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Abstract
Light is a primary driver of lake ecosystem metabolism, and the dependence of primary production on light

is often quantified as a photosynthesis-irradiance or “P-I” curve. The parameters of the P-I curve (e.g., the maxi-
mum primary production when light is in excess) can change through time due to a variety of biological factors
(e.g., changes in biomass or community composition), which themselves are subject to external drivers
(e.g., herbivory or nutrient availability). However, the relative contribution of variation in the P-I curve to over-
all ecosystem metabolism is largely unknown. I developed a statistical model of ecosystem metabolism with
time-varying parameters governing the P-I curve, while also accounting for the influence of temperature.
I parameterized the model with dissolved oxygen time series spanning six summers from Lake Mývatn, a shal-
low eutrophic lake in northern Iceland with large temporal variability in ecosystem metabolism. All of the esti-
mated parameters of the P-I curve varied substantially through time. The sensitivity of primary production to
light under light-limiting conditions was particularly variable (>15-fold) and had a compensatory relationship
with ambient light levels. However, the 3.5-fold variation in the maximum potential primary production made
the largest contribution to variation in ecosystem metabolism, accounting for around 90% of the variance in
net ecosystem production. Much of the variation in maximum primary production was attributable to
cyanobacterial blooms, which occur in some but not all years in Mývatn. Overall, these results illustrate how
changes in the P-I curve contribute substantially to temporal variation in lake ecosystem metabolism.

Ecosystem metabolism, the biological assimilation and
release of carbon, is central to the function of aquatic ecosys-
tems (Hanson et al. 2003; Staehr et al. 2010a,b). Photosynthesis
stores light energy in the form of organic compounds, and
gross carbon assimilation (known as gross primary production
or GPP) provides metabolic energy and structural material to
primary producers, higher trophic levels, and detrital food
webs (Del Giorgio et al. 1999; Carpenter et al. 2001; Chapin
et al. 2006). In ecosystems without substantial external carbon
inputs, in situ GPP constrains total biological productivity,
which in turn influences ecological dynamics across organiza-
tional scales (Del Giorgio et al. 1999; Fussmann 2000; Staehr
et al. 2010b). The counterpart to GPP is ecosystem respiration
(ER), which includes the oxidation of organic carbon and sub-
sequent energy utilization by all organisms in the ecosystem
(Chapin et al. 2006; Solomon et al. 2013). The balance between
GPP and ER determines the net assimilation or release of car-
bon due to biological processes (net ecosystem production or
NEP), which plays a key role in ecosystem carbon budgets
(Randerson et al. 2002; Chapin et al. 2006; Demars et al. 2016).

Freshwater ecosystems can be either sources or sinks of CO2

and make substantial contributions to regional carbon cycling,
especially in landscapes with high densities of freshwater bod-
ies (Cole et al. 2007; Raymond et al. 2013; Demars et al. 2016;
Holgerson and Raymond 2016). Therefore, characterizing the
physical and biological controls of ecosystem metabolism is
important for predicting both the local function and regional
impacts of freshwater systems.

Light is a fundamental requirement of photosynthesis, and
the dependence of ecosystemmetabolism on light is often charac-
terized by photosynthesis-irradiance or “P-I” curves (Jassby and
Platt 1976; Behrenfeld and Falkowski 1997; Staehr et al. 2016)
(Fig. 1). In this framework, variation in lake metabolism arises
from two sources: (1) variation in light levels and (2) variation in
the P-I curve. Aquatic ecosystems experience substantial variabil-
ity in light due to changes in solar irradiance (e.g., diel and
seasonal cycles; changes in cloud cover) and water clarity
(e.g., resuspension of sediment; phytoplankton blooms). Changes
in the P-I curve result from biological processes across organiza-
tional scales (Falkowski 1984). At the cellular level, photosyn-
thetic rates vary with temperature, availability of nutrients, and
physiological regulation (Falkowski 1984; Davison 1991; Edwards
et al. 2011). For example, aquatic primary producers can increase
production of photosynthetic pigments with response to chronic
light limitation, thereby increasing their sensitivity to a given
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amount of light (Falkowski 1984; Moore et al. 2006; Dubinsky
and Stambler 2009). At the population and community scale,
photosynthetic rates may change due to variation in primary pro-
ducer biomass, rapid evolution, and species composition
(Carpenter and Kitchell 1984; Vrede et al. 2009; Schwaderer et al.
2011; Edwards et al. 2015), which can either occur with response
to the physical environment or through interactions with other
organisms (e.g., competition with other producers; herbivory by
zooplankton) (Carpenter and Kitchell 1984; Bergquist and Car-
penter 1986; Yoshiyama et al. 2009; Hashioka et al. 2013).

In addition to variation in photosynthesis (i.e., GPP),
changes in respiration (i.e., ER) can also alter P-I relationships.
It is common in studies of lake metabolism to assume that ER
is independent of variation in light (but see Sadro et al. 2011;
Schindler et al. 2017 for discussion of how ER can change with
light), which means that variation in ER changes the intercept
of the P-I curve (Fig. 1). ER comprises respiration by both auto-
trophs (i.e., primary producers) and heterotrophs, and so ER is
determined in part by their respective biomasses that can vary
substantially through time (Del Giorgio et al. 1999). The extent
to which heterotrophic production (and therefore respiration)
is coupled with GPP is expected to depend on the dominant
source of carbon in the system (Del Giorgio et al. 1999; Solo-
mon et al. 2013). Many freshwater ecosystems are dominated
by allochthonous (external) sources of carbon, especially
those with extensive boundaries along terrestrial landscapes
(e.g., streams) (Thorp and Delong 2002; Hoellein et al. 2013).
In these ecosystems, heterotrophic respiration (and total ER)
can exceed GPP and changes with response to variation in the
allochthonous resource (Hanson et al. 2003; Cole et al. 2006;
Ask et al. 2009; Staehr et al. 2010b). Conversely, in ecosystems
with relatively low allochthonous inputs, ER should be more

strongly coupled to GPP, due to both respiration by primary
producers and respiration by heterotrophs whose primary
source of carbon is in situ GPP (Solomon et al. 2013). On
shorter time scales, ER is driven by variation in temperature
(Solomon et al. 2013; Demars et al. 2016; Song et al. 2018), due
to the thermal dependence of enzyme kinetics. GPP may also
be influenced by changes in temperature, although ER is
assumed to be more sensitive to temperature (but see Demars
et al. 2016).

