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1. Introduction

Eutrophication and subsequent harmful algal blooms (HABs) have become global
water quality problems in recent decades (Conley et al., 2009; Glibert, 2017; Huisman
et al., 2018; Paerl et al., 2016a). HABs are usually toxic to humans and other animals,

can disrupt aquatic food webs, and result in hypoxia and loss of biodiversity (Penuelas



et al., 2013; Posch et al., 2012; Van de Waal et al., 2014; Zhang et al., 2017). In
China, the majority of lakes are rather shallow, and have become or have been
becoming eutrophic since the early 2000s (Le et al., 2010). Eutrophication is
primarily attributed to intensified anthropogenic nitrogen (N) and phosphorus (P)
discharges into freshwater ecosystems (Huisman et al., 2018; Paerl et al., 2016a; Tong
et al., 2017a, b; Tong et al., 2018). However, the relative importance of ™ and P in the
control of eutrophication remains a subject that is intensely debated (i.c.. the ‘P-only’
paradigm (Carpenter, 2008; Schindler et al., 2016) versus th¢ ‘P + N’ paradigm
(Lewis et al., 2011; Paerl et al., 2016b). P has traditiona!!'y been considered the
limiting nutrient for algal growth based on experimental manipulations of lakes in
several previous studies (Schindler et al., 2010), and 4 ‘P-only control’ strategy has
been successful in mitigating eutrophication in some lakes (Lewis et al., 2011).
However, increasing numbcis of whole-lake experiments have reported that HABs are
stimulated by combined P and N enrichment, rather than by enrichment with N or P
alone (Paerl et al. 20!'6b; Paerl et al., 2011). Besides nutrient enrichment,
non-managechle environmental factors, such as lake warming, solar radiation, and
wind speeq, are also believed to be important in explaining the occurrences of HABs
(rloismian et al.,, 2018). Lake warming could promote algal growth, alter algal
composition, and increase the concentrations of toxin produced by Microcystis spp.
and Planktothrix spp. (Davis et al., 2009; Paerl et al., 2016a). Reduced water turnover
caused by lake warming could be beneficial for buoyant cyanobacteria by allowing

them to float upwards (Posch et al., 2012). Despite continuous efforts to explore the

relationships between the growth of algae and such environment variables, our current



understanding of these relationships is still unclear and inadequate (Robson, 2014;
Shimoda and Arhonditsis, 2016).

Several strategies (e.g., nutrient discharge control, increased flushing, chemical
treatment, sediment dredging, and aquatic food web manipulation) have been
developed to mitigate water eutrophication and control the occurrences of HABs
(Huisman et al., 2018; Paerl et al., 2016a). Reduction to the extcrnal nutrient
discharges into water bodies is believed to ultimately be the most etioctive control
measure, as it addresses the root cause of the problem (Huisman ot 21., 2018; Tong et
al., 2017b; Yu et al., 2019). Before setting a target ‘or nutricnt discharge control,
establishing accurate nutrient thresholds for defining eutrophication in particular
water bodies is crucial (Huo et al., 201%). Due to the huge geographical differences
that occur among watersheds (e.g . diftcrences in climate and land use types) and
lakes (e.g., with different icl-e dcpth and hydrology), ecoregion-specific criteria have
been developed to proicct water quality by assuming that lakes in the same ecoregion
are affected by the same environmental drivers (Cardoso et al., 2007; Poikane et al.,
2010; Richardson ct al., 2018). This strategy can make full use of the nutrient
monitoring data collected in different lakes, and provides an opportunity for nutrient
thresholds to be established for lakes without long-term monitoring data (Huo et al.,
2019; Liu et al., 2018). However, recent studies have revealed that nutrient thresholds
in lakes could be lake-specific, and thus region-specific nutrient criteria may fail to
reflect the natural variations among lakes (Liu et al., 2019; Olson and Hawkins, 2013;
Richardson et al., 2018; Rigosi et al., 2014; Taranu et al., 2012). Neglecting such

background variations could underprotect water bodies with naturally low nutrient



concentrations, but overprotect those with naturally high nutrient concentrations
(Olson and Hawkins, 2013). Many studies have also acknowledged the importance of
seasonal patterns in environment variables (e.g., water temperature, nutrient
concentrations, and solar radiation) to algal growth (Huisman et al., 2018; Paerl et al.,
2016a; Posch et al., 2012). However, studies have only rarely addressed the variations
in the nutrient thresholds of lakes among different seasons or months.

