.974 0.992
Cuntan 0.764 0.784 33.03 0.969 0.967 1.403 0.976 0.969 1.018
Yichang 0.710 0.803 36.75 0.964 0.964 1.481 0.979 0.977 0.976
Whole basin 0.920 0.986 17.07 0.976 0.971 0.964 0.990 0.988 0.7131

Validation period Shigu 0.933 0.909 10.56 0.962 1.013 1.289 0.987 1.001 1.128
Panzhihua 0.870 1.090 42.09 0.927 0.978 1.021 0.983 1.004 0.912
Xiluodu 0.929 0.917 16.68 0.951 1.003 1.005 0.986 1.001 0.821
Lizhuan 0.877 0.932 24.99 0.976 0.984 0.996 0.989 0.995 0.716
Zhutuo 0.578 0.835 46.52 0.970 0.974 1.301 0.983 1.004 0.927
Cuntan 0.778 0.746 32.23 0.969 0.986 1.400 0.982 1.008 0.923
Yichang 0.744 0.877 33.18 0.972 0.984 1.301 0.983 1.007 0.889
Whole basin 0.929 0.991 15.45 0.981 1.008 0.878 0.993 1.008 0.697

W. Zhong, et al. Journal of Hydrology 588 (2020) 125013

6



It is indicated from Table 7 that the depth of the second layer of soil
d2 is the most sensitive parameter for each station, and it is the only
parameter whose average sensitivity index exceeds 1. This is because
the water storage capacity of the second layer of soil has a significant

impact on the runoff generation. The greater the depth is, the stronger
the water storage capacity is. Among the other parameters, the variable
infiltration curve parameter b that can affect the rate of infiltration of
water into the soil, is also a key parameter affecting the runoff

Fig. 3. Observed and simulated data of monthly weather variables in the calibration period.
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generation, whose sensitivity is also large. For the depth of the first
layer of soil d1, it can also affect the soil water storage. However, due to
its small depth, its sensitivity is less than d2. And among the soil depths,
the depth of the third layer of soil d3 is the least sensitive, because it

mainly affects the base flow and the seasonal changes of soil water
content. For the parameters Ds, Dm and Ws, they mainly affect the base
flow. So they are less sensitive. These results are similar to the studies
by Nijssen et al. (2001) and Su et al. (2005).

Fig. 4. Observed and simulated data of monthly weather variables in the validation period.
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The daily Nash efficiency coefficient NSE , monthly Nash efficiency
coefficient NSEmon and the relative error eall of each station were chosen
as the evaluation indexes of model calibration. Simulation results in
calibration and validation periods are shown in Table 8.
According to Table 8, except for the Yichang station, the daily Nash

efficiency coefficients are all above 0.80. In terms of monthly Nash
efficiency coefficient, all of the stations are above 0.90 except for the
Shigu station, and the Nash efficiency coefficients of some stations are
more than 0.95. For the relative error between the observed and si-
mulated flow, except for the Shigu station, the values of each station are

generally below 0.05. Moreover, for the Yichang station, the simulated
flood peak is slightly delayed compared with the observed value, which
causes the error of daily runoff simulation. However, this error de-
creases and even can be ignored in monthly scale runoff prediction.
This is maybe because that in daily runoff simulation, the errors ac-
cumulate in the process of runoff generation and concentration and
reach a large value at the basin outlet. For the Shigu station, compared
with the observed values, the simulated values are slightly smaller in
the dry season and larger in the flood season. This error is not large in
daily scale simulation, but the difference is amplified in monthly scale.

Fig. 5. The predicted rainfall, daily maximum temperature and minimum temperature data from 2018 to 2100 under different RCPs scenarios.
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The monthly Nash efficiency coefficient values are smaller than other
stations. In addition, the lack of meteorological stations in the upper
reaches of Shigu station may be the cause of the simulation error.
Generally, the VIC model has a good performance for the rainfall-runoff
simulation for the upper Yangtze River Basin, and can be used to pre-
dict the future runoff sequences. The daily observed and simulated flow
processes at the Yichang Station are shown in Fig. 9.
The future rainfall and temperature data are taken as inputs to the

VIC hydrological model, and the future daily runoff data of each station
were predicted by the proposed model. Then the changes of predicted
runoff under different RCPs scenarios at each station were analyzed.
The predicted runoff at the Yichang station under different RCPs sce-
narios are shown in Fig. 10 and Table 9.
As shown in Table 9, all the predicted runoff values lightly reduce in