Despite the large potential for temporal variation in the P-I
curve for NEP due to biological changes in GPP and ER, the rel-
ative contribution of this variation to ecosystem metabolism is
not fully understood (but see Staehr et al. 2016 for an assess-
ment of variation in light saturation and photoinhibition of
metabolism across 15 lakes). In this study, I present a statistical
model of ecosystem metabolism with time-varying parameters
governing the P-I curve, and I fit the model to observations of
dissolved oxygen (DO) from Lake Mývatn in northern Iceland.
This approach builds on a large body of work utilizing time
series of DO to infer ecosystem metabolism in aquatic systems,
relying on the fact that photosynthesis releases oxygen while
aerobic respiration consumes oxygen and assuming that respec-
tive conversions between CO2 and O2 fluxes are approximately
equal (Odum 1956; Hanson et al. 2008; Holtgrieve et al. 2010;
Staehr et al. 2010a; Richardson et al. 2017). The model includes
explicit dependence of GPP and ER on temperature, because
temperature is a well-documented driver of the physiological
processes contributing to ecosystem metabolism (Demars
et al. 2016). Beyond the effects of light and temperature, the
parameters of the P-I curve vary smoothly through time as
stochastic processes and thereby capture temporal variation
in ecosystem metabolism due to changes in the P-I curve
itself. These changes could be due to a variety of biological
factors (e.g., organismal traits, biomass, or community com-
position) which themselves could be influenced by changes
in other physical and biological variables (e.g., herbivory,
nutrient availability, or lake mixing).

I applied this method to DO time series from Lake Mývatn
spanning six summers to (1) characterize temporal variation in
Mývatn’s P-I relationship, (2) evaluate the contribution of this
variation to changes in ecosystemmetabolism, and (3) evaluate
the contribution of different variables to the coupling of GPP
and ER. Mývatn is dynamic with much of its ecology being
driven by midges (Diptera: Chironomidae) that fluctuate across
four orders-of-magnitude and constitute the majority of the
lake’s secondary biomass production (Einarsson et al. 2004).
The midges are ecosystem engineers and locally stimulate both
GPP and ER, such that their population fluctuations may con-
tribute to large variation in Mývatn’s whole-lake metabolism
(Herren et al. 2017; Phillips et al. 2019). Furthermore, while
Mývatn is generally dominated by benthic primary production
during clear-water phases, it is also subject to cyanobacterial
blooms that are occasionally very thick and may shift the
majority of production from benthic to pelagic (Einarsson
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Fig. 1. P-I curve for ecosystem metabolism. The dashed lines illustrate
the contribution of each parameter of the P-I curve. The dotted line shows
NEP of 0, where GPP equals ER (since NEP = GPP – ER).
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et al. 2004). The dynamic nature of Mývatn’s ecology likely
results in large variation in its responses to light and tempera-
ture, making it a useful case for partitioning the relative
contribution of different sources of variation in ecosystem
metabolism.

Methods
Study system

Mývatn is located in the northeast Iceland (65�40 N, 17�00
W), approximately 100 km south of the Arctic Circle and has
a tundra-subarctic climate (Björnsson and Jónsson 2004). The
lake has two basins (north and south) connected by a narrow
channel; the south basin is larger (28.2 km2) and is the central
focus of this study. The south basin is shallow (mean
depth = 2.3 m; max depth = 4 m) and has a consistent water
level and flow rate due to the stability of its groundwater source
(Einarsson et al. 2004). Mývatn does not stratify in the summer
and its water temperature closely tracks the air temperature
(Einarsson et al. 2004). On average, the majority of the south
basin is frozen for 190 d per year. Phosphorous- and silicon-rich
cold springs (inputs of N, P, and Si = 1.4, 1.5, and 340 g m−2

yr−1) feed the south basin; water column concentrations are
spatially variable but average values for the center of the lake
for N, P, and Si are 0.196, 0.0135, and 3.75 mg L−1, respectively
(Ólafsson 1979). Consequently, Mývatn is naturally eutrophic
with high primary production. According to previous estimates,
the majority of primary production is benthic and attributable
to benthic diatoms (chiefly Fragilariaceae) and mats of filamen-
tous green algae (Cladophora glomerata and Aegagropila linnai)
(Ólafsson 1979; Einarsson et al. 2004). However, there are occa-
sional blooms of green algae, diatoms, and cyanobacteria which
may make substantial contributions to primary production.
The cyanobacterial blooms (chiefly Dolichospermum spp.) in
particular can be quite thick (peak phycocyanin concentration
>200 μg L−1), blocking almost all light below 5 cm of the water
surface (Phillips et al. 2019). Benthic primary production sup-
ports large populations of midges (>30 species) that in peak
years compose over two-thirds of the lake’s secondary produc-
tion and show dramatic fluctuations in abundance spanning
four orders of magnitude (Lindegaard and Jónasson 1979;
Einarsson et al. 2004; Ives et al. 2008). The midges in turn are
an important food source for ducks and fish (sticklebacks,
brown trout, and arctic char). The two dominant midge genera
(Tanytarsus and Chironomus) are tube-building ecosystem engi-
neers that locally stimulate benthic GPP by providing a stable
three-dimensional substrate for diatom growth (Hölker et al.
2015; Phillips et al. 2019).

Data collection and processing
A sonde multiprobe (Hydrolab DS5X, Hach) was deployed

near the center of Mývatn’s south basin during the summer
months (late May through late August) from 2012 to 2018.
This location corresponded with a routine monitoring station

that was manually sampled approximately weekly during the
periods of sonde deployment for standard water column vari-
ables (e.g., DO, light, and temperature) as well as benthic vari-
ables such as larval midge density and sediment chlorophyll.
The sonde was attached to a buoy so that the sensors sat at a
depth of 0.5 m. This location is quite shallow (3.3 m) and well
mixed (including for oxygen concentrations; Supporting
Information Fig. S9), such that the sensor measurements rep-
resent integrated values throughout the water column. The
sonde measured temperature, DO, turbidity, and phycocyanin
(a cyanobacterial pigment) every 30 min. However, DO data
were unavailable from 2014 due to probe failures, so only
2012–2013 and 2015–2018 data were used in this analysis.
The sensor data had occasional anomalies (usually associated
with battery failures), which I removed by first excluding
values that exceeded thresholds of plausibility (<5 mg L−1 for
DO and >18�C for temperature) based on weekly profiles at
0.5-m intervals taken with handheld probes (ProODO, YSI) or
visual inspection (>200 V for turbidity). I then excluded values
that deviated from the mean on a given day by more than
two standard deviations (SDs). This resulted in the omission
of 5.6% of the observations (Supporting Information Figs. S5
and S6). There were no indications of sensor drift ( Supporting
Information), and therefore no drift correction was applied.
I averaged the half-hourly measurements to an hourly scale to
match the resolution of the local weather data (solar irradi-
ance and wind speed), which resulted in minimal loss of infor-
mation due to the high temporal autocorrelation in the
measurements ( Supporting Information).