Establishing nutrient thresholds or criteria for lakes has long been a challenge for
water quality managers (Huo et al., 2018). Because nutrients ar¢ not ioxic to aquatic
animals at low concentrations, nutrient criteria cannot be derived based on the
does-response relationship used to define thresiiold levels for toxic pollutants (EPA,
2010). The United States of America (US) was the tirst country to establish nutrient
criteria for waterbodies (EPA, 2000a; [Tuo et al.,, 2018). In 2010, three typical
methods were recommendcd by the US Environmental Protection Agency (EPA) to
determine the nutrient criteria for particular lakes, which include the reference
condition approach, mechanistic models, and stressor-response model (EPA, 2000b;
EPA, 2010). Tn China, official technical guidelines for deriving the nutrient criteria
for lakcs were not issued until 2017 (Ministry of Ecology and Environment, China,
2U19). Among the methods to establish nutrient criteria, the stressor-response model,
which describes the most important known relationships between primary
productivity and nutrient concentrations, has been the most widely applied in previous
studies (Huo et al., 2019; Huo et al., 2018; Liu et al., 2018). The chlorophyll a
concentration in a body of water is a water quality index that is closely related to the

growth of algae (Liu et al., 2019; Wu et al., 2017; Xu et al., 2015), and is thus usually



used as a response variable when establishing nutrient thresholds.

Due to the complicated and sometimes unknown mechanisms involved in algal
growth, the capacity of mechanistic water quality modelling to simulate the dynamics
of algae that vary over time remains relatively limited (Nelson et al., 2018; Robson,
2014; Shimoda and Arhonditsis, 2016). To study such components of complex biotic
community dynamics as the nonlinear and unclear relationships betveen alga! growth
and major environmental factors, data-intensive machine learning models (e.g.,
random forest models, artificial neural networks, support vector machines, etc.) are
among the most rigorous tools available (Chou et al., 701§, CGarcia Nieto et al., 2019;
Liu et al., 2019; Park et al., 2015). These data-iciensive machine learning models can
achieve even better performance in the simmlation ot algal growth in lakes than that
achieved by traditional mechanistic modc!s (Liu et al., 2019; Nelson et al., 2018).
Nelson et al., (2018) appiied random forest models to quantify the nature of the
relationships between different environmental conditions and five dominant
cyanobacterial genera, and estimated the critical nutrient thresholds for different
cyanobacterial species. Liu et al., (2019) applied random forest and generalized
additive models to assess the predictability of the chlorophyll a concentration in a
recervoii and estimate the relative importance of water temperature in driving algal
growth. Many similar studies have demonstrated that machine learning methods could
effectively simulate algal growth and develop the site-specific nutrient thresholds
(Béjaoui et al., 2018; Chou et al., 2018; Park et al., 2015; Shen et al., 2019).

The primary goal of this study was to reveal the potential variations in nutrient

thresholds in typical eutrophic lakes among different seasons and assess the potential



responses of algal growth to nutrient control methods through the use of machine
learning models. Using long-term and unified monitoring datasets (composed of the
monthly nutrient monitoring data and meteorological observations collected from
2006 to 2017) from multiple sampling sites in three eutrophic lakes (Lake Taihu, Lake
Dianchi, and Lake Chaohu) in China, we applied random forest models to simulate
the seasonal algal growth, estimate the critical nutrient thresholds, and assess the
potential responses of algal growth to different nutrient control strategics in each lake.
The results obtained could offer new insights into how flexible and season-specific
nutrient thresholds can be set in eutrophic lakes while accounting for the natural
variations in environmental variables, which is crucial for water quality management
and reducing the risks of harmful algal blooms in the long-term.
2. Materials and methods
2.1 Lake descriptions

