AEM Accepted Manuscript Posted Online 16 August 2019 Appl. Environ. Microbiol. doi:10.1128/AEM.01362-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

- 1 Feedback regulation between aquatic microorganisms and the bloom-forming
- 2 cyanobacterium Microcystis aeruginosa
- 3 Meng Zhang¹, Tao Lu¹, Hans W Paerl^{2,3}, Yiling Chen⁴, Zhenyan Zhang¹, Zhigao
- 4 Zhou¹, Haifeng Qian^{1, *}
- 5 1. College of Environment, Zhejiang University of Technology, Hangzhou 310032,
- 6 P.R. China;
- 7 2. Institute of Marine Sciences, University of North Carolina at Chapel Hill,
- 8 Morehead City, NC, 28557, USA;
- 9 3. College of Environment, Hohai University, Nanjing, 210098, P.R. China;
- 10 4. Department of Civil, Environmental, and Geo- Engineering, University of
- 11 Minnesota, Minneapolis, MN, 55455-0116, USA
- 12 Running title: Feedback between microorganisms and cyanobacterium

13

^{*}Correspondence Author: Tel.:+86 5718832 0742, Fax: +86 571 8832 0599, E-mail address:

hfqian@zjut.edu.cn (Qian H).

14	ABSTRACT The frequency and intensity of cyanobacterial blooms are increasing
15	worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms
16	need to be critically evaluated to understand microbial drivers and modulators of the
17	blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics
18	analyses to measure the microbial community composition and metabolic responses
19	of the cyanobacterium Microcystis aeruginosa in a coculture system receiving
20	dissolved inorganic nitrogen and phosphorus (DIP) close to representative
21	concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase
22	using a DIP source produced by moribund and decaying microorganisms when the P
23	source was insufficient. During this process, M. aeruginosa accumulated several
24	intermediates in energy metabolism pathways to provide energy for its sustaining high
25	growth rates, and increased intracellular sugars to enhance its competitive capacity
26	and ability to defend itself against microbial attack. It also produced a variety of toxic
27	substances, including microcystins, to inhibit metabolite formation via energy
28	metabolism pathways of aquatic microorganisms, leading to a negative effect on
29	bacterial and eukaryotic microbial richness and diversity. Overall, compared with the
30	monoculture system, the growth of <i>M. aeruginosa</i> was accelerated in coculture, while
31	the growth of some cooccurring microorganisms was inhibited; with the diversity and
32	richness of eukaryotic microorganisms being more negatively impacted than
33	prokaryotic microorganisms. These findings provide valuable information for
34	clarifying how <i>M. aeruginosa</i> can potentially modulate its associations with other
35	microorganisms, with ramifications for its dominance in aquatic ecosystems.

2	6
ر	0
-	~

37	IMPORTANCE This study we measure the microbial community composition and
38	metabolic responses of Microcystis aeruginosa in a microcosms coculture system
39	receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average
40	concentrations in Lake Taihu. In the coculture system DIP is depleted, and growth and
41	production of aquatic microorganisms can be stressed by a lack of DIP availability. <i>M</i> .
42	aeruginosa could accelerate its growth via interactions with specific cooccurring
43	microorganisms, and the accumulation of several intermediates in energy
44	metabolism-related pathways. Furthermore, M. aeruginosa can decrease carbohydrate
45	metabolism of cooccurring aquatic microorganisms and thus disrupt microbial
46	activities in the coculture. This also had a negative effect on bacterial and eukaryotic
47	microbial richness and diversity. Microcystin was capable of decreasing the biomass
48	of total phytoplankton in aquatic microcosms. Overall, compared with the
49	monoculture, the growth of total aquatic microorganisms is inhibited, with the
50	diversity and richness of eukaryotic microorganisms being more negatively impacted
51	than prokaryotic microorganisms. The only exception is <i>M. aeruginosa</i> in the
52	coculture system, whose growth was accelerated.
53	KEYWORDS Microcystis aeruginosa, aquatic microcosm, 16S/18S rRNA gene
54	sequencing, metabolomics analyses, cocultures
55	

56 Introduction

57	Anthropogenic nutrient enrichment and climatic changes, as well as exotic
58	species invasions, can induce dramatic disturbances and regime shifts in ecosystems
59	(1, 2). In aquatic ecosystems, the emergence of cyanobacterial harmful algal blooms
60	(CyanoHABs) during the transition from oligotrophic to eutrophic conditions
61	represents a regime shift, as indicated by changes in dominant microbes and new
62	combinations of various microbial communities. CyanoHABs, especially Microcystis
63	blooms, pose a major threat to freshwater ecosystems globally by altering food webs,
64	creating hypoxic zones and producing secondary metabolites (i.e., "cyanotoxins") that
65	can negatively impact biota ranging from aquatic macrophytes to invertebrates, fish
66	and mammals, including humans (3, 4).
67	Cyanobacteria are among the most ancient living organisms on Earth (~3 billion
68	years ago). Their diverse and flexible metabolic capabilities enable them to adapt to
69	major environmental changes (3). Essential nutrients such as nitrogen (N) and
70	phosphorus (P) play key roles in supporting cyanobacterial production and
71	composition in freshwater systems (5, 6). However, excessive inputs of nutrients can
72	promote the development and proliferation of CyanoHABs (3, 7), especially with
73	increasing water temperature (8). The frequency, intensity and duration of
74	cyanobacterial blooms in many aquatic ecosystems globally are linked to accelerating
75	eutrophication. Recent studies have shown that reductions of both P and N inputs is
76	essential for controlling blooms (9, 10, 11, 12). Moreover, studies have shown that
77	Microcystis is capable of scavenging dissolved organic phosphorus (DOP), thereby

AEM

Applied and Environmental Microbiology

78	providing a source of P under dissolved inorganic phosphorus (DIP) deplete
79	conditions (6).
80	Secondary metabolites produced by Microcystis (microcystins (MCs),
81	micropeptins, linoleic acid, etc.) have been shown to be toxic to some biota (13, 14,
82	15). For example, <i>Microcystis</i> is capable of inhibiting photosynthesis, carbon
83	metabolism and amino acid metabolism in Chlorella pyrenoidosa via the production
84	of linoleic acid (16). Additionally, the microbial community associated with
85	CyanoHABs is different from that under non-bloom conditions (17, 18). Microcystis
86	blooms strongly affect eukaryotic abundance (13, 17). Field studies in Lake Taihu, the
87	3 rd largest freshwater lake in China, have shown that blooms had a negative effect on
88	bacterial diversity and richness (19, 20). Zooplankton (including crustaceans, rotifers
89	and protozoa) have a limited ability to ingest cyanobacteria, especially colonial and
90	filamentous genera; Meanwhile, some cyanobacterial secondary metabolites can also
91	be toxic to zooplankton. These constraints can negatively impact transfer of
92	cyanobacterial biomass to higher trophic levels (21, 22). Furthermore, some
93	cyanobacterial genera can fix atmospheric N, thereby providing biologically-available
94	N on the ecosystem-scale (23). Some bacteria attach to cyanobacterial cells, and they
95	can grow on extracellular mucus or form free-living populations (24, 25). Overall,
96	there is renewed interest in how <i>M. aeruginosa</i> and aquatic microorganisms interact
97	under varying nutritional conditions.
98	In this study, we utilized a laboratory coculture system, in which a dialysis membrane
99	was used to separate <i>M. aeruginosa</i> and aquatic microorganisms in a microcosm,