Light readings were taken either every 15 or 30 min (depending
on the year) with a light/temperature logger (HOBO Pendant,
Onset Computer Corporation) attached to the top of the buoy
deploying the sonde; I averaged these data to an hourly scale
for further analysis. However, HOBO logger data were missing
in 2012, so I used downwelling solar irradiance from the local
weather station, which were strongly correlated with the
HOBO logger data (r = 0.79; Supporting Information). Solar
irradiance was not available in 2018, so it would not have been
possible to use the same metric for all 6 years of data. The
HOBO logger (measured in lux) and solar irradiance (measured
in watts) were converted to photosynthetically active radiation
(PAR; measured in μmol-photons m−2 s−1) based on a standard
relationship (Thimijan and Heins 1983). To estimate light
below the water surface, I regressed the surface PAR estimates
to PAR measurements taken approximately 5 cm below the
water surface during routine monitoring using a Li-192 Quan-
tum Underwater Sensor, Li-COR ( Supporting Information).
I used resulting regression equation to translate PAR from the
HOBO logger and weather station into PAR below the water
surface for each time point in the sonde data. While the HOBO
logger and weather station light data are subject to some uncer-
tainty (Long et al. 2012), they should nonetheless provide a
reasonable characterization of major changes in light
conditions.
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While models of lake metabolism often use light levels at
the water’s surface, primary production occurs throughout the
water column and in the benthos, and water column light
levels are subject to large changes relative to surface light due
to changes in water clarity (Obrador et al. 2014). Therefore,
I estimated the mean light level throughout the water column
given observed variation in surface light and water clarity as

Ld,h zð Þ= 1
zmax

ðzmax

0
L0
d,h e

−cd,h z dz=
L0
d,h 1−e−cd,h zmaxð Þ

zmax cd,h
, ð1Þ

where z (m) is the vertical position in the water column, zmax is

the water column depth (3.3 m), L0
d,h is the PAR (μmol-

photons m−2 s−1) at the water surface (z = 0) and cd,h is the rate
at which light attenuates through the water column. For sim-

plicity, I henceforth denote Ld,h zð Þ as Ld,h. To estimate cd,h,
I regressed observed light attenuation calculated from weekly
measurements of PAR at 0.5-m depth intervals against turbidity
measured simultaneously by the sonde. I used this regression
(R2 = 0.66; Supporting Information Fig. S10) to predict cd,h from
turbidity for each time point in the sonde data. While the mean
water column light levels are more biologically relevant, they are
also more uncertain than the estimates of surface light levels.
Therefore, I performed the analysis using both sets of light levels,
which yielded similar results. The results using mean water col-
umn light are presented in the main text, while results using sur-
face light are shown in Supporting Information Figs. S17 and S18.

Model structure
The model is a modified version of the model presented by

Holtgrieve et al. (2010), which characterizes changes in DO due
to NEP with a saturating P-I curve (similar to Obrador et al. 2014;
Staehr et al. 2016). However, rather than treating the parameters
of the P-I curve as fixed over a given time period (requiring the
model to be fit iteratively to obtain estimates of temporal varia-
tion in the P-I curve), the model presented here explicitly charac-
terizes changes in the P-I curve utilizing data across all time
periods (hourly measurements across six summers) simulta-
neously. This takes advantage of the fact that the physical and
biological processes governing ecosystem metabolism and other
aspects of DO dynamics are correlated through time, which
means that this shared information can be used to inform the
parameter estimates across all time points. Furthermore, this
method is statistically unified because it uses all of the data to fit
a single model, which facilitates characterizing the uncertainty in
the estimates of temporally variable parameters of the P-I curve.

Table 1 defines all of the variables used in the model. Fol-
lowing Holtgrieve et al. (2010), NEPd, h in hour h on day d is
decomposed into contributions from GPPd,h and ERd,h as

NEPd,h =GPPd,h−ERd,h, ð2Þ
with all three components quantified as total change in oxy-
gen throughout the water column, resulting in a flux per unit

area (mg O2 m−2 h−1), based on a mixing depth of 3.3 m.
However, the data used to the fit the model were only taken
from a single sampling location, so these estimates are not
assumed to characterize the metabolism across the entire lake
as this would require spatially replicated DO measurements
(Van de Bogert et al. 2007).

I modeled GPPd,h as a saturating function of average light
throughout the water column Ld,h (μmol-photons m−2 s−1):

GPPd,h = βd,h tanh
αd
βd,h

Ld,h

 !
, ð3Þ

where βd,h (mg O2 m−2 h−1) is the maximum potential GPP
(“max GPP”; Fig. 1) attained at high light levels and αd
(mg O2 s μmol-photons−1 h−1) is the rate at which GPP increases
with Ld,h when Ld,h is near zero (“initial slope”) (Jassby and Platt
1976; Holtgrieve et al. 2010).

While many models of lake metabolism assume that GPP is
insensitive to temperature (including Holtgrieve et al. 2010),
primary production tends to increase with temperature particu-
larly when light is saturating (Demars et al. 2016; Edwards
et al. 2016; Richardson et al. 2017). Therefore, I modeled the
maximum potential GPP as

βd,h = β
0
d γβ

Td,h −T0ð Þ=ΔTð Þ, ð4Þ

where β0d is the maximum potential GPP on a given day at the
mean water temperature for the entire time series T0 (12�C),
Td,h is the observed water temperature, and ΔT = 1�C to make
the exponent dimensionless. The parameter γβ (dimensionless)
describes the scaling of βd,h with changes in temperature. For
example, if γβ = 1.2, then a 1�C increase in Td,h above the
mean temperature would result in a 20% increase in βd,h. This
approach follows the equation used by Venkiteswaran et al. (2007)
for temperature dependence of respiration and is mathematically
similar to the Arrhenius equation that has previously been used to
model the relationship between ecosystem metabolism and tem-
perature based on enzyme kinetics (Demars et al. 2016; Schindler
et al. 2017). I opted for this alternative parameterization as it is
simpler and does not require interpretation in terms of enzyme
kinetics. While γβ could in principle vary through time, temporal
variation in the response of GPP to temperature is partially cap-

tured by variation in β0d . Therefore, for greater tractability γβ is
fixed across all time points.

Daily changes in maximum GPP not due to temperature
(e.g., changes in primary producer biomass or biomass-specific

photosynthetic rates) were described by changes in β0d , which I
modeled as a multiplicative stochastic process analogous to
exponential population growth:

β0d = β
0
d−1 e

δβd−1 ,

δβd �N 0,σβ
� �

,
ð5Þ
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Table 1. Definition of variables used in the model.