2020 s, compared with the baseline runoff data. For the periods of
2050 s and 2080 s, the change rates of runoff are bigger than 0 except
under RCP2.6 scenario. Under RCP2.6 scenario, it shows that the trend
of runoff increases first and then decreases. Under RCP4.5 and RCP 8.5
scenarios, the trends of runoff are similar, both increase all the time.
However, the change rate of runoff is smaller under RCP4.5 scenario,
whose maximum change rate is 1.8%, while the maximum change rate
is 14.0% under RCP8.5 scenario, both occurred in 2080 s. The trends of
runoff under different RCPs scenarios are similar to that of rainfall and
temperatures.

4.3. Prediction of future hydropower generation capacity of reservoir system

The optimal operation model of large-scale reservoirs in the upper
Yangtze River Basin which includes 62 reservoirs was established. And
the future runoff data simulated by the VIC hydrological model were
used as inputs of the optimal operation model to calculate the future
hydropower generation of the reservoir system. Fig. 11 shows the an-
nual hydropower generation under different RCPs scenarios. And the
average annual hydropower generation of reservoirs in the upper

Yangtze River Basin under different RCPs scenarios are shown in
Table 10.
It can be seen from Fig. 11 that there is a good positive correlation

between the trend of hydropower generation and runoff. Under RCP2.6
and RCP4.5 scenarios, the slopes of fitting line of annual hydropower
generation are small, while the slope of RCP8.5 scenario is obviously
large.
As shown in Table 10, the predicted average annual hydropower

generation of reservoirs from 2018 to 2100 under RCP2.6, RCP4.5 and
RCP8.5 scenarios are 699.8 billion kW•h, 715.3 billion kW•h and 747.7
billion kW•h, respectively. For RCP2.6 scenario, the hydropower gen-
eration of the reservoir system will increase by 3.7% from 2020 s to
2050 s, and decrease by 1.66% from 2050 s to 2080 s, which is rela-
tively stable. This trend of hydropower generation is the same as that of
runoff evolution processes due to the close relationship between the
hydropower generation and runoff. Under RCP4.5 scenario, the hy-
dropower generation of 2050 s and 2080 s increases by 2.1% and 2.3%
respectively, which shows a slowly increasing trend compared with
their previous periods. While under RCP8.5 scenario, the hydropower
generation of the basin shows a rapid growth trend, increasing 3.4% in
2050 s compared to 2020 s, and 11.7% in 2080 s compared to 2050 s.
Results of the hydropower generation are consistent with the results of
runoff simulation. The higher the RCP scenario is, the faster the runoff
and hydropower generation increases. The average future hydropower
generation of each reservoir under different RCP scenarios are shown in
Fig. 12.

5. Conclusions and discussions

In this paper, the GCMs data was processed by SDSM downscaling
method, and the future climate evolution trends of weather variables
under different RCPs emission scenarios were predicted. Then, the
macro-scale VIC hydrological model of the upper Yangtze River Basin
was established, and the response of the runoff to climate change in the

Table 4
Trends of rainfall and temperature data of the whole basin in the future periods.

Data types Periods Baseline period mean value Predicted mean value Change rate
RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Rainfall(mm/year) 2020 s 853.6 923.8 927.2 929.3 8.22% 8.62% 8.87%
2050 s 853.6 932.6 947.8 963.1 9.25% 11.04% 12.83%
2080 s 853.6 930.1 952.6 1023.5 8.96% 11.60% 19.90%

Maximum temperature(℃) 2020 s 16.90 17.33 17.27 17.33 2.54% 2.19% 2.54%
2050 s 16.90 17.43 17.49 17.66 3.14% 3.49% 4.50%
2080 s 16.90 17.36 17.62 18.06 2.72% 4.26% 6.86%

Minimum temperature(℃) 2020 s 6.83 7.30 7.29 7.31 6.88% 6.73% 7.03%
2050 s 6.83 7.42 7.47 7.67 8.64% 9.37% 12.30%
2080 s 6.83 7.33 7.60 8.11 7.32% 11.27% 18.74%