AEM

Applied and Environmental Microbiology

100	allowing their growth in an isolated culture and exchange of excretion products. The
101	system allowed for measurements of physicochemical water quality parameters
102	(detailed in Material and Methods), cell enumeration, microbial composition and
103	diversity (high-throughput sequencing data sets, including 16S and 18S rRNA gene
104	sequencing) and metabolomics analysis to address the interactions between M .
105	aeruginosa and the native microbial community.
106	
107	RESULTS AND DISCUSSION
108	<i>M. aeruginosa</i> and microbial growth states. According to Figure 1B, OD ₆₈₀
109	and the amount of <i>M. aeruginosa</i> cells in the Treat-Ma group were significantly
110	higher than those in the Con-Ma group after 3 d of coculture. However, OD_{680} and
111	Chl-a levels in the Treat-AM group were significantly lower than those in the
112	Con-AM group (Figure 1C). Figure S2 also showed that the turbidity of the medium
113	changed in coculture microcosms (more transparent) compared to that of Con-AM
114	after 8 d of culture, indicating that the growth of cooccurring microorganisms was
115	inhibited in the coculture system.
116	In addition, DO and pH values were significantly lower during the coculture
117	process in the Treat-AM group than in the Con-AM group (Figure 2). Dense
118	Microcystis populations can consume oxygen through respiration at night and through
119	microbial decomposition of moribund cells, resulting in an insufficient oxygen supply
120	in the water to support aerobic microbes and higher organisms (26, 27). An increase in
121	the concentration of carbon dioxide shifts the inorganic carbon equilibrium away from

carbonate towards bicarbonate, decreaing pH, which in turn inhibits the growth of
some microbial populations (28). Furthermore, Microcystis inhibited some
microorganisms and the decomposition of these moribund cells would lead to an
increase in oxygen consumption in the Treat-AM group (Figure 2D). The EC of each
group was investigated as a function of the types and quantities of dissolved materials
(29). Compared with the Con-AM group, the Treat-AM group showed an apparent
increase in EC after 3 and 6 d of coculture. Notably, these water quality parameters
(Figure 2, especially pH value) were significantly different between monoculture and
coculture systems, suggesting that these physiochemical changes in the water were
influenced by the metabolism of M. aeruginosa directly or indirectly, and by the
associated microbial community.
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of coculture, while the concentrations of TP and DIP in coculture medium were higher
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of coculture, while the concentrations of TP and DIP in coculture medium were higher than those in monoculture medium after 3-8 d of coculture (Figure 3A). Numerous
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of coculture, while the concentrations of TP and DIP in coculture medium were higher than those in monoculture medium after 3-8 d of coculture (Figure 3A). Numerous algal species can synthesize AKP to hydrolyze DOP to DIP when TP is too low in
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of coculture, while the concentrations of TP and DIP in coculture medium were higher than those in monoculture medium after 3-8 d of coculture (Figure 3A). Numerous algal species can synthesize AKP to hydrolyze DOP to DIP when TP is too low in order to satisfy algal growth demand (6). Consistent with previous studies (30), AKP
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of a coculture, while the concentrations of TP and DIP in coculture medium were higher than those in monoculture medium after 3-8 d of coculture (Figure 3A). Numerous algal species can synthesize AKP to hydrolyze DOP to DIP when TP is too low in order to satisfy algal growth demand (6). Consistent with previous studies (30), AKP in the Treat-Ma group increased dramatically on 2 and 4 d of coculture, while AKP
associated microbial community. Changes in N and P and MCs released in culture medium. Nitrogen and phosphorus availability are key factors controlling primary production and CyanoHABs dynamics (12). In this study, the concentrations of TP and DIP in coculture medium were lower than those in monoculture medium after 1 and 2 d of coculture, while the concentrations of TP and DIP in coculture medium were higher than those in monoculture medium after 3-8 d of coculture (Figure 3A). Numerous algal species can synthesize AKP to hydrolyze DOP to DIP when TP is too low in order to satisfy algal growth demand (6). Consistent with previous studies (30), AKP in the Treat-Ma group increased dramatically on 2 and 4 d of coculture, while AKP

144	(6). With the active growth of <i>M. aeruginosa</i> , the NO_3^-N level in coculture system
145	was also much higher than that in the monoculture system (Figure 3B). This was due
146	to the negative effect of <i>M. aeruginosa</i> on the growth of some accompanying species
147	in the cocultured systems, leading to the release of nitrogen sources from moribund
148	cells, while the reduction of aquatic microorganisms also decreases the consumption
149	of nitrogen sources. This released N provided a readily available N source for <i>M</i> .
150	aeruginosa growth, which might partly explain why M. aeruginosa growth in
151	coculture is better than that in monoculture. There are likely multiple reasons why
152	Microcystis growth is better in coculture, including exchange of mutually-beneficial
153	metabolites, like vitamins, CO ₂ replenishment, exchange of nutrients and essential
154	metals (31).
155	During coculture, M. aeruginosa exhibited more rapid growth relative to
156	monocultures and produced a large number of MCs that were released into the culture
157	medium. After 3 d of coculture, the MCs in Treat-AMW were significantly higher
158	than those in Con-AMW (Figure 3D). Numerous studies have shown that MCs are
159	toxic to some microorganisms (32). Our data also indicated that MCs caused a
160	decrease in total phytoplankton in aquatic microcosms, as shown in Figure 7a.
161	
162	Changes in bacterial community structure and diversity in aquatic microcosms
163	under coculture conditions. Community diversity analysis was calculated based on
164	the OTU level. The Shannon and Simpson indices reflect the diversity and evenness
165	of the community. Meanwhile, the ACE and Chao1 indices reflect the richness, which

166	indicates the estimated number of species present (33). Compared with the Con-AM
167	group, the Treat-AM group showed a downward trend in the ACE and Chao1 indices
168	at 4 and 8 d, and the Shannon and Simpson diversity indices also slightly decreased at
169	8 d in the Treat-AM group (Table 1), indicating a decline in the richness and diversity
170	of bacterial communities. Observed species in Table 1 indicates the number of species
171	contained in the sample. Higher values of observed species in the Con-AM group also
172	indicated higher species richness than in the Treat-AM group. Changes in dominant
173	cyanobacterial biomass affect the composition and function of microbial populations,
174	while competitive exclusion tends to reduce the abundance of other, more readily
175	grazed primary producers during cyanobacterial blooms (3, 4). Principal component
176	analysis (PCoA) showed that PC1 (first principal component) and PC2 (second
177	principal component) explained 83.89% of the β -diversity (Figure 4A) in the variation
178	of species composition on the temporal scales. Coculture treatment could constitute a
179	major portion of PC1, as it might result in the separation of the Con-AM and
180	Treat-AM samples after 4 and 8 d of culture. Environmental factors such as
181	nutritional status, pH and predation might constitute PC2, which affects the OTU
182	composition at certain times in culture (from 4 d to 8 d). As shown in Figure 4B, the
183	eigenvalues of the first two RDA axes explained 67.42% of the total variation. The
184	RDA scores showed strong relationships between the environmental variables and the
185	four groups. Samples of Con-AM4 and Con-AM8 were positively correlated with EC,
186	DO, pH and NO ₃ ⁻ -N. Treat-AM8 and Treat-AM8 clustered together and showed the
187	highest correlation with MCs and DIP.

ia,		
ire		
P		
C		
8		
but		

188	Bacterial community analysis revealed that the microbial community in the
189	microcosms at the class level was dominated by Cyanobacteria, Alphaproteobacteria,
190	Betaproteobacteria and Sphingobacteria in both 4 and 8 d coculture and monoculture
191	(Figure 4C), while other classes did not exceed 1%. In both cocultures and
192	monocultures, Cyanobacteria (>50%) was the dominant class of abundance, and the
193	top four genera of abundance among the Cyanobacteria were Pseudanabaena,
194	Merismopedia, Limnothrix and Arthronema gygaxiana UTCC 393 in aquatic
195	microcosms on 4 d and 8 d (Figure 4D). Interestingly, the abundance of
196	Cyanobacteria in the aquatic microcosms was significantly lower in the Treat-AM8
197	group than in the Con-AM8 group, except for Pseudanabaena. The growth of some
198	freshwater bacteria has been reported to be associated with cyanobacterial blooms, but
199	phytoplankton species are mainly conserved at the phylum level in Proteobacteria,
200	Bacteroidetes and Actinobacteria (34). After coculture with M. aeruginosa,
201	Alphaproteobacteria and Betaproteobacteria significantly increased, while
202	Sphingobacteria decreased, indicating that the abundance of some bacteria was
203	affected by an increase in <i>M. aeruginosa</i> biomass. Moreover, coculture with <i>M</i> .
204	aeruginosa disturbed the composition of rare microorganisms (relative abundance <
205	1%). Hundreds of rare microorganisms decreased in relative abundance or
206	disappeared after 8 d in coculture (Dataset 1).
207	
208	Changes in eukaryotic microorganism community structure and diversity in
209	aquatic microcosms cocultured with M. aeruginosa. The decrease in species
	10