Variables Description Units Timescale Source

DOobs
d,h Observed DO mg O2 m

−3 Hourly Observed data

DOeq
d,h Equilibrium DO mg O2 m

−3 Hourly Observed data

Ld,h Mean water column light μmol-photons−1 s−1 Hourly Observed data*

Td,h Water temperature �C Hourly Observed data

T0 Reference temperature �C Fixed Observed data†

ωd,h Wind speed m s−1 Hourly Observed data

zmix Mixing depth m Hourly Observed data

kd,h Piston velocity m h−1 Fixed Literature‡

NEPd,h Net ecosystem production mg O2 m
−2 h−1 Hourly Model fit

GPPd,h Gross primary production mg O2 m
−2 h−1 Hourly Model fit

ERd,h Ecosystem respiration mg O2 m
−2 h−1 Hourly Model fit

EXCd,h Oxygen flux to air mg O2 m
−2 h−1 Hourly Model fit

DOd,h Modeled DO mg O2 m
−3 Hourly Model fit

βd,h Max GPP (including temp) mg O2 m
−2 h−1 Hourly Model fit

β0d Max GPP mg O2 m
−2 h−1 Daily Model fit

αd Initial slope of P-I curve mg O2 s μmol-photons−1 h−1 Daily Model fit

ρd Baseline ER mg O2 m
−2 h−1 Daily Model fit

γβ Scaling of GPP with temperature Dimensionless Fixed Model fit

γρ Scaling of ER with temperature Dimensionless Fixed Model fit

σβ SD of change in β0d Dimensionless Fixed Model fit

σα SD of change in αd, h Dimensionless Fixed Model fit

σρ SD of changes in ρd Dimensionless Fixed Model fit

σproc Process error SD mg O2 m
−3 Fixed Model fit

σobs Observation error SD mg O2 m
−3 Fixed Model fit

DO, dissolved oxygen; ER, ecosystem respiration; GPP, gross primary production; NEP, net ecosystem production; P-I, photosynthesis-irradiance;
SD, standard deviation.
*Calculated from observed surface light and light attenuation estimated from turbidity.
†Defined as 12�C, based on observed mean water temperature in the dataset.
‡(Cole and Caraco 1998).

where δβd is the daily the rate of change in β0d with SD σβ. This

is equivalent to modeling β0d as a random walk on a log scale;

this ensures that β0d remains positive (negative values are bio-
logically unintelligible). The stochastic process implies temporal
autocorrelation in the estimates of β0d, which has the conse-
quence of smoothing the estimates through time with the
degree of smoothing being influenced by the observed data
(Zeng et al. 1998; Ives and Dakos 2012). Analogously, I
modeled daily variation in the initial slope of the P-I curve
αd as

αd = αd−1 eδ
α
d−1 ,

δαd �N 0,σαð Þ, ð6Þ

with the rate of change δαd and SD σα.
Daily and hourly variation in ER was modeled as a function

of temperature:

ERd,h = ρd γρ
Td,h −T0ð Þ=ΔTð Þ, ð7Þ

where ρd (mg O2 m−2 h−1) is the baseline respiration rate at T0

and γρ (dimensionless) is the temperature scaling of ERd

(Holtgrieve et al. 2010). Similar to β0d and αd, daily variation in
ρd (e.g., changes in biomass or biomass-specific respiration of
all aerobic organisms) was modeled as

ρd = ρd−1e
δρd−1 ,

δρd �N 0,σρ
� �

,
ð8Þ

with the rate of change δρd and SD σρ. Various studies have
documented diel variation in ER with response to factors other
than temperature (Sadro et al. 2011), and these have occasion-
ally been incorporated into models of lake ecosystem metabo-
lism (e.g., Schindler et al. 2017). However, the primary goal of
the present analysis was to estimate variation in ecosystem
metabolism rates between days, and it is likely that incorporat-
ing diel variation in respiration not due to temperature would
have a minimal impact on the estimates of daily variation
(Hanson et al. 2008). Therefore, to reduce the complexity of
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the model, I did not include diel variation in ER driven by fac-
tors other than temperature.

I estimated parameters for Eqs. 2–8 from the observed DO
time series by modeling the hourly concentration of DO
(mg O2 m−3) as

DOd,h =DOd,h−1 +
Δh NEPd,h−1 + EXCd,h−1
� �

zmix
+ ϵprocd,h−1, ð9Þ

where Δh = 1 h, EXCd, h (mg O2 m−2 h−1) is the exchange of
oxygen between the water and the air, zmix is the mixing
depth (3.3 m), and ϵprocd,h−1 is the processes error, defined as

ϵprocd,h �N 0,σproc
� �

, ð10Þ

where σproc is the SD of the stochastic changes in DO (see
below for description of the observation model linking Eq. 9
to the observed data).

EXCd, h is the oxygen flux across the air–water boundary,
defined with respect to the water (i.e., a negative flux corre-
sponds to a loss of O2 from the water):

EXCd,h = kd,h DOeq
d,h−DOd,h

� �
, ð11Þ

where DOeq
d,h is the atmospheric equilibrium (i.e., saturation)

concentration of oxygen based on temperature, pressure, and
salinity (Staehr et al. 2010a). The parameter kd,h is known as
the “piston velocity” and scales the rate of gas exchange
across the air–water boundary. The parameterization of kd, h is
subject to much uncertainty and can have a large influence
on metabolism estimates (Dugan et al. 2016). Here, I
employed the widely used parameterization of Cole and Car-
aco (1998):

kd,h = k6000 + k6001 ω
k6002
d,h

� � ScO2 Td,h,S
� �
600

� �−0:5

, ð12Þ

where ωd, h is the wind speed (m s−1), k6000 = 2.07, k6001 = 0.215,

and k6002 = 1.7, and ScO2 Td,h,S
� �

is the Schmidt number for
oxygen at the observed temperature and salinity (the values of

k6000 and k6001 give kd, h in units of cmh−1, which I then
converted to mh−1). However, to explore the sensitivity of the
metabolism estimates to the parameterization of kd,h, I also fit the
model using the parameterization of Crusius and Wanninkhof
(2003), which has the same functional form as Eq. 12 but uses dif-

ferent values of the constants (k6000 = 0.168, k6001 = 0.228, and

k6002 = 2.2) and overall has much greater sensitivity to wind
speed than the parameterization of Cole and Caraco (1998).
The two parameterizations for kd, h gave very similar infer-
ences for ecosystem metabolism, likely because of the ability
of the process errors ϵprocd,h to absorb variability not readily

attributable to biological processes, such as not fully character-
izing exchange with the atmosphere. Therefore, the results
using the Cole and Caraco (1998) parameterization are pres-
ented in the main text, while the results using Crusius and
Wanninkhof (2003) are reported in Supporting Information
Figs. S14–S16.

It is important to note that Eq. 9 does not strictly follow
mass balance; because ERd,h is not a function of oxygen con-
centration, theoretically, it can exceed the amount of available
oxygen. In most applications (including here), oxygen concen-
trations are sufficiently high that respiration is not oxygen lim-
ited. However, the potential for negative values to arise during
model fitting influences the choice of appropriate descriptions
of process and observation error. For example, using a lognor-
mal error model might fail because it could require taking the
log of negative predicted values. I used the most straightfor-
ward approach (as in other studies) of assuming Gaussian pro-
cess and observation error, relying on the data to guide the
model to physically meaningful values. This yielded the fol-
lowing observation equation:

DOobs
d,h =DOd,h + ϵobsd,h, ð13Þ

where ϵobsd,h is the observation error, modeled as

ϵobsd,h �N 0,σobsð Þ, ð14Þ

where σobs is the SD of the observation process. The central
statistical difference between the process and observation
errors is that process errors propagate through time and mani-
fest as relatively smooth variations, while observation errors
do not propagate and appear “noisy” (Box et al. 1994).