Fig. 6. The DEM data and stream directions of each grid of study area.
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upper Yangtze River Basin were investigated. The future runoff data
were taken as input, the maximum annual hydropower generation were
taken as the objective function. The optimal operation model of large-
scale reservoirs including 62 reservoirs in the upper Yangtze River
Basin was established, and the evolution trends of future hydropower

generation under climate change were discussed. The main results are
summarized as follows.
(1) The General Circulation Models and statistical downscaling

model can be used to predict the future meteorological data. The pre-
dicted weather data can provide a reference for the study on temporal
and spatial distribution of water resources in the upper Yangtze River
Basin under climate change.
(2) The VIC hydrological model also shows a good performance for

daily and monthly runoff simulations for the upper Yangtze River Basin.
Simulation results demonstrate the evolution trends and the un-
certainties of future runoff under different scenarios. Especially, the
inflow situation and extreme hydrological phenomena, such as floods
and droughts, are important input data for reservoir operation. Thus,
the runoff series predicted in this paper can provide data support for
flood control, water supply and hydropower generation operation of

Fig. 7. The upper soil and lower soil data of the study area.

Fig. 8. The vegetation data of the study area.

Table 5
Proportions of different soil types of upper and lower soil.

Number Types Upper soil Lower soil

6 Loam 54.32% 7.98%
7 Sandy clay loam 1.33% 0.00%
9 Clay loam 39.47% 60.09%
10 Sandy clay 0.00% 1.33%
12 Clay 4.88% 30.60%

Table 6
Proportions of different vegetation types in the study area.

Number 1 2 4 5 6 7

Types Evergreen coniferous forest Evergreen broad-leaf forest Deciduous broad-leaf forest Mixed forest Woodland Woody savannas
proportion (%) 11.98 0.08 1.48 3.28 14.57 16.68
Number 8 9 10 11 0,12,14
Types Thicket Shrubbery Grassland Cropland Water bodies, barren, urban
proportion (%) 0.61 7.51 27.08 14.05 2.68
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reservoirs under different scenarios.
(3) In this study, the changes of the hydropower generation in the

upper Yangtze River Basin in the future are small under RCP2.6 and
RCP4.5 scenarios. While under RCP8.5 scenario, there is a significant

increasing trend. It means that hydropower generation in the upper
Yangtze River Basin is sensitive to climate change. Located in the west
of China, the upper Yangtze River Basin is a region with abundant water
resources, the increase of hydropower generation can promote the

Table 7
Parameter sensitivity analysis of each station.

Parameters Ssenvalues of each Station
Shigu Panzhihua Xiluodu Xiangjiaba Zhutuo Cuntan Yichang Average

b 0.236 0.140 0.144 0.121 0.139 0.147 0.168 0.157
Ds 0.118 0.220 0.110 0.028 0.109 0.095 0.167 0.121
Dm 0.072 0.070 0.099 0.041 0.111 0.094 0.153 0.091
Ws 0.071 0.117 0.194 0.077 0.159 0.128 0.105 0.121
d1 0.158 0.091 0.066 0.029 0.085 0.079 0.360 0.124
d2 1.750 1.919 0.783 1.726 0.939 1.077 1.215 1.344
d3 0.057 0.082 0.178 0.066 0.135 0.108 0.102 0.104

Table 8
Nash efficiency coefficients and flow relative errors of each station.

stations Shigu Panzhihua Xiluodu Xiangjiaba Zhutuo Cuntan Yichang

Calibration period NSE 0.832 0.812 0.857 0.851 0.878 0.871 0.720
NSEmon 0.905 0.946 0.950 0.950 0.948 0.945 0.936
eall 0.146 0.042 0.037 0.010 0.021 0.020 0.004

Validation period NSE 0.833 0.835 0.876 0.872 0.883 0.865 0.759
NSEmon 0.875 0.962 0.987 0.981 0.979 0.976 0.947
eall 0.061 0.025 0.040 0.056 0.065 0.056 0.037

Fig. 9. The daily observed and simulated flow at Yichang station.