210	diversity and richness from the Con-AM4 to Con-AM8 group indicated a decline in
211	eukaryotes over time (Table 2). The species diversity and richness from the Treat-AM
212	group at 4 to 8 d did not show a downward trend; however, compared with the
213	Con-AM group, the Treat-AM group at 4 and 8 d showed a downward trend in both
214	the ACE and Chao1 indices of eukaryotic microorganisms and the Shannon and
215	Simpson diversity indices. These findings indicate that coculture reduces the diversity
216	and richness of eukaryotic species. PCoA analysis showed that PC1 and PC2
217	explained 92.03% of the β -diversity (Figure 5A). The coordinates of the Con-AM4
218	and Treat-AM4 groups were separated by PC1, and the Con-AM8 and Treat-AM8
219	groups were affected more severely by PC2. Changes in the 4 d cocultures may be
220	affected by <i>M. aeruginosa</i> , and the changes physicochemical water quality parameters,
221	such as pH and dissolved oxygen, may be related to 8 d cocultures.
222	In the eukaryotic community, diverse species were identified, including some
223	chromista such as Ciliophora and Ochrophyta; metazoans such as Rotifera;
224	viridiplantae such as Streptophyta, and fungi such as Cryptomycota, Ascomycota and
225	Dikarya (Figure 5B). There are interrelationships between eukaryotes in areas such as
226	predation, competitive relationships, and parasitism (25). In monocultures, Rotifera
227	was the most abundant eukaryote, accounting for 29.88% and 43.81% of the
228	eukaryotic sequences of the Con-AM group. Rotifers are usually very active grazers
229	affecting phytoplankton biomass and richness in the Con-AM group. Compared with
230	the Con-AM group, the Treat-AM group showed a reduction in the relative abundance
231	of Rotifera to 8.00% and 23.45% after 4 and 8 d of coculture, respectively, and

232	Ciliophora became the most abundant eukaryote in cocultures. As consumers,
233	Rotifera and Ciliophora are correlated in predation and nutrition competition
234	experiments (35). Our study showed that toxic blooms have greater impacts on the
235	composition of these active grazers and therefore change their food (aquatic
236	microorganism) items. In contrast, other eukaryotes such as Cryptomycota,
237	Streptophyta, Ascomycota and Chordata decreased after coculture. Additionally, rare
238	microorganisms moved closer to the coordinate axis in the Treat-AM4 and Treat-AM8
239	groups compared with those in the Con-AM4 and Con-AM8 groups, suggesting the
240	decrease or complete disappearance of the rare microorganisms (Figure 5C). The
241	synergistic effects between rare and common taxa may play central roles in
242	maintaining the stability of the eukaryotic community and its ecological function (36).
243	
243 244	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and
243 244 245	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on
243244245246	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and
243244245246247	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and
 243 244 245 246 247 248 	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and PLS-DA showed noticeable separation between cocultures and monocultures from <i>M</i> .
 243 244 245 246 247 248 249 	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and PLS-DA showed noticeable separation between cocultures and monocultures from <i>M.</i> <i>aeruginosa</i> and the microcosm along PC1 (Figure 6A and Figure S3). In multivariate
 243 244 245 246 247 248 249 250 	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and PLS-DA showed noticeable separation between cocultures and monocultures from <i>M.</i> <i>aeruginosa</i> and the microcosm along PC1 (Figure 6A and Figure S3). In multivariate statistical analysis, screening and determining the difference variables were performed
 243 244 245 246 247 248 249 250 251 	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and PLS-DA showed noticeable separation between cocultures and monocultures from <i>M.</i> <i>aeruginosa</i> and the microcosm along PC1 (Figure 6A and Figure S3). In multivariate statistical analysis, screening and determining the difference variables were performed by calculating the variable importance (VIP) between groups. VIP is the weighted
 243 244 245 246 247 248 249 250 251 252 	Metabolic responses of <i>M. aeruginosa</i> and aquatic microcosms in cocultures and monocultures. To clarify the mechanisms underlying the effect of <i>M. aeruginosa</i> on the microcosm community, we measured metabolite changes in <i>M. aeruginosa</i> and microcosms. A total of 239 metabolites were identified. The score plot of PCA and PLS-DA showed noticeable separation between cocultures and monocultures from <i>M.</i> <i>aeruginosa</i> and the microcosm along PC1 (Figure 6A and Figure S3). In multivariate statistical analysis, screening and determining the difference variables were performed by calculating the variable importance (VIP) between groups. VIP is the weighted sum of squares of the PLS-DA analysis, which indicates the importance of a variable

254	responsible for separation, defined as a discriminating metabolite in this study. In a
255	univariate statistical analysis, the p value was used to assess the statistical significance
256	of difference variables. We combined these two criteria to screen variables with VIP $>$
257	1 and p value < 0.05 as difference variables. Significant metabolite changes were
258	observed for <i>M. aeruginosa</i> (53 downregulated and 31 upregulated in Table S2),
259	aquatic microorganisms from microcosms (39 downregulated and 18 upregulated in
260	Figure S4), and culture medium samples (53 downregulated in Table S3 and 10
261	upregulated in Table 3), respectively.
262	
263	Metabolic profiles and pathway changes in <i>M. aeruginosa</i> and aquatic
264	microcosms in cocultures and monocultures. The components of the pentose
265	phosphate (PP) pathway or glycolysis intermediates, such as glucose-6-phosphate
266	(G6P), fructose-6-phosphate (F6P) and ribulose-5-phosphate (Ru5P), significantly
267	increased in Treat-Ma (Figure 6B) relative to Con-Ma. G6P and F6P are
268	interconnected through biochemical reactions with Calvin cycle, to glycogen
269	biosynthesis for energy expenditure (38, 39). Their accumulation played an active role
270	in the growth of <i>M. aeruginosa</i> , which indicated that the carbon fixation in <i>M</i> .
271	aeruginosa cells was enhanced by the co-culture treatment. Succinic acid, an
272	intermediate in the tricarboxylic acid (TCA) cycle, was 18.30-fold higher in the
273	Treat-Ma group than in the Con-Ma group. These increased intermediates in PP
274	pathway, glycolysis and TCA cycle could provide precursors for amino acid synthesis
275	and transfer of other cellular macromolecules (40, 41). They are also beneficial in the

US(277	MC synthesis and cell growth.
Man	278	manifestation of cellular respon
ed /	279	support M. aeruginosa growth
cepi	280	accelerated M. aeruginosa grov
Ac	281	competition with microbes, and
	282	growth of other microbes. This
	283	the growth of <i>M. aeruginosa</i> in
	284	monoculture and a large amour
	285	these pathways in M. aerugino.
vir of interview	286	energy, thus enhancing the con
icrobio	287	aeruginosa.
	288	Sugars participate in energy
¢	289	molecules (42) or as osmoprote
	290	$(p \le 0.05)$ in coculture, such as
	291	Treat-Ma group, decreased the
	292	pressure to avoid dehydration,
VEM	293	Compared to monoculture
	294	<i>M. aeruginosa</i> , such as 1-mono
	295	acid (0.60-fold) and arachidoni
	296	phospholipids are the primary of
5	297	Phospholipids are composed of
ogy		

276

- nses to stress (6), specifically the hydrolysis of DOP to
- under low DIP conditions. Higher metabolite levels
- wth, forming aggregates that are dominant in
- d produce various toxic substances that inhibit the
- conclusion is illustrated in Figures 1B and 3D, where
- the coculture system was faster than that in
- nt of MCs was produced. Overall, the upregulation of
- sa was beneficial for the production of MCs, AKP and
- petitive capacity and defensive ability of *M*.
- gy metabolism, play critical roles as signaling ectants (43). A significant increase of compatible solute tagatose, 1,5-anhydroglucitol, sucrose and allose in the
- water potential inside the cells to maintain osmotic
- as in the salt stress (43).
- e, coculture decreased the levels of several fatty acids in
- ppalmitin (0.76-fold), stearic acid (0.63-fold), palmitic
- ic acid (0.51-fold). Fatty acids and sterols with
- components of the plasma membrane (44).
- f polar head groups, glycerides, and two fatty acyl