Model fitting
Observed DO time series were fit to all 6 years (2012–2013

and 2015–2018) simultaneously. The initial values for continu-
ous stretches of hourly observations (i.e., without missing data
or spanning years) were modeled based on Eqs. 13 and 14, with
the mean of the Gaussian distribution set to the observed value
for that time step. The presence of missing values meant that
some continuous series had a small number of observations.
While in principle, the model could accommodate these short
series because the parameters’ estimates would be informed by
the longer series, the short series likely contributed little mean-
ingful information. Therefore, I removed any continuous series
with fewer than 24 observations (i.e., 1 d worth of observations).
A single continuous stochastic process was used to model

β0d, αd, and ρd for each year (specified by Eqs. 5, 6, and 8,
respectively), with the model “skipping” over unobserved days
(37 out of 382d).

I fit the model with a Bayesian approach via Stan 2.17.0
run from R 3.5.1 (R Core Team 2018) using the ‘rstan’ package
(Stan Development Team 2018). Stan uses Hamiltonian Monte
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Carlo to generate Markov chains that converge to a stationary
distribution approximating the joint posterior distribution for
the unobserved variables (Carpenter et al. 2017). I centered the
observed DO on its mean and divided by its SD across all time
points and then scaled the model parameters accordingly
(Supporting Information). Scaling the model stabilized the fitting
process and also facilitated the use of Gaussian distributions on
unit scale as weakly informative priors (SD of 1 and truncated at
0 or 1 for those parameters with corresponding lower bounds;
see Supporting Information for further details). I used four inde-
pendent chains with diffuse initial values and 2000 iterations
including a 1000-iteration “warm-up.” Convergence was assessed
by examining trace plots for parameter estimates and the

potential-scale reduction factor (R̂), which quantified the rela-
tive variance within and between chains to determine
whether stationarity was achieved (values near 1 indicate con-
vergence; see Supporting Information for detailed specifica-
tions for the fitting routine and additional diagnostics).

Attempting to estimate both σobs and σproc independently
resulted in very inefficient sampling of the posterior distribution
as σobs slowly approached 0 (Supporting Information Fig. S11).
Therefore, I fit the model with σobs set to 1% of the observed SD
in DO (which was computationally more convenient than set-
ting it to exactly 0). This resulted in much more efficient sam-
pling and estimates for model parameters that were similar to
the model with σobs estimated independently (Supporting Infor-
mation Fig. S12). It was not surprising that σobs was low, as the
observed time series of DO (filtered for anomalous values) lacked
the appearance of high-frequency noise that would be indicative
of observation error (Supporting Information Fig. S13). This is
partially due to the fact that I used hourly data that were aver-
aged from half-hourly data; observation error would likely have
been more substantial for higher frequency data.

The posteriors for all parameters were unimodal and at
most only modestly skewed, justifying the use of quantiles to
provide summaries for parameter estimates. Throughout I use
posterior medians for point estimates and 16% and 84% qua-
ntiles for the bounds of 68% uncertainty intervals (“ui68%”) to
match the coverage of standard errors. I expressed values for
total daily values for GPP, ER, and NEP in units g O2 m−2 d−1

rather than mg O2 m−2 h−1 to facilitate a more natural com-
parison to other reported values for ecosystem metabolism in
both aquatic and terrestrial systems.

Model comparison
The full version of the model estimated different values for

the parameters of the P-I curve (β0d , αd, and ρd) for each day. To
determine whether the inferred changes in the P-I curve were
actually supported by the data, I fit a simplified version of the
model with the parameters of the P-I curve fixed through time
(equivalent to setting σβ, σα, and σρ to 0). In this simplified
model, temporal changes in ecosystem metabolism were due
entirely to light and temperature. I then compared the fit of

the two models using the Leave-One-Out Information Crite-
rion (LOOIC), which is related to widely applicable informa-
tion criterion used in some previous studies of lake metabolism
(e.g., Schindler et al. 2017) but has been shown to be more
robust (Vehtari et al. 2017). LOOIC is conceptually similar to
likelihood-based information criteria (e.g., Akaike information
criterion and Bayesian information criterion), and it is reported
in units of deviance so that it can be interpreted in a similar
manner. I calculated LOOIC using the “loo” package in R 3.5.1
(R Core Team 2018).

Variance partitioning
I partitioned variance in GPP, ER, and NEP into contribu-

tions from light, temperature, and the time-varying parame-
ters using the “delta method” (Clark 2007). This approach
differs from a more conventional partitioning (e.g., ANOVA)
by explicitly accounting for nonlinearities and covariances
between variables. The delta method is a locally linear approx-
imation of the variance relative to the mean values of the
input variables (see Supporting Information for a full mathe-
matical description). In general, the contribution of a parame-
ter (e.g., temperature) to the variance in a function of that
parameter (e.g., GPP) is determined by (1) the sensitivity of
the function to changes in the parameter and (2) the overall
variability of that parameter. For example, temperature could
explain a large portion of the variance in GPP either because
(1) GPP is very sensitive to temperature or (2) because temper-
ature itself has a high variance. For each variable, I report the
squared coefficient of variation (CV2) and “scaled sensitivity”
(as defined in Supporting Information Eqs. S16 and S17), with
the latter including the effect of correlations between vari-
ables. The product of CV2 and scaled sensitivity equals the rel-
ative contribution of a given variable to the variance in the
response (Supporting Information Eq. S17).

Drivers of maximum GPP
To explore the possible drivers of variation in maximum

GPP (which was the dominant contributor to variation in
lake metabolism, see Results), I fit linear models regressing β0d
against daily mean phycocyanin concentration (as a measure
of cyanobacterial abundance; comparable data for other pho-
tosynthetic pigments were not available) and larval midge
abundance, which has previously shown to have large effects
on Mývatn’s benthic production (Herren et al. 2017; Phillips
et al. 2019). Phycocyanin data were collected by the sonde
and were available for all days for which there were estimates
of β0d . The midge larvae data were collected approximately
weekly from the central sampling station from sediment cores
(Kajak corer; 0.5m length and 5 cm diameter), which were
sieved through either 63 μm (top 5 cm) or 125 μm (remaining
sediment) mesh to collect the larva.