Three typical eutrophic freshwater lakes in China, including Lake Taihu, Lake
Chaohu and Lake Dianchi, were selected for examination in this study (Figure S1).
These lakes have received much attention from water quality managers in China since
the eailv 2000s because of their serious eutrophication and frequent occurrences of
H/ABs in them (Ministry of Ecology and Environment, China, 2012). Lake Taihu
(31.41°N, 120.14°E) is located in the southeastern part of the Yangtze River Basin
(Figure S1). It is a large and shallow lake, with an area of 2340 km?, an average depth
of 2.2 m and a water volume of 4.4 billion m? (Xu et al., 2015). In Lake Taihu, the
most damaging and extensive outbreak of HABs occurred in 2007, which severely

affected the water supply of Wuxi City and left over two million people without



drinking waters for several weeks (Stone, 2011). Lake Dianchi (25.01°N, 102.66°E) is
the largest plateau lake in a traditional phosphate ore mining region of China, with an
area of 309 km?, an average depth of 5.0 m and a water volume of 1.56 billion m3
(Wu et al., 2017). Lake Chaohu (31.56°N, 117.38°E) is the fifth largest freshwater
lake in the lower Yangtze River Basin in China, with an area of 768 km?, an average
depth of 2.7 m and a water volume of 20.7 billion m? (Huang et al., 2018
2.2 Long-term nutrient monitoring and meteorological observationa! dataset

The data examined in this study consisted of monthly watcr quality data, including
the chlorophyll a (ug/L), total nitrogen (TN, pg/L), toral puospnorus (TP, pg/L) and
ammonia nitrogen (NH4*-N, pg/L) concentrations and Secchi depth (SD, cm) in each
lake, and monthly meteorological observaticus, inciuding daily water temperature
(°C), precipitation (mm/day), wind speed (11/s), and sunshine duration (h/day) data,
from January 2006 to December 2017. Similarly to previous studies (Chou et al.,
2018; Huo et al., 2019, Huo et ai., 2018; Liu et al., 2019), we used the chlorophyll a
concentration as @ nioxy for the algal growth in the lakes. Although some other
variables could also impact algal growth, to the best of our knowledge, the selected
factors exainined here included the major potential drivers of algal growth (Huisman
et al., 2018; Paerl et al., 2016a), and these variables were also consistently measured
with the same standardized methods throughout the study period. In each lake, water
quality monitoring was carried out at multiple sampling sites (17 sampling sites in
Lake Taihu, 10 in Lake Dianchi and 7 in Lake Chaohu), and the detailed distribution
of detailed sampling sites in each lake was shown in Figure S1. Meteorological

information was collected from the national meteorological station operated by the



China Meteorological Administration near the lakes (http://data.cma.cn/).

The procedures for collecting water samples and measuring nutrient concentrations
were consistent throughout the whole study period and were based on the ‘technical
specifications requirements for monitoring of surface water and wastewater in China’
(HJT 91-2002). Water samples were collected at a depth of about 0.5 m below the
water surface. The TN concentration was determined by persulfaiie dioestion,
followed by automated colorimetric analysis (N-(I-naphthv!} eilvlenediamine
dihydrochloride spectrophotometry), with a method detection limit (MDL) of 50
pg/L. The TP concentration was determined by persulfaic digestion, followed by
automated colorimetric analysis (ammonium molybdate and antimony potassium
tartrate under acidic conditions), with an MDL of 10 pg/L. Chlorophyll a
concentrations were determined by acetonc extraction, followed by separation by
centrifugation separation aid thc determination of sample absorbance, with an MDL
of 1 pg/L. All nutrient concentrations lower than the MDL were set to 1/2 of the MDL
in subsequent data analyses. The monthly averaged meteorological data were
calculated based oun the daily observations. In summary, the complete raw dataset
comprised a total of 5726 chlorophyll a concentrations (2800 for Lake Taihu, 1430 for
Lalre Uianchi and 1496 for Lake Chaohu), 5768 TN concentrations (2843 for Lake
tathu, 1429 for Lake Dianchi and 1496 for Lake Chaohu) and 5768 TP
concentrations (2843 for Lake Taihu, 1429 for Lake Dianchi and 1496 for Lake
Chaohu). A summary of the monitoring data collected during the study period in the
three lakes is provided in Table 1.