298	chains. Glycerol metabolism, which is related to the polar head-group component of
299	phospholipid, significantly ($p \le 0.05$) increased upon exposure to coculture. These
300	findings support the hypothesis that <i>M. aeruginosa</i> adjusts its membrane composition
301	to maintain membrane integrity, and an increase in the cell division of <i>M. aeruginosa</i>
302	alters intracellular metabolism to rebuild membrane integrity.
303	Amino acids play important roles in cyanobacterial physiological processes by
304	acting as osmolytes, serving as precursors for the synthesis of defense-related
305	metabolites and signaling molecules (45). Therefore, it contributed to a holistic
306	understanding of cyanobacteria against stress (46). A number of amino acids,
307	including hydroxylamine (0.71-fold), norleucine (0.83-fold), N-methyl-DL-alanine
308	(0.71-fold), and alanine (0.72-fold), were lower in the Treat-Ma group than in the
309	Con-Ma group. We postulated that the decrease in amino acids (containing N
310	elements) in the Treat-Ma group was caused by the acceleration of protein synthesis
311	to satisfy the growth of <i>M. aeruginosa</i> . Aspartate can be synthesized by
312	microorganisms via TCA cycle intermediates, which is an important substrate for
313	microcystin biosynthesis in M. aeruginosa (47, 48). An increase in aspartate in
314	Treat-Ma may contribute to the over-production of microcystin (Figure 3D).
315	In microcosms, several intermediates involved in energy metabolism pathways,
316	such as glycolysis, TCA cycle and sugar metabolism, decreased after coculture in the
317	Treat-AM group (Figure 6C). The reduction of these intermediates could be attributed
318	to the reduced defensive ability of aquatic microorganisms caused by negative
319	environmental factors (pH, DO, MCs, DIP). This finding is also consistent with the

320 decrease in Chl-a in the aquatic microcosm after coculture.

321

322	Interspecies network of interactions. At the metabolomics level, the contents of the
323	following metabolites particularly increased in the Treat-AM group: d-glyceric acid
324	(1.78-fold), monoolein (1.63-fold) and diglycerol (1.63-fold; Table S2). Furthermore,
325	the concentrations of monoolein, d-glyceric acid, diglycerol and MCs (independently
326	analyzed by a beacon MC plate kit) in coculture medium were higher than those in
327	monoculture medium (Table 3), demonstrating that these compounds were secreted by
328	M. aeruginosa. Monoolein is nontoxic and biodegradable, while diglycerol can be
329	bioavailable as a carbon source (49, 50). To verify their potential allelopathic roles,
330	MCs and d-glyceric acid were added into separate monoculture microcosms. The
331	Chl-a content decreased with the presence of MCs in aquatic microcosms but
332	remained constant with glycerate acid (Figure 7), implying that MCs play a role in the
333	decrease in total phytoplankton in microcosms. We were unable to verify whether
334	MCs could change the original cultured microbial community. However, MCs caused
335	a decrease in total phytoplankton in microcosms. MCs appear to be toxic to some
336	nearby organisms, and the binding of MCs may protect cyanobacterial proteins from
337	oxidative stress to enhance the viability of cyanobacteria (27, 51). In addition to the
338	upregulation of metabolites, the downregulation of various substances (such as
339	glucose-1-phosphate, malonic acid, carnitine) metabolized by M. aeruginosa or
340	aquatic microorganisms was more obvious in coculture medium
341	(Treat-AMW/Con-AMW \leq 0.28, Table S3). The downregulation of these substances

342 may also affect the growth of aquatic microorganisms in cocultures compared to that343 in monocultures.

344	A schematic diagram of changes in <i>M. aeruginosa</i> and microbial communities
345	after coculture treatment is shown in Figure 8. Our study demonstrated that M.
346	aeruginosa can secrete AKP, making DOP produced by dying and decaying
347	microorganisms available when the P source is insufficient. At the same time, M .
348	aeruginosa produces a variety of toxic substances such as MCs, inhibiting some key
349	intermediates accumulating in energy metabolism pathways (such as glycolysis, TCA
350	cycle and sugar metabolism) in aquatic microorganisms and thus inhibiting microbial
351	growth. M. aeruginosa produced MCs, AKP and energy to enhance its competitive
352	capacity and defensive ability during its growth. M. aeruginosa slightly decreased
353	bacterial microbial community diversity and abundance but had a more significant
354	impact on the diversity and abundance of eukaryotes. Furthermore, some metabolites
355	released from <i>M. aeruginosa</i> or from <i>M. aeruginosa</i> lysis could be harmful to biota
356	and negatively affect the growth of algal competitors or predators, which could be the
357	key factor to enable this opportunistic group of photosynthetic prokaryotes to thrive in
358	a wide range of habitats.

Downloaded from http://aem.asm.org/ on August 20, 2019 at Boston Univ

359

360 MATERIALS AND METHODS

Aquatic microcosms and *M. aeruginosa* culture. Water samples were collected
 in sterile containers during the bloom-free phase from Meiliang Bay on Lake Taihu
 (30°55'40″-31°32'58″N; 119°52'32″-120°36'10″ E), a location where the water quality

AEM

Applied and Environmental Microbiology

364

365	received sterile BG-11 nutrient medium (initial $pH = 7.1$, chemical composition in
366	Table S1) (28). An axenic culture of <i>M. aeruginosa</i> (strain FACHB-905) obtained
367	from the Institute of Hydrobiology (Chinese Academy of Sciences, Wuhan, China),
368	was also grown on sterilized BG-11 liquid medium. All cultures were incubated in an
369	environmental chamber at 25 \pm 0.5 °C under cool-white fluorescent illumination (46
370	μ mol /m ² /s, 12 h light/12 h dark).
371	
372	Coculture experimental design. A coculture design was used to investigate the
373	interactions between axenic <i>M. aeruginosa</i> and aquatic microorganisms. Sterile
374	permeable dialysis cellulose membrane tubing (Economical Biotech Membrane, 14
375	KD, 77 mm Width; Sangon Biotech, Shanghai, China) was used to isolate M.
376	aeruginosa and lake water microbial communities from each other. This design
377	allowed for the exudation of small molecule compounds through the dialysis
378	membrane, and prevented cell contact between M. aeruginosa and naturally occurring
379	microbial populations (52).
380	Prior to incubation, both microorganisms and M. aeruginosa (which reached
381	approximately 10^7 cells/mL) were harvested by centrifugation (8,000 g for 10 min,
382	4 °C) and washed several times with ultrapure water. The microorganisms and M .
383	aeruginosa were cultured in modified BG11 (NaNO3: 10 mg/L, K2HPO4: 1 mg/L) for
384	1 d to allow them to adapt to experimental conditions, in which nitrate nitrogen
385	(NO ₃ ⁻ -N) and DIP were added at concentrations representative of ambient Lake Taihu

is monitored monthly, in Nov. 2017. Microorganisms first isolated from lake Taihu

386	water. Three groups of experiments were carried out to observe the growth of <i>M</i> .
387	aeruginosa and associated aquatic microorganisms: (1) the coculture group: an axenic
388	dialysis bag filled with 180 mL of M. aeruginosa (Treat-Ma) was submerged in 900
389	mL of aquatic microorganisms (Treat-AM) and cocultured in a sterilized 2000-mL
390	glass beaker; (2) control group 1: a dialysis bag filled with 180 mL of <i>M. aeruginosa</i>
391	(M. aeruginosa control group, Con-Ma) was submerged in 900 mL of M.
392	aeruginosa-containing medium. Because 900 mL of aquatic microorganisms were
393	added outside of the dialysis bag in the coculture group, in order to maintain the
394	culturing conditions consistent with the coculture group, 900 mL of M. aeruginosa
395	was also added to submerge the dialysis bag in the monoculture group. Samples for
396	analysis were collected only from the 180-mL dialysis bag; (3) control group 2:
397	similar to the control 1, a dialysis bag filled with 180 mL of aquatic
398	microorganism-containing medium was submerged in 900 mL of aquatic
399	microorganisms (aquatic microorganisms control group, Con-AM).
400	The initial cell density was calculated by optical density at 680 nm (OD_{680}). For
401	the microcosm, OD_{680} was selected as 0.03, which was similar to the value of water
402	samples collected from Lake Taihu. For M. aeruginosa, preliminary experiments were
403	conducted with OD ₆₈₀ at 0.03, 0.06 and 0.09 (approximately 1.72×10^5 cells/mL,
404	3.44×10^5 cells/mL and 5.16×10^5 cells/mL, respectively), which were within the same
405	order of cell densities measured in Lake Taihu during water bloom phase (13). The
406	results showed that the similar inhibitory effects of <i>M. aeruginosa</i> on aquatic
407	microorganisms among the 0.03, 0.06 and 0.09 OD_{680} groups were statistically