Because the phycocyanin data were available daily, while
the midge data were only available weekly, I fit two models:
(1) including phycocyanin for all days, and (2) including both
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phycocyanin and midge abundance for those days when
midge samples were collected. For midge abundance, I used
total counts of the two dominant midge taxa previously
shown to have positive effects on benthic primary production
(Tanytarsus gracilentus and Chironomus islandicus) (Herren et al.
2017; Phillips et al. 2019) averaged across replicated samples
for a given date. I z-transformed (subtracted the mean and
divided by the SD across all time points) all variables and
included an autoregressive correlation structure grouped by

year to account for temporal autocorrelation in estimates of β0d
(Pinheiro et al. 2018).

Data and code availability
Data and code can be found at https://github.com/jsphilli

ps2/sonde_oxygen.

Results
Ecosystem metabolism rates

Mean daily estimates of GPP (5.34 g O2 m−2 d−1; ui68% =
[5.20, 5.49]) and ER (4.63 g O2 m−2 d−1; ui68% = [4.46, 4.79])
were large overall, reflecting Mývatn’s eutrophic state. Both
showed substantial variation through time, both within and
between years (Fig. 2). However, because GPP and ER were cor-
related (Pearson correlation = 0.75; df = 343; p < 0.001; Fig. 3),
NEP remained comparatively stable and slightly above zero
(0.72 g O2 m−2 d−1; ui68% = [0.64, 0.80]). This indicates that
Mývatn was net autotrophic during the summer months over
this time period. Overall, the high ecosystem metabolism rates
accounted for approximately 21% of the total variation in

observed hourly DO (obtained through variance partitioning by
applying Supporting Information Eq. S14 to main text Eq. 9).

Temperature-sensitivity of GPP and ER
ER was very sensitive to temperature, with γρ = 1.15 imply-

ing that 1�C increase (or decrease) from the reference tempera-
ture would result in a 15% increase (or 13% decrease) in
ER. GPP was also sensitive to temperature (γβ = 1.06), although
substantially less so than ER.

Time-varying parameters of the P-I curve
The metabolism parameters β0d, αd, and ρd all substantially

varied through time, with the SDs of their associated stochas-
tic processes clearly different from 0 (Table 2; Figs. 4 and 5).
Furthermore, comparison of the full model to a reduced model
with the metabolism parameters fixed through time indicated
strong support for the full model (ΔLOOIC = 31.2; in units of
deviance as for ΔAIC). Together, these results indicate that
there was statistically meaningful temporal variation in
Mývatn’s P-I curve. The initial slope of the P-I curve (αd) was
by far the most temporally variable parameter, with an
approximately 15-fold difference between minimum and max-
imum values (Fig. 4). This indicates that the response of GPP
to variation in light under light-limiting conditions was very
dynamic. Several years showed similar seasonal patterns, with
αd starting low and increasing to a peak midsummer, followed
by a steep decline. However, in 2012 and 2016 αd declined
gradually throughout the season.

Maximum GPP (β0d) was the next most variable parameter
of the P-I curve (3.5-fold variation between minimum and
maximum values; Fig. 5) and displayed consistent seasonal pat-
terns, with steady increases from early to midsummer followed
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Fig. 2. Daily estimates of GPP, ER, and NEP, plotted through time.
Metabolism rates are expressed as changes in water column DO (e.g., ER
is negative because it reduces DO). The lines are the posterior medians,
and the shaded regions are the 68% uncertainty intervals matching the
coverage of standard errors. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 3. Estimated daily ER plotted against GPP, with the one-to-one line.
The estimates of ER and GPP include the influence of temperature, which
contributes to their correlation.
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by a plateau or a modest decline. Baseline ER (ρd) was the least
variable parameter, with only 2.5-fold variation (Fig. 5). Maxi-
mum GPP and baseline ER were only modestly correlated
across all time points (Pearson correlation = 0.51 across all
years; df = 343; p<0.001), and in some years their associations
were only weakly positive or even negative (Fig. 6). This means
that apparent coupling between overall GPP and ER rates
(Fig. 3) is due in part to the shared responses to temperature,

rather than being solely due to temporal changes in the param-
eters of the P-I curve (i.e., maximum GPP and baseline ER).

The parameters of the P-I curve were estimated using the
average light throughout the water column, which varied due
to changes in both surface light and to water clarity. To
explore the importance of variation in water clarity, I also fit
the model using surface light and compared the resulting
parameter estimates to those using the average water column

Table 2. Posterior summaries of fixed (not time-varying) param-
eters, using posterior medians as point estimates and 16% and
84% quantiles as bounds of 68% uncertainty intervals (“ui68%”)
to match the coverage of standard errors.

Parameters Description Estimate* [ui68%]

γβ Scaling of GPP with temperature 1.06 [1.05, 1.08]

γρ Scaling of ER with temperature 1.15 [1.13, 1.18]

β0d
Maximum GPP (median across all

days)

368 [326, 414]

αd Initial slope of P-I curve (median

across all days)

5.44 [3.74, 8.06]

ρd Baseline ER (median across all days) 156 [133, 181]

σβ SD of change in β0d 0.06 [0.05, 0.07]

σα SD of change in αd, h 0.21 [0.18, 0.25]

σρ SD of changes in ρd 0.05 [0.04, 0.08]

σproc Process error SD 0.099 [0.098, 0.010]

DO, dissolved oxygen; ER, ecosystem respiration; GPP, gross primary pro-
duction; NEP, net ecosystem production; P-I, photosynthesis-irradiance;
SD, standard deviation.
*The estimates for σproc are expressed in terms of the SD of the observed
DO data. All other parameters are in units as defined in Table 1.
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Fig. 4. Initial slope of the P-I curve as inferred from the model, plotted
through time. The lines are the posterior medians, and the shaded regions
are the 68% uncertainty intervals matching the coverage of standard
errors.
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Fig. 5. Maximum GPP and baseline ER (at the reference temperature of
12�C) as inferred from the model, plotted through time. The lines are the
posterior medians, and the shaded regions are the 68% uncertainty inter-
vals matching the coverage of standard errors. [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. 6. Baseline ER plotted against maximum GPP, both defined at the
reference temperature of 12�C. Each line represents a separate year, with
squares indicating the beginning and triangles the end of each series.
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light (as above). The estimates of baseline ER and maximum
GPP were largely the same, as they should be given that they
characterize metabolism when light is 0 (i.e., when surface
and water column light are the same) and when light is satu-
rating (i.e., when differences between surface and water col-
umn later are irrelevant) (Supporting Information Fig. S17).
The average value of the initial slope of the P-I curve was sub-
stantially lower for the model fit using surface light, which
again was as expected because the surface light values were
always higher than the water column values (Supporting
Information Fig. S18). However, the temporal patterns were
very similar, with the largest differences being relatively high
values in 2015 and 2018 when using the water column light.
These 2 years had substantial declines in water column light
due to reduced water clarity associated with cyanobacterial
blooms, which suggests that the initial slope of the P-I curve
partially compensated for the declines in water clarity. This is
consistent with the fact that the initial slope was negatively
correlated with the average water column light levels (Pearson
correlation = −0.44; df = 236; p < 0.001).