2.3 Random forest models



We applied random forest models, a typical machine learning method relying on
the input of large dataset (Liu et al., 2019; Nelson et al., 2018), to the nutrient
monitoring and meteorological observational dataset to characterize the relationships
between chlorophyll a concentrations and different environment variables. The input
variables in the model include nutrient monitoring data (chlorophyll a, TN, TP,
NH,;*-N and SD) and meteorological data (water temperature, precipitation, wind
speed, and sunshine duration) in each lake (Figure 1). The random foicst model is a
machine learning algorithm that is used to fit a large ensemb!c o1 randomly assembled
decorrelated classification or regression trees to bootsirappcd samples of a response
variable, which then averages the outputs of these ‘rees to produce a simulated
response (Nelson et al., 2018). The random forest model was previously shown to be
good at handling data containing the comiplicated interactions, and at uncovering the
nonlinear and linear relationslip structures within such datasets. It has been
successfully applied i simulating seasonal algal growth in previous studies (Liu et
al., 2019; Nelson ct al., 2018). In this study, a random forest model was developed by
using the ‘randomi orest’ package in R 3.2.3 and SPSS modeler 18.0 (IBM, USA).
Modei: weic performed by the following steps: (1) the historical dataset for each lake
during 2006-2016 was portioned into training and testing folds, with 90% of the
dataset randomly selected as the training fold that was used to build the random forest
model; (2) the random forests were ‘grown’ through calculations in R or SPSS
modeler, and the models’ performance was assessed using the testing fold; (3) the
models’ performance was validated by predicting monthly chlorophyll a

concentrations in 2017 and comparing these to observed values; steps 1-3 were



repeated for nine times with each new fold representing the ‘testing’ set in each
iteration and (4) the partial dependence of all of the explanatory variables was
calculated. The post training model was used to estimate the seasonal nutrient
thresholds targeted at different chlorophyll a concentrations (e.g., 10, 20 pg/L, and so
on) and assess the potential responses of chlorophyll a concentrations to different
nutrient control strategies or water temperatures. When estimating response of
chlorophyll a concentrations to reductions of nutrient concentrations in each lake,
three scenarios were assumed: 10% reduction in TN (or TP) concentration, 20%
reduction in TN (or TP) concentration and 50% reduction i TN (or TP) concentration
relative to the monthly monitoring data in 2017. Three scenarios with different water
temperatures were assumed: 10% increasc, 2076 increase and 50% increase relative to
the monthly monitoring data in 2017 (Figure 1). The models’ performance was
quantified using the coefficient oi determination (R?) calculated between the predicted
and observed chloropiiy!l a concentrations. Partial dependence values in the random
forest models were also calculated by R 3.2.3 as a measure of each explanatory
variable’s 10 fluence on the response variable given the effects of all the other
explanafory variables in the model.
3. Resuits and discussion
5.1 Summary of long-term nutrient monitoring results

Figure 2 shows the monthly changes in chlorophyll a, TN and TP concentrations
from 2006 to 2017 in Lakes Taihu, Dianchi and Chaohu. Among these three lakes,
Lake Dianchi had the highest chlorophyll a, TN, and TP concentrations. In 2017,

chlorophyll a, TN, and TP concentrations (mean + standard deviation) in Lake



Dianchi were 86 + 85, 2226 + 895 and 137 £+ 69 ng/L, respectively, which were all
much higher than the corresponding values recorded in Lake Taihu and Lake Chaohu.
The TN and TP concentrations in Lake Dianchi were also much higher than the Grade
IIT limit for water quality that is usually used as a standard for clean lakes in China,
which is defined as a TN concentration of 1000 pg/L and a TP concentration of 50
ng/L (Ministry of Ecology and Environment, China, 2002). In Lakc Taihu and Lake
Chaohu, the chlorophyll a concentrations in 2017 were 18 = 32 and 11 + 14 pg/L
(mean =+ standard deviation), respectively, and their TN and TP concentrations
approached or were slightly higher than the Grade III limits for lakes in China. During
the study period, the TP concentration declined significantly in all three lakes, while
the TN concentration was only observed to have declined in Lake Taihu and Lake
Dianchi. In response to these chances 11 TIN and TP concentrations, chlorophyll a
concentrations gradually declined in Lake Taithu and Lake Chaohu from the year 2006
onward (with a monthiy decrease of 0.11 pg/L in Lake Taihu (P<0.01, n=144) and of
0.14 pg/L in Lake Chaohu (P<0.01, n=144)), while no significant decline in
chlorophv!l 2 concentration was observed in Lake Dianchi (P>0.1, n=143). Clear
seasond! patterns in chlorophyll a and nutrient concentrations were observed in all
three iases (Figure 1). For instance, in Lake Taihu, lower TN concentrations usually
occurred in summer, and higher TN concentrations usually occurred in spring,
possibly due to changes in internal nutrient cycling (Finlay et al., 2013; Tong et al.,
2019; Zhong et al., 2010). In 2017, the TN concentration in July (1118+461 pg/L,
mean =+ standard deviation) in Lake Taihu was even less than 50% of the TN