408

409

410	1A.
411	
412	Measurements of <i>M. aeruginosa</i> and microbial growth and physicochemical
413	water quality parameters. The growth status of <i>M. aeruginosa</i> and associated
414	microorganisms was monitored daily by spectrophotometry. In addition, the cell
415	density of <i>M. aeruginosa</i> was measured by cell counting, while the concentration of
416	Chl-a represented total phytoplankton biomass in the microcosm (2). During coculture,
417	the cell number and OD_{680} of <i>M. aeruginosa</i> and chlorophyll a (Chl-a) and OD_{680} of
418	the microcosm were measured every 24 h. The initially cultured M. aeruginosa was
419	enumerated microscopically to establish a linear regression equation between the
420	number of cells (y×10 ⁵ cells/mL) and OD ₆₈₀ (x). The number of cells was calculated
421	based on the equation $y = 34.1x + 0.7$ ($R^2 = 99.17$). A series of water quality
422	parameters was measured as follows: pH was measured using a pH meter (FE-20,
423	Mettler Toledo®, Columbus, Ohio, USA). Electrical conductivity (EC) was measured
424	using an EC meter (InPro 7100i/12/120, Mettler Toledo®, Zurich, Switzerland).
425	Dissolved oxygen (DO) was measured using a DO meter (Visiferm DO120, Hamilton
426	Bonaduz, Zurich, Switzerland). NO ₃ ⁻ -N, total phosphorus (TP), and DIP were
427	measured by ultraviolet spectrophotometry, ammonium molybdate spectrophotometry
428	and molybdenum rhenium spectrophotometry, respectively (53, 54). Alkaline
429	phosphatase (AKP) assays were performed using a commercial kit (Suzhou Comin
	20

significant (Figure S1). Therefore, the OD₆₈₀ of both *M. aeruginosa* and the

microcosm were selected as 0.03. The entire experimental process is shown in Figure

430	Biotechology Co., Ltd, Suzhou, China). AKP can hydrolyze a natural phospholipid
431	monoester complex and catalyze the formation of free phenol from sodium phenyl
432	phosphate. Phenol reacted with 4-aminoantipyrine and potassium ferricyanide to form
433	derivatives with characteristic light absorption at 510 nm.
434	
435	DNA extraction, amplification and sequencing, and microbial diversity analysis.
436	At 4 d and 8 d of incubation culture, samples were collected from control (Con-AM4
437	and Con-AM8, respectively) and coculture microcosms (Treat-AM4 and Treat-AM8,
438	respectively) for DNA extraction using a MoBio PowerSoil DNA Isolation Kit (Mo
439	Bio Laboratories Inc., Carlsbad, USA). Extracted DNA was used for Illumina 16S
440	rRNA/18S rRNA gene amplicon sequencing. The V3-V4 region of the 16S rRNA
441	gene was amplified using primers 341F (CCTAYGGGRBGCASCAG) and 806R
442	(GGACTACNNGGGTATCTAAT), and the V4 region of the 18S rRNA gene was
443	amplified using the primers 528F (GCGGTAATTCCAGCTCCAA) and 706R
444	(AATCCRAGAATTTCACCTCT). Each group was amplified in triplicate. All PCRs
445	were carried out with Phusion® High-Fidelity PCR Master Mix (Basel, Switzerland).
446	Sequencing libraries were generated using TruSeq® DNA PCR-Free Sample
447	Preparation Kit (Illumina, San Diego, USA) following the manufacturer's
448	recommendations, and index codes were added. The library quality was assessed on
449	the Qubit@ 2.0 Fluorometer (Thermo-Fisher Scientific, Carlsbad, USA) and Agilent
450	Bioanalyzer (Agilent 2100, Palo Alto, USA). Lastly, the library was sequenced on the
451	Illumina HiSeq2500 platform (Illumina, Inc., San Diego, USA), and 250-bp

452

453	(vision 1.6.0). Operational taxonomic units (OTU: number of species normalized to
454	the abundance of 16S rRNA/18S rRNA gene) were computed for each treatment. The
455	OTUs in samples were aligned with the SILVA database to classify the microbial
456	community into phylotypes.
457	Metabolomic analyses. At 8 d of incubation, approximately 0.3 g of <i>M</i> .
458	aeruginosa (Con-Ma and Treat-Ma), microorganism samples (Con-AM and Treat-AM)
459	and culture medium (Con-AMW and Treat-AMW) were collected from coculture and
460	monoculture systems for metabolomic analysis. M. aeruginosa or microorganism
461	samples were transferred to a 4-mL glass bottle with 20 μL of internal standard
462	(2-chloro-l-phenylalanine dissolved in methanol) and 600 μL of a mixture of
463	methanol and water (4/1, vol/vol). Chloroform (200 $\mu L)$ was added before ultrasonic
464	homogenization in an ice bath (500 W, 6 min, 6 s on, 4 s off). Samples were then
465	centrifuged at 10,000 g. for 15 min, and supernatants were collected for further
466	purification. The culture medium was filtered on 0.7- μ m porosity Whatman GF/F
467	fiberglass filters at 0.1 MPa, and the filtrates were collected for metabolomic analysis.
468	The supernatant (600 μ L) in a glass vial was dried in a centrifugal concentrating
469	freeze dryer, followed by the addition of 80 μL of pyridine (containing 15 mg/mL
470	methoxyamine hydrochloride). The resultant mixture was vortexed vigorously for 2
471	min and incubated at 37 °C for 90 min. BSTFA (80 $\mu L,$ with 1% TMCS) and 20 μL of

Downloaded from http://aem.asm.org/ on August 20, 2019 at Boston Univ

paired-end reads were generated. Microbial diversity was computed using QIIME

472 n-hexane were added into the mixture, vortexed vigorously for 2 min and then

473 derivatized at 70 °C for 60 min. The derivatized samples were analyzed on an Agilent

474	7890A gas chromatograph coupled to an Agilent 5975C MSD system (Agilent, Palo
475	Alto, USA). An HP-5MS fused-silica capillary column (30 m \times 0.25 mm \times 0.25 $\mu\text{m},$
476	Agilent J &W Scientific, Palo Alto, USA) was utilized to separate the derivative.
477	Finally, all MS data were analyzed using ChromaTOF software (v 4.34, LECO, St
478	Joseph, MI, USA).
479	Quantification of MCs in culture medium. To measure MCs in the medium,
480	water was collected from aquatic microcosms in 1.5-mL tubes and centrifuged at
481	10,000 g for 10 min at 4 °C. Then, the supernatants were used to assay MC content
482	using a beacon MC plate kit according to the manufacturer's instructions (Beijing
483	Ease Century Trade Co., Ltd, Beijing, China). The Beacon Microcystin Plate Kit uses
484	a polyclonal antibody that binds both microcystins and a microcystin-enzyme
485	conjugate for a limited number of antibody binding sites, which however, cannot
486	differentiate between MC-LR and other MC variants.
487	Statistical analyses. Statistical significance among data for the biochemical and
488	physiological measurements was tested with one-way ANOVAs (StatView 5.0)
489	(Statistical Analysis Systems Institute, Cary, NC, USA). Differences were considered
490	statistically significant when $p < 0.05$. Metabolomics data sets were normalized to the
491	total peak area of each sample in Excel 2007 (Microsoft, USA) and imported into a
492	SIMCA (version 14.0, Umetrics, Umeå, Sweden). Each sample was taken from
493	different cultures. Metabolomics analysis was set up in six replicates, and the
494	remaining experiments were set up in triplicate. All samples were taken at

- 495 approximately 9 am. Data was presented as the mean ± standard error of the mean
 496 (SEM).
- 497 **Data availability.** The 16S and 18S rRNA gene sequence data generated in this

498 study have been deposited and are available in the NCBI Sequence Read Archive

499 (SRA) with accession numbers SAMN12388980- SAMN12388991 (16S), and

500 SAMN12394199- SAMN12394210 (18S).

501

502 ACKNOWLEDGEMENTS

- 503 This work was financially supported by the National Natural Science Foundation of
- 504 China (21777144, 21577128) and the USA National Science Foundation, Dimensions
- 505 in Microbial Diversity Program (1831096).