Variance partitioning
Most of the variation in GPP was due to variation in the maxi-

mum GPP, with temperature as the second most important con-
tributor (Table 3). In contrast, the contributions of variation in
light and the initial slope of the P-I curve were quite small,
despite the fact that these two variables had comparatively high
coefficients of variation. This is because GPP was relatively insen-
sitive to changes in these variables, due to the average light level

(144 μmol-photons m−2 s−1) generally being in the saturated part
of the P-I curve. Furthermore, the initial slope of the P-I curve
and average water column light were negatively correlated with
each other (Pearson correlation = −0.44; df = 236; p < 0.001), and
this negative correlation reduced the contribution of both vari-
ables to temporal variation in GPP (following Supporting Infor-
mation Eq. S15). Variation in baseline ER and temperature made
comparable contributions to variance in ER, owing to their simi-
lar variability and sensitivities. Note that the variance par-
titioning is an approximation around the means of the input
variables (i.e., light, temperature, and time-varying parameters)
and so reflects the contribution of variation in different variables
centered around the average conditions.

Because GPP and ER had opposite effects on NEP, variables
with correlated effects on GPP and ER had reduced contribu-
tions to the variance in NEP. Consequently, both temperature
(positively related to both GPP and ER) and the baseline ER (cor-
related with maximum GPP) had negligible or even slightly neg-
ative contributions. The contribution of variation in light was
slightly higher for NEP than for GPP, while the contribution of
variation in the initial slope was slightly lower. Maximum GPP
was by far the largest contributor to variation in NEP, with a rel-
ative contribution of 0.89 despite being correlated with baseline
ER. This is because the sensitivity of NEP to maximum GPP was
substantially higher than its sensitivity to baseline ER.

Drivers of maximum GPP

Maximum GPP at high light (β0d) was quite variable and
was the dominant contributor to variation in overall GPP and

Table 3. Variance partitioning of GPP, ER, and NEP into contributions from light, temperature, and the time-varying parameters of the
P-I curve. The CV2 and scaled sensitivity are dimensionless and can therefore be compared for different variables. The relative contribu-
tion to the variance equals the product of the CV2 and scaled sensitivity.

CV2 [ui68%] Scaled sensitivity [ui68%] Relative contribution to variance [ui68%]

GPP

Initial slope 0.38 [0.30, 0.48] 0.09 [0.04, 0.15] 0.04 [0.02, 0.06]

Maximum GPP 0.09 [0.07, 0.11] 7.95 [6.69, 9.63] 0.71 [0.63, 0.78]

Temperature 0.03* 5.81 [3.72, 7.97] 0.17 [0.11, 0.23]

Light 1.67* 0.05 [0.02, 0.8] 0.08 [0.04, 0.13]

ER

Baseline ER 0.08 [0.05, 0.11] 5.56 [3.96, 7.44] 0.44 [0.32, 0.58]

Temperature 0.03* 19.10 [14.7, 23.2] 0.56 [0.42, 0.68]

NEP

Initial slope 0.38 [0.30, 0.48] 0.06 [0.00, 0.13] 0.02 [0.00, 0.05]

Max GPP 0.09 [0.07, 0.11] 10.10 [8.44, 12.2] 0.89 [0.79, 0.99]

Baseline ER 0.08 [0.05, 0.11] −0.41 [–1.40, 0.373] −0.03† [–0.09, 0.04]
Temperature 0.03* −0.79 [–1.70, 0.13] −0.02† [–0.05, 0.00]
Light 1.67* 0.08 [0.04, 0.13] 0.13 [0.07, 0.22]

DO, dissolved oxygen; ER, ecosystem respiration; GPP, gross primary production; NEP, net ecosystem production; P-I, photosynthesis-irradiance; SD, stan-
dard deviation.
*The environmental variables are inputs to the model and therefore have no modeled uncertainty in their coefficients of variation.
†Negative contributions to variance in metabolism arise due to covariances with other parameters, resulting in compensatory effects on metabolism.
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NEP. Maximum GPP was positively related to phycocyanin in
both the model for all observations (df = 343; t = 3.65;
p<0.001) (Fig. 7) and the model for days with midge samples
(df = 39; t = 2.87; p = 0.0066) (Supporting Information
Fig. S19). In contrast, there was no relationship between maxi-
mum GPP and midge abundance (df = 39; t = −0.20; p = 0.84)
(Supporting Information Fig. S19). This suggests that increases
in cyanobacterial abundance during blooms increased the
maximum GPP, while midges had no effect.

Discussion
In this study, I used time series of DO from Lake Mývatn to

estimate temporal variation in P-I curves and ecosystem
metabolism across six summers. To do so, I employed a new
approach that extended previous methods (Holtgrieve et al.
2010; Obrador et al. 2014; Staehr et al. 2016) by explicitly
modeling temporal variation in the parameters governing eco-
system metabolism, taking advantage of the shared informa-
tion across the full set of data. All of the parameters of the P-I
curve (maximum GPP, initial slope of the P-I curve, and base-
line ER) varied substantially through time, with the initial
slope being particularly variable. However, variation in the
maximum GPP made the largest contribution to variation in
estimated NEP with respect to average conditions, with this
variation being associated with increases in the abundance of
cyanobacteria during blooms. Overall, these results illustrate
how changes in the P-I curve can contribute substantially to
temporal variation in lake ecosystem metabolism.

The dependence of photosynthesis on light is a major fea-
ture of most model-based studies of lake metabolism, either in
the form of linear relationships (e.g., Batt and Carpenter 2012;

Solomon et al. 2013; Richardson et al. 2017) or nonlinear P-I
curves (e.g., Holtgrieve et al. 2010; Obrador et al. 2014; Staehr
et al. 2016; Schindler et al. 2017). However, in previous appli-
cations the main function of P-I relationships has been to parti-
tion NEP into contributions from GPP and ER (but see
Holtgrieve and Schindler 2011; Staehr et al. 2016), which are
then used as the main response variables in subsequent ana-
lyses to identify drivers of metabolism (e.g., Coloso et al. 2011;
Solomon et al. 2013). In contrast, the present study places
emphasis on the P-I curve itself, which helps to clarify the tem-
poral patterns driven by physical and biological processes other
than light and temperature (Staehr et al. 2016). For example,
the maximum GPP can be understood as the overall photosyn-
thetic potential of the ecosystem (Jassby and Platt 1976;
Behrenfeld and Falkowski 1997) that is directly connected to
drivers such as primary producer biomass or nutrient limita-
tion. In Mývatn, variation in maximum GPP was the dominant
contributor to the total variance in net metabolism and was
primarily driven by episodic cyanobacterial blooms, a phenom-
enon which may be important in many of the world’s lakes
given the increasing prevalence of blooms (Taranu et al. 2015).
In more oligotrophic systems, it is possible that the parameters
of the P-I curve are less variable, which could mean that the rel-
ative contribution of light and temperature to temporal varia-
tion would be greater than observed in the relatively eutrophic
Mývatn (Staehr et al. 2016).