concentration in this same lake in April (2640+1020 pg/L). Driven by increased water



temperatures (Huisman et al., 2018; Paerl et al., 2016a), higher chlorophyll a
concentrations usually occurred in summer. Strong spatial variations in nutrient
concentrations were observed among different monitoring sites within the same lake
(Figure S2). Significant relationships were observed between the TN or TP
concentration and the chlorophyll a concentration (P<0.01), indicating that nutrients
were important drivers of algal growth (Table S1-S3).
3.2 Performance of random forest models

In general, the results of modeling by random forests fit the training data very well.
In Lakes Taihu, Dianchi, and Chaohu, the R? values calculated for the relationships
between the predicted and observed chloropiiyll a concentrations in the training
datasets were 0.66 = 0.04 (n=9), 0.7° + 0.03 (9), and 0.73 £ 0.05 (n=9),
respectively (Figure S3). In nrevious studies carried out using linear regression
models (LRM) or generalizcd additive models (GAM), R? coefficient values between
predicted and observed chlorophyll a concentrations approaching or above 0.2 were
believed to indicate ctfective prediction by the models (Huo et al., 2018; Liu et al.,
2018). This indicatcs that the random forest models used herein could simulate algal
growthi quite successfully. The results of the comparison of the cross-validated
predictions to the testing data are provided in Figure 3A, and these results showed that
the random forest models made better predictions of chlorophyll a concentrations in
Lake Dianchi (R* = 0.48 (0.37 - 0.64), n=9) and Lake Chaohu (R? = 0.50 (0.34 -
0.68), n=9) than of those in Lake Taihu (R?> = 0.26 (0.12 - 0.43), n=9). The models
were further validated by predicting the monthly chlorophyll a concentration in each

lake in 2017 and comparing it to the observed value. As shown in Figure 3B, the



predicted results effectively displayed the correct seasonal variation in chlorophyll a
concentrations, and were quite consistent with the observed concentrations in all three
lakes (for Lake Taihu, R>=0.27, P<0.01, n=204; for Lake Dianchi, R?=0.38, P<0.01,
n=120; and for Lake Chaohu, R>=0.19, P<0.01, n=96; shown in Figure S4).
3.3 Seasonal variations in nutrient thresholds in eutrophic lakes

Partial dependence plots for the random forest models rcvealed that the
relationships between the response variable and the explanatory variable were
predominantly nonlinear, and the curves representing thesc wcre composed of the
average modelled values across the range of observed valucs of the explanatory
variable (Hastie et al., 2009; Nelson et al., 201%). In this study, the steepest curves
were associated with the TN concentration, T1' conceilration, water temperature, and
Secchi depth measured in the lakes, whnile the NH4"-N, sunshine duration,
precipitation, and wind specd viriables were largely invariant (Figure 4). In general,
the chlorophyll a concentration had a relatively stronger partial dependence on the TP
concentration in these Jokes. In particular, these curves indicated that there was a
threshold 11 the iclationship between the TP concentration and chlorophyll a
conceniration, where the partial dependence rose sharply for TP concentrations
betwecn 100 and 350 pg/L (Figure 4). In Lake Taihu, this curve plateaued at TP
concentrations greater than about 200 pg/L, while in Lake Chaohu and Lake Dianchi,
these curves plateaued after about 300 pg/L. Compared with the curves for the TP
concentration, the curves between the TN concentration and chlorophyll a
concentration were less steep, particularly in Lake Dianchi and Lake Chaohu. With a

TN concentration of less than 3000 pg/L, the chlorophyll a concentration remained



stable, even as the TN concentrations increased (Figure 4). This result possibly
indicates that algae in different lakes could respond differently to the same changes in
nutrient concentrations (Olson and Hawkins, 2013; Richardson et al., 2018). As the
water temperature rose, the chlorophyll a concentration increased gradually (Figure
4). In Lake Dianchi, a sudden and steep increase in chlorophyll a concentrations
occurred at a water temperature of 25 °C, while in Lake Chaohu, a <ieen increase
occurred at a water temperature of 30 °C, suggesting that different algal species could
have different sensitivities to increasing water temperatures (Huismun et al., 2018),
and that the algae in Lake Dianchi could grow well at mild (emperatures (Wang et al.,
2019).