506

Applied and Environmental

Microbiology

507 References

- 508 1. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic
- shifts in ecosystems. Nature 413, 591-596.
- 510 2. Pace, M.L., Batt, R.D., Buelo, C.D., Carpenter, S.R., Cole, J.J., Kurtzweil, J.T.,
- 511 Wilkinson, G.M., 2017. Reversal of a cyanobacterial bloom in response to early
- 512 warnings. Proceedings of the National Academy of Sciences USA 114, 352-357.
- 513 3. Paerl, H.W., Otten, T.G., 2013. Harmful cyanobacterial blooms: causes,
- 514 consequences, and controls. Microbial Ecology 65, 995-1010.
- 515 4. Otten, T.G., Paerl, H.W., Dreher, T.W., Kimmerer, W.J., Parker, A.E., 2017. The
- 516 molecular ecology of *Microcystis sp.* blooms in the San Francisco estuary.
- 517 Environmental Microbiology 19, 3619-3637.
- 518 5. Paerl, H.W., 2008. Nutrient and other environmental controls of harmful
- 519 cyanobacterial blooms along the fresh water marine continuum. Advances in
- 520 Experimental Medicine and Biology 619, 217-237.
- 521 6. Ren, L., Wang, P., Wang, C., Chen, J., Hou, J., Qian, J., 2017. Algal growth and
- 522 utilization of phosphorus studied by combined monocultures and co-culture
- 523 experiments. Environmental Pollution 220, 274-285.
- 524 7. Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y., Gardner, W.S., 2011.
- 525 Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake
- 526 Taihu, China): the need for a dual nutrient (N & P) management strategy. Water
- 527 Research 45, 1973-1983.
- 528 8. Paerl, H.W., Huisman. J., 2008. Blooms like it hot. Science 320, 57-58.
- 529 9. Lewis, W.M., Wurtsbaugh, W.A., Paerl, H.W., 2011. Rationale for control of

530	anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters.
531	Environmental Science & Technology 45, 10300-10305.
532	10. Saxton, M.A., Arnold, R.J., Bourbonniere, R.A., McKay, R.M., Wilhelm, S.W.,
533	2012. Plasticity of total and intracellular phosphorus quotas in <i>Microcystis</i>
534	<i>aeruginosa</i> cultures and Lake Erie algal assemblages. Frontiers in Microbiology
535	3. 3-11.
536	11 Harke M I. Davis T.W. Watson S.B. Gobler C.I. 2016 Nutrient-controlled
530	niche differentiation of western leke Erie eveneheeteriel nonvlatione revealed vie
557	niche differentiation of western fake Ene cyanobacterial populations revealed via
538	metatranscriptomic surveys. Environmental Science & Technology 50, 604-615.
539	12. Paerl, H.W., Otten, T.G., 2016. Duelling 'CyanoHABs': unravelling the
540	environmental drivers controlling dominance and succession among diazotrophic
541	and non-N ₂ -fixing harmful cyanobacteria. Environmental Microbiology 18,
542	316-324.
543	13. Song, H., Lavoie, M., Fan, X., Tan, H., Liu, G., Xu, P., Fu, Z., Paerl, H.W., Qian,
544	H., 2017a. Allelopathic interactions of linoleic acid and nitric oxide increase the
545	competitive ability of Microcystis aeruginosa. ISME Journal 11, 1865-1876.
546	14. Liu, G., Ke, M., Fan, X., Zhang, M., Zhu, Y., Lu, T., Sun, L., Qian, H., 2018.
547	Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in
548	female zebrafish. Chemosphere 192, 289-296.
549	15. Qian, H., Zhang, M., Liu, G., Lu, T., Sun, L., Pan, X., 2018b. Effects of different
550	concentrations of Microcystis aeruginosa on the intestinal microbiota and
551	immunity of zebrafish (Danio rerio). Chemosphere 214, 579-586.

552	16. Qian, H., Xu, J., Lu, T., Zhang, Q., Qu, Q., Yang, Z., Pan, X., 2018a. Responses of
553	unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Science of
554	the Total Environment 625, 1415-1422.
555	17. Liu, L., Chen, H., Liu, M., Yang, J.R., Xiao, P., Wilkinson, M., Yang, J., 2019.
556	Response of the eukaryotic plankton community to the cyanobacterial biomass
557	cycle over 6 years in two subtropical reservoirs. ISME Journal 13,
558	doi.org/10.1038/s41396-019-0417-9.
559	18. Liu, M., Liu, L., Chen, H., Zheng, Y., Yang, J.R., Xue, Y., Huang, B., Yang,
560	J.,2019. Community dynamics of free-living and particle-attached bacteria
561	following a reservoir Microcystis bloom. Science of the Total Environment 660,
562	501-511.
563	19. Tang, X., Gao, G., Chao, J., Wang, X., Zhu, G., Qin, B., 2010. Dynamics of
564	organic-aggregate-associated bacterial communities and related environmental
565	factors in Lake Taihu, a large eutrophic shallow lake in China. Limnology and
566	Oceanography 55, 469-480.
567	20. Wilhelm, S.W., Farnsley, S.E., Lecleir, G.R., Layton, A.C., Satchwell, M.F.,
568	Debruyn, J.M., Boyer, G.L., Zhu, G., Paerl, H.W., 2011. The relationships
569	between nutrients, cyanobacterial toxins and the microbial community in Taihu
570	(Lake Tai), China. Harmful Algae 10, 207-215.
571	21. Ullah, H., Nagelkerken, I., Goldenberg, S.U., Fordham, D.A., 2018. Climate
572	change could drive marine food web collapse through altered trophic flows and
573	cyanobacterial proliferation. PloS Biology 16, e2003446.

574	22. DeMott, W. R., Gulati, R. D., Van Donk, E., 2001. Daphnia food limitation in						
575	three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species						
576	by interfering filaments of cyanobacteria. Limnology and Oceanography 46,						
577	2054-2060.						
578	23. Paerl, H.W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and						
579	inland waters. Limnology and Oceanography 33, 823-847.						
580	24. Brauer, V.S, Stomp, M, Bouvier, T, Fouilland, E, Leboulanger, C, Confurius-Guns,						
581	V, Weissing, F.J, Stal, L, Huisman, J., 2015. Competition and facilitation between						
582	the marine nitrogen-fixing cyanobacterium Cyanothece and its associated						
583	bacterial community. Frontiers in Microbiology 5, 795.						
584	25. Hmelo, L.R., van Mooy, B.A.S., Mincer, R. J., 2012. Characterization of bacterial						
585	epibionts on the cyanobacterium Trichodesmium. Aquatic Microbial Ecology 67,						
586	1-14.						
587	26. de Figueiredo, D.R., Reboleira, ASSP., Antunes, S.C., Abrantes, N., Azeiteiro, U.,						
588	Goncalves, F., Pereira, M.J., 2006. The effect of environmental parameters and						
589	cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate						
590	lake. Hydrobiologia 568, 145-157.						
591	27. Jones, B.I., 1987. Lake Okeechobee eutrophication research and management.						
592	Aquatics 9, 21-26.						
593	28. Lu, T., Zhu, Y., Ke, M., Peijnenburg, W.J.G.M., Zhang, M., Wang, T., Chen, J.,						
594	Qian, H., 2019. Evaluation of the taxonomic and functional variation of						
595	freshwater plankton communities induced by trace amounts of the antibiotic						