The initial slope of the P-I curve has been suggested a cru-
cial parameter for understanding lake metabolism (Holtgrieve
and Schindler 2011; Staehr et al. 2016). In Mývatn, the initial
slope was the by far the most temporally variable parameter of
the P-I curve with 15-fold variation between its minimum and
maximum values. However, despite its large variation, the ini-
tial slope of the P-I curve made only a small contribution tem-
poral variation in lake metabolism. This was for two reasons.
First, photosynthesis was largely saturated at the mean water
column light level of 144 μmol-photons m−2 s−1, such that
changes in the initial slope were irrelevant. Average water col-
umn light levels are generally high in Mývatn because it is
shallow and has clear water in the absence of blooms. How-
ever, in the deeper or more turbid lakes that are chronically
light limited, it is likely that variation in the initial slope of
the P-I curve would be more important for net ecosystem
metabolism (Staehr et al. 2016). Second, changes in the initial
slope were negatively correlated with variation in light, imply-
ing compensatory changes in the response to light that stabi-
lized net metabolism. Photosynthetic organisms are very
sensitive to light conditions and can increase their production
of photosynthetic pigments with response to chronic light
limitation, which in turn increases their sensitivity to low
light levels (Falkowski 1984; Moore et al. 2006; Dubinsky and
Stambler 2009). Furthermore, many phytoplanktons have the
ability to change their position in the water column, which
could increase their effective access to light and thereby
increase the apparent sensitivity of the P-I curve to average
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Fig. 7. Maximum GPP inferred from the model and phycocyanin con-
centration (a cyanobacterial pigment), plotted through time. Both vari-
ables are shown as z-scores (centered on mean and divided by SD across
all days). [Color figure can be viewed at wileyonlinelibrary.com]
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light conditions throughout the water column (Klausmeier
and Litchman 2001). While compensatory changes in the
light-sensitivity of ecosystem metabolism in response to
seasonal light limitation have been previously observed
(e.g., benthic communities in Greenland fjords; Attard et al.
2014), the general prevalence of this phenomenon for other
aquatic systems is largely unknown and worthy of further
study.

Many studies have considered the coupling of GPP and ER,
because the balance between these two processes determines
whether a given ecosystem is a net carbon source (“heterotro-
phic”) or sink (“autotrophic”). Systems dominated by autoch-
thonous carbon are expected to have a strong coupling
between GPP and ER, due both to respiration by photosyn-
thetic organisms themselves and heterotrophic respiration of
the organic carbon fixed through primary production (Del
Giorgio et al. 1999; Solomon et al. 2013; Richardson et al.
2017; Schindler et al. 2017). Recent work has also suggested
that correlated responses to temperature can couple GPP and
ER (Solomon et al. 2013; Demars et al. 2016; Richardson et al.
2017), and distinguishing between these two mechanisms is
important for predicting the response of GPP-ER coupling to
long-term change (e.g., climate). In Mývatn GPP and ER were
strongly correlated, and this was due to both temperature
(to which both GPP and ER were sensitive) and correlations
between the time-varying ecosystem metabolism rates (maxi-
mum GPP and baseline ER, controlling for temperature). Even
though ER was more sensitive to temperature than GPP rela-
tive to its overall scale (i.e. γρ > γβ), the magnitude of GPP was
much greater; consequently, the temperature-driven variations
in ER and GPP largely negated each other in the resulting
NEP. This suggests that net carbon flux from Mývatn is rela-
tively insensitive changes in temperature. In contrast, the cou-
pling between maximum potential GPP and baseline ER was
only modestly positively (R = 0.51), allowing variation in max-
imum GPP to have a large effect on NEP. Given that Mývatn
likely has low allochthonous inputs (being surrounded by
low-productivity tundra; Gratton et al. 2008), it is surprising
that the temperature-independent coupling of GPP and ER is
not stronger. Solomon et al. (2013) argue that ER-GPP cou-
pling should be weaker in eutrophic lakes when ER is substan-
tially lower than GPP. However, Mývatn does not fit this
pattern as overall ER during the most productive summer
months was 86% of GPP. The unexpected decoupling of ER
and GPP could be due to the high organic content of the
lake sediment (itself the source of past primary production;
Einarsson et al. 2004), which could fuel high respiration dur-
ing periods of low GPP.

The relative contribution of benthic and pelagic organisms
to primary production is of growing interest given the role of
eutrophication in stimulating phytoplankton blooms, often at
the expense of benthic production (Vadeboncoeur et al. 2002,
2003; Karlsson et al. 2009; Taranu et al. 2015). While many
lakes are sufficiently deep and poorly mixed to have large

gradients in DO with depth (Obrador et al. 2014), in Mývatn
the water column is sufficiently well mixed for a single DO
sensor to detect signals of both pelagic and benthic produc-
tion. Mývatn is generally regarded as being dominated by ben-
thic production (Jónasson 1979; Einarsson et al. 2004), which
is typical of shallow lakes that have large amounts light
reaching the benthos (Karlsson et al. 2009). Furthermore,
Mývatn’s high benthic production sustains very large midge
populations (peak larval densities exceeding 500,000 m−2)
that are themselves important drivers of benthic primary pro-
duction (Herren et al. 2017; Phillips et al. 2019), as is the case
for both midges and other benthic invertebrates in a variety of
aquatic ecosystems (Largaespada et al. 2012; Hölker et al.
2015). However, water column phycocyanin concentrations
were a strong predictor of the maximum potential GPP at high
light, which suggests that pelagic production is greater than
previously appreciated and may be a major contributor to
temporal variation in overall GPP. While these data are sug-
gestive of the relative contributions and variability of benthic
and pelagic production, a formal partitioning of the two pro-
cesses would require additional data (e.g., oxygen measure-
ments at multiple depths) (Van de Bogert et al. 2007; Obrador
et al. 2014). Partitioning of benthic and pelagic production
has been attempted for some lakes (Vadeboncoeur et al. 2003;
Van de Bogert et al. 2007; Obrador et al. 2014; Brothers et al.
2016) but is still quite limited, especially at temporal scales
and resolutions necessary to understand how the relative con-
tribution of these two processes changes through time.

This study illustrates the potential for temporal variation in
P-I curves to vary through time and how modeling this varia-
tion can clarify the drivers of lake metabolism. Essential to
this approach was high-resolution data spanning many years
in conjunction with a new modeling approach that built on
many recent advances in techniques for inferring lake metabo-
lism from free-water DO measurements. Future work will ben-
efit from continued growth in both areas, particularly from
data that are both temporally and spatially extensive to help
clarify the relative contribution of various physical and biolog-
ical processes to lake metabolism.
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