By applying the random forest models, we cstimated the seasonal variations in the
TN and TP thresholds in these lakes that were needed to target different chlorophyll a
concentration limits. When estimating thresholds for one variable, we used the
monthly monitoring da(a in these lakes for 2017 as inputs to the models. In general,
the estimated TN ana ‘I P thresholds varied significantly among different lakes and
different months (figure 5). To limit the chlorophyll a concentration to below 20
pg/L, the estimated monthly TN thresholds in Lakes Taihu, Dianchi, and Chaohu
were 2180 + 479, 2340 + 295, and 1849 + 261 pg/L, respectively. The estimated
monthly TP thresholds in these lakes were 66 = 9, 149 + 28, and 100 + 22 pg/L,
respectively (Figure 5). Significant variations in nutrient thresholds were also
observed among different seasons. In Lake Taihu, the TP threshold to limit the
chlorophyll a concentration to below 20 pg/L. was estimated to be 58 + 12 pg/L in

May, but increased to 82 + 18 pg/L in September. In Lake Chaohu, the TN threshold



was estimated to be 1472 + 45 pg/L in July, but increased to 2438 + 200 pg/L in
February. The estimated TN and TP thresholds in this study approached the results
estimated in a previous study based on bioassay experiments in Lake Taihu (Xu et al.,
2015), which were 1260 pg/L for TN and 82 pg/L for TP to limit the chlorophyll a
concentration to 20 pg/L in summer. The results of comparing the estimated TN and
TP thresholds with the measured results in 2017 showed that the measured TN
concentrations approached or were even lower than the estimated threcholds (except
for those in the spring in Lake Chaohu). However, the measured T concentrations
were still much higher than the predicted thresho!ds in suimmer (Figure 5). For
instance, in Lake Taihu, the measured TP conceniration (132 + 51 pg/L) in September
was much higher than the estimated thresho!d value (52 £ 18 pg/L), indicating that the
high TP concentrations could po:scibly be responsible for the high chlorophyll a
concentration observed theic in summer.
3.4 Responses of chloiovhyll a to changes in nutrients and water temperature
Quantifying how algal growth responds to declines in the TN and TP
concentrations in lokes is of great importance to setting nutrient control targets for
water ¢irality management (Huisman et al., 2018; Paerl et al., 2011; Xu et al., 2015).
By appiying the random forest models, we estimated the potential declines in
cilorophyll a concentrations under scenarios with decreases in TN or TP
concentrations of different magnitudes. Figure 6 shows that, the chlorophyll a
concentrations in different lakes could have quite different responses to the same
decreases in TN and TP concentrations, and greater decreases in chlorophyll a

concentrations were observed in scenarios with TP declines than in those with TN



declines. With a decline in the TP concentration but no change in the TN
concentration, a significant reduction in the chlorophyll a concentration was observed
in all three lakes. Larger declines in chlorophyll a concentration were observed with
greater decreases in TP concentrations. The largest decrease in chlorophyll a
concentration in these scenarios usually occurred in the summer (from July to
October) in all three lakes, while only slight changes were observed n spring and
winter (Figure 6A). In August, the chlorophyll a concentrations in T.akes Taihu,
Dianchi, and Chaohu were predicted to decline from 50 £ 14 t0 39 + € pg/L, from 175
+ 120 to 140 £ 100 pg/L, and from 14 = 18 to 7 £ 1 g/L, respectively, with a 50%
decline in the TP concentration relative to the 1easurcd values. However, in spring
and winter, the decline in the chlorophv!! a concentration in these lakes was usually
less than 10% (Figure 6A). Compared with its response to TP concentration, the
response of the chlorophyli a coucentration to decreases in the TN concentration was
not significant (Figure 6B). In all three lakes, the chlorophyll a concentration was
only observed to declinc as the TN decreased in Lake Chaohu in spring, while only
slight changes werc observed in the other seasons and lakes. There being different
responses ¢f chlorophyll a concentration to nutrient declines in different lakes and
scasons revealed the importance of adopting a season-specific nutrient management
strategy for controlling the growth of algae. We further estimated the responses of
chlorophyll a concentrations to scenarios in which water temperatures increased, and
found that the promotion of algal growth by increased water temperature could be
quite different in different seasons (Figure 7). In Lake Taihu, a 20% increase in water