596	ciprofloxacin. Environment International 126, 268-278.								
597	29. Klase, G., Lee, S., Liang, S., Kim, J., Zo, Y.G., Lee, J., 2019. The microbiome and								
598	antibiotic resistance in integrated fishfarm water: Implications of environmental								
599	public health. Science of The Total Environment 649, 1491-1501.								
600	30. Sebastian, M., Ammerman, J.W., 2009. The alkaline phosphatase PhoX is more								
601	widely distributed in marine bacteria than the classical PhoA. ISME Journal 3,								
602	563-572.								
603	31. Paerl, H.W. and Millie, D.F., 1996. Physiological ecology of toxic cyanobacteria.								
604	Phycologia 35, 160-167.								
605	32. Sukenik, A., Quesada, A., Salmaso, N., 2015. Global expansion of toxic and								
606	non-toxic cyanobacteria: effect on ecosystem functioning. Biodiversity and								
607	Conservation 24, 889-908.								
608	33. Qian, H., Zhu, Y., Chen, S., Jin, Y., Lavoie, M., Ke, M., Fu, Z., 2018c. Interacting								
609	effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification.								
610	Pesticide Biochemistry and Physiology 146, 90-96.								
611	34. Te, S.H., Tan, B.F., Thompson, J.R., Gin, K.Y., 2017. Relationship of microbiota								
612	and cyanobacterial secondary metabolites in planktothricoides-dominated bloom.								
613	Environmental Science & Technology 51, 4199-4209.								
614	35. Haraldsson, M., Gerphagnon, M., Bazin, P., Colombet, J., Tecchio, S.,								
615	Sime-Ngando, T., Niquil, N., 2018. Microbial parasites make cyanobacteria								
616	blooms less of a trophic dead end than commonly assumed. ISME Journal 12,								
617	1008-1020.								
	29								

AEM

Applied and Environmental Microbiology

618	36. Xue, Y., Chen, H., Yang, J.R., Liu, M., Huang, B., Yang, J., 2018. Distinct patterns									
619	and processes of abundant and rare eukaryotic plankton communities following a									
620	reservoir cyanobacterial bloom. ISME Journal 12, 2263-2277.									
621	37. Zhang, H.L., Du, W.C., Peralta-Videa, J.R., Gardea-Torresdey, J.L., White, J.C.,									
622	Keller, A., Guo, H.Y., Ji, R., Zhao, L.J., 2018. Metabolomics reveals how									
623	cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and									
624	silver nanoparticle-induced oxidative stress. Environmental Science &									
625	Technology 52, 8016-8026.									
626	38. Welkie, D.G., Rubin, B.E., Diamond, S., Hood, R.D., Savage, D.F., Golden, S.S.,									
627	2019. A hard day's night: cyanobacteria in diel cycles. Trends in Microbiology 27,									
628	231-242.									
629	39. Stincone A., Prigione A., Cramer, M.M.T., Wamelink, K. Campbell, E. Cheung, V.									
630	Olin-Sandoval, Grüning, A. N., Krüger, M. Tauqeer Alam., 2014. The return of									
631	metabolism: biochemistry and physiology of the pentose phosphate pathway.									
632	Biological Reviews 90, 927-963.									
633	40. Zhao, L., Huang, Y., Adeleye, A.S., Keller, A.A., 2017. Metabolomics reveals									
634	$Cu(OH)_2$ nanopesticide-activated anti-oxidative pathways and decreased									
635	beneficial antioxidants in spinach leaves. Environmental Science & Technology									
636	51, 10184-10194.									
637	41. Zhang, H., Zhao, Z., Kang, P., Wang, Y., Feng, J., Jia, J., Zhang, Z., 2018a.									
638	Biological nitrogen removal and metabolic characteristics of a novel aerobic									
639	denitrifying fungus Hanseniaspora uvarum strain KPL108. Bioresource									
	20									

- 641 42. Zhang, H., Du, W., Peralta-Videa, J., Gardea-Torresdey, J., White, J., Keller, A.,
- 642 Guo, H., Ji, R., Zhao, L., 2018b. Metabolomics reveals how cucumber (*Cucumis*
- 643 *sativus*) reprograms metabolites to cope with silver ions and silver
- 644 nanoparticle-induced oxidative stress. Environmental Science & Technology 52,
 645 8016-8026.
- 43. Tanabe, Y., Hodoki, Y., Sano, T., Tada, K., Watanabe, M.M., 2018, Adaptation of
- 647 the Freshwater bloom-forming cyanobacterium *Microcystis aeruginosa* to
- brackish water is driven by recent horizontal transfer of sucrose genes. Frontiers
 in Microbiology 9, 1150.
- 44. Zhao, L., Huang, Y., Paglia, K., Vaniya, A., Wancewicz, B., Keller, A.A., 2018.
- 651 Metabolomics reveals the molecular mechanisms of copper induced cucumber

- leaf (*Cucumis sativus*) senescence. Environmental Science & Technology 52,
 7092-7100.
- 45. Waal, D.B.V.D., Ferreruela, G., Tonk, L., Donk, E.V., Huisman, J., Visser, P.M.,
- 655 Matthijs, H.C.P., 2010. Pulsed nitrogen supply induces dynamic changes in the
- amino acid composition and microcystin production of the harmful
- 657 cyanobacterium *Planktothrix agardhii*. FEMS Microbiology Ecology, 74,
- *430-438.*
- 46. Hartmann, J., Albert. A., Ganzera, M., 2015. Effects of elevated ultraviolet
- 660 radiation on primary metabolites in selected alpine algae and cyanobacteria.
- Journal of Photochemistry and Photobiology B: Biology 149, 149-155.

662	47. Dai, R., Liu, H., Qu, J., Zhao, X., Hou, Y., 2009. Effects of amino acids on								
663	microcystin production of the Microcystis aeruginosa. Journal of Hazardous								
664	Materials 161, 730-736.								
665	8. Cao, D.D., Zhang, C.P., Zhou, K., Jiang, Y.L., Tan, X.F., Xie, J., Ren, Y.M., Chen,								
666	Y., Zhou, C.Z., Hou, W.T., 2019. Structural insights into the catalysis and								
667	substrate specificity of cyanobacterial aspartate racemase McyF. Biochemical								
668	and Biophysical Research Communications 514, 1108-1114.								
669	49. GanemQuintanar, A., QuintanarGuerrero, D., Buri, P., 2000. Monoolein: A review								
670	of the pharmaceutical applications. Drug Development and Industrial Pharmacy								
671	26, 809-820.								
672	50. da Silva, G.P., Mack, M., Contiero, J., 2009. Glycerol: a promising and abundant								
673	carbon source for industrial microbiology. Biotechnology Advances 27, 30-39.								
674	51. Yvonne, Z., Jan-Christoph, K., Sven, M., Keishi, I., Stefan, M., Martin, H., Aaron,								
675	K., Thomas, B.R., Elke, D., 2011. The cyanobacterial hepatotoxin microcystin								
676	binds to proteins and increases the fitness of microcystis under oxidative stress								
677	conditions. PLoS One 6, e17615.								
678	52. Poulsonellestad, K.L., Jones, C. M., Roy, J., Viant, M. R., Fernández, F. M.,								
679	Kubanek, J., Nunn, B.L., 2014. Metabolomics and proteomics reveal impacts of								
680	chemically mediated competition on marine plankton. Proceedings of the								
681	National Academy of Sciences USA 111, 9009-9014.								
682	53. Song, H., Xu, J., Lavoie, M., Fan, X., Liu, G., Sun, L., Fu, Z., Qian, H., 2017b.								
683	Biological and chemical factors driving the temporal distribution of								

684	cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China).
685	Applied Microbiology and Biotechnology 101, 1685-1696.
686	54. Fan, X., Xu, J., Lavoie, M., Peijnenburg, W., Zhu, Y., Lu, T., Fu, Z., Zhu, T., Qian,
687	H., 2018. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis
688	thaliana. Environmental Pollution 233, 633-641.
689	

AEM

33

690 Tables and Figures

691 **Table Legends**

- Table 1 16S Alpha diversity in prokaryotic communities after 4 and 8 d of coculture
- 693 (Treat-AM4 and Treat-AM8) and monoculture (Con-AM4 and Con-AM4). Different
- letters represent significant differences within one index (p < 0.05). n = 3