Fig. 10. The predicted runoff results under different RCPs scenarios at Yichang station.
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socioeconomic development of the region, and the power can also be
delivered to the surrounding and eastern regions where the energy is
relatively scarce. Meanwhile, the increase of hydropower means that
the proportion of hydropower in the power system may increase, the
proportion of fossil energy such as coal may be reduced, which not only
protects the environment, but also slows down the consumption of non-
renewable resources.
It is worth mentioning that at present, the calculation of hydro-

power generation is mainly based on the built and under construction
reservoirs in the upper Yangtze River Basin. With the further develop-
ment of hydropower, the hydropower generation in the upper Yangtze
River has a trend of continuous growth, but the impact of climate
change on hydropower generation is consistent. And the current

hydropower development in the upper Yangtze River is close to the
upper limit. Thus, this paper can provide a reference for the hydro-
power generation prediction under climate change in the upper Yangtze
River.
The transferability of models used in this study to other regions was

discussed. The SDSM model is easy to build and has good transferability
(Sun et al., 2013). As for the VIC model, the transferability of hydro-
logical models to other regions has always been a hot topic. Generally,
the underlying surface and hydrometeorology conditions of regions are
quite different, which lead to the difference of model parameters, and
makes it difficult to transfer hydrological models to other regions.
There are recommendations if someone want to embark on a future
study using these models in a region similar to the case study. For the
SDSM model, due to its good transferability, it is important to pay at-
tention to obtaining the historical meteorological data of the region as
much as possible, and ensure the reliability of the data to improve the
effect of model calibration. For the VIC model, there are the following
suggestions. If the hydrometeorology situation and underlying surface
conditions of the target area are similar to those of the studied basin,
the VIC model can be considered, and the model parameters calibrated
in the studied basin can be taken as the initial value for further cali-
bration. If their spatial location is close, the target basin is a sub-basin
of the studied basin, the model parameters can be obtained by aver-
aging the calibrated parameters of immediate upstream and

Table 9
Predicted runoff results at the Yichang station under different RCP scenarios.

Stations Periods Baseline mean value (m3/s) Predicted mean value (m3/s) Change rate (%)

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Yichang 2020 s 12,625 12,346 12,423 12,467 −2.2% −1.6% −1.3%
2050 s 12,625 12,594 12,752 12,957 −0.2% 1.0% 2.6%
2080 s 12,625 12,331 12,857 14,398 −2.3% 1.8% 14.0%

Fig. 11. Future annual hydropower generation under different RCPs scenarios.

Table 10
Average annual hydropower generation of reservoirs in the upper Yangtze River
Basin.

Periods Average annual hydropower generation(108 kW•h)
RCP2.6 RCP4.5 RCP8.5

2020 s 6870 6998 7017
2050 s 7122 7142 7257
2080 s 7004 7307 8109
All periods 6998 7153 7477
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downstream sub-basins of the studied basin, or by interpolating the
parameters values of several other sub-basins with interpolation
methods, such as kriging (Merz and Blöschl, 2004). In addition, the
spatial resolution of DEM data and the density of basin grids affect the
precision of the model. High-resolution DEM data and appropriate grid
density can improve the precision of model and avoid excessive cal-
culation. For the operation model of large-scale reservoirs, scholars
need to fully grasp the distribution of reservoirs and their characteristic
information in the target basin, which is the key factor for building the
model.
There are still some limitations in this study, which need to be

improved in the further study. When using SDSM model to downscale
the GCMs, multiple GCMs can be considered to improve the reliability
of the prediction of future climate change, and avoid the accidental
errors caused by single model. These errors are mainly because the
applicability of the model in the study area is unknown. This may lead
to the deviation of prediction results, such as the poor correlation be-
tween the predicted temperature data and the observed data. The using
of multiple GCMs can avoid the potential accidental error of a single
model, but the regional applicability of various GCMs is different.
Improper GCMs combination may affect the prediction results, and the
calculation of multiple GCMs data is much larger, using multiple GCMs
for climate prediction is more difficult than a single model. At the same
time, past studies have shown that a single model suitable for the study
area can also achieve good results. After summarizing the previous
researches, we found that the CanESM2 model has been widely used in
China’s climate prediction, and has better applicability than most other
models (Su et al., 2013; Chen et al., 2011; Chen and Frauenfeld, 2014).
Using only the CanESM2 model was also adopted by many scholars
(Wen et al., 2013; Lin et al., 2018; Tahir et al., 2018). Therefore, the
CanESM2 model was selected to predict the future climate change in
this paper. Results proved that its performance in this paper is also
good. In addition, adding more applicable GCMs model may further
improve the reliability and stability of prediction. Besides, due to the
limitation of hydrometeorology data, the data length used for calibra-
tion of VIC model is relatively short, and increasing the data length can
help optimize the calibration results of the model. In addition, the
changes in underlying surface conditions over time, such as land use,
were not considered in the calibration of VIC model. In the future study,
the changes in underlying surface conditions can be considered prop-
erly to better simulate the true conditions of the basin.
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