temperature was estimated to result in a 16% and 23% increase in the chlorophyll a



concentration in March and May, respectively, while the corresponding increases in
chlorophyll a concentration in July and August were less than 5%, indicating that
water temperature might not be a limiting factor for algal growth in this lake in
summer (Huisman et al.,, 2018). In Lake Dianchi, the response of chlorophyll a
concentrations to increased temperature was less significant throughout the year
(Figure 7), which is consistent with the results presented in Figure 4
3.5 Implications to future nutrient management in lakes

Although a full mechanistic understanding of the relationchine between algal
growth and environment variables remains to be attained (Liu ct al., 2019; Nelson et
al., 2018; Shimoda and Arhonditsis, 2016), the simulatcd chlorophyll a concentrations
produced by the random forest models c:stablished 10 this study were fairly robust
(Figure 3, Figures S2 and S3) and demoustrated the importance of establishing
lake-specific and season-spccific TN or TP thresholds for the control of algal blooms
in lakes (Figure 5). [coregion-based nutrient criteria provide the possibility of
establishing nutricnt thrcsholds for lakes for which long-term nutrient monitoring data
are not available (Huo et al., 2019; Huo et al., 2018), and the variations among
individual lakes can then represent historical changes in nutrient concentrations
(Ulson and Hawkins, 2013). Region-based nutrient criteria have been proposed and
applied in previously established regional and national nutrient management strategies
for lakes (EPA, 2000a; Huo et al., 2018), and they have proven to be effective in
water quality protection in some regions (Huo et al., 2018). However, recent studies
have revealed that the relative importance of different environmental variables to

algal growth could be lake-specific and season-specific, rather than region-specific



(Richardson et al., 2018; Taranu et al., 2012). The natural variations among lakes
within the same ecoregion could be so large that the adoption of region-based nutrient
criteria could underprotect waterbodies with naturally low nutrient concentrations and
overprotect those with naturally high nutrient concentrations (Olson and Hawkins,
2013). For each eutrophic lake selected for use in this study, the estimated nutrient
thresholds were quite different, particularly the TP thresholds (Figure 5). The
estimated TN nutrient thresholds to limit the chlorophyll a concentraticn to below 20
ng/L were 2180 + 479 ng/L for Lake Taihu, 2340 £+ 295 pg/T tor Iake Dianchi, and
1849 + 261 pg/L for Lake Chaohu. In Lake Dianchi, the corresponding TP threshold
was estimated to be 149 + 28 nug/L, which was tuch larger than the estimated values
for Lake Taihu (66 + 9 pg/L, with a ranoc of 56 - 82 j1g/L) and Lake Chaohu (100 +
22 pg/L, with a range of 62 - 126 pg/i.). Lake Dianchi is located in a traditional
phosphate ore mining area in China, which thus has a naturally high background TP
concentration (reaching 100 pg/L as early as 1982) (Ouyang et al., 2015). The
previously estimated Ti' and TP criteria for the region wherein Lake Dianchi was
located werc estimated to be about 500 pg/L and about 20 ug/L, respectively (Huo et
al., 201R). The previously estimated TN and TP criteria for the region wherein Lake
iathu and Lake Chaohu were located were about 360 - 785 pg/L and about 14 - 43
ng/L, respectively (Huo et al., 2018). Because of lack of specific nutrient criteria for
many individual lakes, the Grade III limits for TN (1000 pg/L) and TP (50 pg/L) have
also been used as the standards for defining clean lakes in China (Ministry of Ecology
and Environment, China, 2002; Yu et al., 2019). However, the estimated TN and TP

thresholds for the three lakes in this study were much higher than the region-based