695

- Table 2 18S Alpha diversity in eukaryotic communities after 4 and 8 d of coculture
- 697 (Treat-AM4 and Treat-AM8) and monoculture (Con-AM4 and Con-AM4). Different
- 698 letters represent significant differences within one index (p < 0.05). n = 3

699

- 700 Table 3 Metabolic profile changes in culture medium samples of microcosms. VIP
- 701 represents variable importance.
 - 702

Applied and Environmental Microbiology

703 Figure Legends

704	Figure 1 Design of the experiment and the growth tendency of <i>M. aeruginosa</i> and								
705	aquatic microorganisms in monoculture and coculture. (A) Experimental flow chart.								
706	(B) Optical density (OD_{680}) and cell number of <i>M. aeruginosa</i> . (C) Optical density								
707	(OD ₆₈₀) and chlorophyll a (Chl-a) of aquatic microcosms. *, ** and *** represent								
708	statistically significant differences compared with the control ($p < 0.05$, 0.01 and								
709	0.001, respectively). n = 3.								
710									
711	Figure 2 Water quality parameters of monocultures and cocultures in <i>M. aeruginosa</i>								
712	and aquatic microcosms. (A, B) Electrical conductivity, (C, D) dissolved oxygen								
713	concentrations, and (E, F) pH in <i>M. aeruginosa</i> and aquatic microcosms. *, ** and								
714	*** represent statistically significant differences compared with the control ($p < 0.05$,								
715	0.01 and 0.001, respectively). $n = 3$.								
716									
717	Figure 3 (A) Changes in total phosphorus (TP) and inorganic phosphorus (IP) in								
718	culture medium. (B) Changes in the nitrate nitrogen (NO3 ⁻ -N) concentration in culture								
719	medium. (C) Changes in the alkaline phosphatase (AKP) concentration in Microcystis								
720	aeruginosa cells. *, ** and *** represent statistically significant differences compared								
721	with the control ($p < 0.05$, 0.01 and 0.001, respectively). (D) Changes in the								
722	microcystin (MC) concentration in culture medium. $n = 3$.								
723									
724	Figure 4 (A) Relative abundance of the 16S rRNA gene of the PCoA plot and (B)								

725	RDA ordination diagram of the data, with environmental variables represented by
726	arrows and samples represented by different colors. (C) The main prokaryotic class of
727	the bacterial communities after 4 and 8 d of coculture (Treat-AM4 and Treat-AM8)
728	and monoculture (Con-AM4 and Con-AM8). (D) Top four genera of abundance in
729	Cyanobacteria after 4 and 8 d of coculture (Treat-AM4 and Treat-AM8) and
730	monoculture (Con-AM4 and Con-AM8) in aquatic microcosms. Each group had three
731	biological replicates.
732	
733	Figure 5 (A) Relative abundance of the 18S rRNA gene of PCoA plot and (B) main
734	eukaryotic phylum of the microbial communities after 4 and 8 d of coculture
735	(Treat-AM4 and Treat-AM8) and monoculture (Con-AM4 and Con-AM8). (C)
736	Scattered atlas of rare microorganisms (Taxonomy represent rare microorganism
737	species). The figure is symmetric along the diagonal, and each dot in the graph
738	represents a rare microbial genus. The first row and the first column represent the
739	distribution of rare microorganisms. The genus near the axis has the lowest relative
740	abundance. The remaining rows or columns represent the comparison between the
741	two groups. Each group had three biological replicates.
742	
743	Figure 6 (A) Principal component analysis (PCA) of intracellular M. aeruginosa
744	metabolites, cellular microorganisms and culture medium after 8 d of coculture and
745	monoculture. (B) Schematic diagram of proposed metabolic pathways in cellular M.
746	aeruginosa metabolites and (C) cellular microorganisms after 8 d of coculture and

≶	
ш	
\triangleleft	

7	47	monoculture. Red and green represent up- and downregulated metabolites,
7	48	respectively. Each group had six biological replicates. PR: photorespiration; PS:
7	49	photosynthesis.
7	50	
7	51	Figure 7 Content of Chl-a in aquatic microcosms with monoculture exposed to (a)
7	52	0-10 μ g/L microcystin and (b) 0-2 mg/L D-glyceric acid for different periods of time.
7	53	
7	54	Figure 8 Schematic diagram of changes in <i>M. aeruginosa</i> and microbial communities
7	55	after coculture treatment. The red color represents upregulation of the metabolites in
7	56	the treatment group compared to that in the control group, and blue and green colors
7	57	represent downregulation of metabolites.
7	58	

759	Table 1	16S Alpha	diversity i	in prokaryo	tic communities	after 4 and	d 8 d of coculture
-----	---------	-----------	-------------	-------------	-----------------	-------------	--------------------

760 (Treat-AM4 and Treat-AM8) and monoculture (Con-AM4 and Con-AM4). Different

Sample	Observed	Shannon	Simpson	ACE	Chao 1	Goods
	species					coverage
Con-AM4	303±25 ^a	3.11±0.08 ^{ab}	0.71±0.01 ^{ab}	393±25 ^a	396±27 ^a	0.99±0.00 ^a
Treat-AM4	282±52 ^{ab}	3.19±0.23 ^a	0.73±0.02 ^a	353±64 ^a	360±64 ^a	0.99 ± 0.00^{a}
Con-AM8	247±25 ^{ab}	2.80±0.04 ^{ab}	0.65±0.01 ^{ab}	323±37 ^a	319±30 ^a	0.99±0.00 ^a
Treat-AM8	197±10 ^b	2.55±0.27 ^b	$0.63{\pm}0.05^{b}$	306±7 ^a	297±18 ^a	0.99 ± 0.00^{a}

Downloaded from http://aem.asm.org/ on August 20, 2019 at Boston Univ

761 letters represent significant differences within one index (p < 0.05). n = 3

762

763 Tabl	e 2 18S	Alpha	diversity	in et	ikaryotic	communities	after 4	and 8	s d o	f coculture
----------	---------	-------	-----------	-------	-----------	-------------	---------	-------	-------	-------------

764 (Treat-AM4 and Treat-AM8) and monoculture (Con-AM4 and Con-AM4). Different

Sample	Observed	Shannon	Simpson	ACE	Chao 1	Goods
	species					coverage
Con-AM4	46±1 ^a	2.28±0.03 ^a	0.76±0.00 ^a	56±4 ^a	396±27 ^a	0.99±0.00 ^a
Treat-AM4	25±1 ^b	1.98±0.04 ^b	0.68±0.01 ^{bd}	29±2 ^{bc}	360±64 ^a	0.99±0.00 ^a
Con-AM8	34 ± 4^{c}	2.14±0.04 ^c	0.71±0.01 ^c	39±4 ^b	319±30 ^a	0.99±0.00 ^a
Treat-AM8	26±2 ^{bc}	$1.77{\pm}0.04^d$	0.67±0.01 ^{bd}	28±1 ^c	297±18 ^a	0.99±0.00 ^a

165 letters represent significant differences within one index (p < 0.05). n = 3

766

767 Table 3 Metabolic profile changes in culture medium samples of microcosms. VIP

⁷⁶⁸ represents variable importance.

Up or dowr	Candidate metabolite	VIP value	Fold change	P value
regulation				
A	Phenaceturic acid	1.00448	00	3.12E-05
▲	Monoolein	1.03266	œ	4.73E-06
▲	3,6-Anhydro-D-galactose	1.05576	∞	6.23E-07
	Dihydroxyacetone	1.06905	∞	8.77E-08
	D-Glyceric acid	1.06959	∞	8.71E-08

	L-Threose	1.07709	∞	1.34E-08
▲	Fucose	1.08395	∞	1.86E-09
	Thymidine	1.09358	x	9.58E-13
	Diglycerol	1.09455	∞	1.38E-13
	Glycerol	1.09643	11.02	4.84E-18

770

771 772 Figure 1

774 775

Accepted Manuscript Posted Online

Figure 2

778 779

AEM

Applied and Environmental Microbiology

781 782 783

Applied and Environmental Microbiology

Figure 4

785 786

787

788 Figure 5

789 790

791 Figure 6

Downloaded from http://aem.asm.org/ on August 20, 2019 at Boston Univ

792 793

794 Figure 7

799 800