nutrient criteria and the Grade III limits (Figure 5), which suggests the possibility that
these nutrient criteria might have overprotected the water quality of these lakes.
Besides the nutrient enrichment of lakes (Huisman et al., 2018; Paerl et al., 2016a),
water temperature is also believed to be a crucial factor determining the algal growth
(Huisman et al., 2018; Paerl et al., 2016a). Dimictic lakes usually have a heightened
susceptibility to cyanobacterial blooms under stratified eutrophic conditions (Taranu
et al., 2012). Lake warming may promote the growth of many bleom-torming species
of cyanobacteria and lead to the more stable stratificatior of tie water column and
reduced water turnover (Posch et al., 2012). Lake warming could cause changes in
algal compositions and further alterations in tox'n concentrations (Posch et al., 2012).
Different algal species in lakes could have different responses to increasing water
temperatures, and toxic Microcvstis <pp. ¢xhioited more significantly elevated growth
rates than non-toxic specics (Tavis et al., 2009). Cyanobacterial species typically
reach their maximum growth rates at water temperatures of approximately 30 °C,
while chlorophytes and dinoflagellates species usually reach their maximum growth
rates at about 25 °C (Paerl et al., 2016a). Due to concerns over the negative impacts of
algal ulooris caused by climate change, new nutrient management strategies have
been proposed, such as setting updated nutrient reduction targets and establishing
stricter nutrient criteria for the impacted waterbodies (Huo et al., 2019; Liu et al.,
2018). In this study, the analyses of different scenarios carried out using the random
forest models showed that the responses of chlorophyll a concentrations to lake
warming could differ among different lakes and seasons. Algal growth was not

sensitive to lake warming throughout the year in Lake Dianchi. In Lake Taihu, algal



production could be promoted significantly by warming in the spring, but not in
summer (Figure 7), which indicates the these algal species in this lake may have
already reached their maximum growth rate in the summer under present-day
conditions (Huisman et al., 2018).

On the other hand, water temperature could also significantly affect the nutrient
concentrations within each lake by altering the natural processes occurring therein
(e.g., strengthened denitrification, sediment nutrient release, etc.) (Ding et al., 2018;
Finlay et al., 2013; Wu et al., 2017), and further can affect the orowth of algae (Finlay
et al., 2013). Such impacts of water temperature on nutrieir’ concentrations could be
particularly important for lakes for which thc effective control of anthropogenic
nutrient discharges has been established ("W ct al., 2017). In this study, much higher
TN concentrations usually occurred in spring and winter, and negative relationships
were observed between the watc: temperature and TN concentration in all three lakes
(P<0.01; Figure 8). tlisher water temperature is beneficial for the denitrification
process, which converts inorganic N species (e.g. NO;~ and NO,Y) into N, and N,O,
further resuiiing in decreases in TN concentrations (Yao et al., 2016; Zhong et al.,
2010). Tt was also previously reported that higher water temperature could promote
the reicases of P from the sediment and increase TP concentrations in water columns,
especially in summer (Ding et al., 2018). The strong variations in both TN and TP
concentrations within particular lakes could even shift the lakes from following a
‘P-limited pattern’ in spring to an ‘N-limited pattern’ in summer (Xu et al., 2015).
This fact indicates that, in addition to promoting algal growth, changes in water

temperature could also cause seasonal changes in nutrient levels, which might be



good (if they lead to deceasing TN concentrations) or bad (if they lead to increasing
TP concentrations) for algal control.

Strong seasonal variations in nutrient concentrations and other environmental
drivers of algal growth (e.g., water temperature and solar radiation) require that
season-specific, rather than ‘one-size fits all’, nutrient management strategies are used
for eutrophic lakes (Richardson et al., 2018; Taranu et al., 2012). Considering that
societies must make decisions based on trade-offs between environmental protection
and economic costs, it is necessary to adopt nutrient managcment strategies based on
the monthly nutrient thresholds for bloom-forming cyanouvactcria (Yu et al., 2019).
Results obtained with the random forest models herein showed that it is more
important to control the TP concentration in tiiese lakcs than the TN concentration to
reduce the chlorophyll a concentrations in therein (Figure 6). The estimated TN and
TP thresholds varied signiiicaniiy among different seasons. In Lake Taihu, the TP
criterion to limit the chilorophyll a concentration to below 20 pg/L was estimated to be
58 = 12 pg/L in May, but increased to 82 + 18 pg/L in September. In Lake Dianchi,
the TP criteiion was estimated to be 149 + 29 pg/L in August, but increased to 202 +
80 pg/L in April. In Lake Chaohu, the TP criterion was estimated to be 79 + 29 ug/L
m Sepicinber, but increased to 100 + 47 pg/L in January (Figure 5). This suggests that
1t 1s feasible and necessary to set flexible nutrient criteria in different months, and also
that less strict TP criteria might be applied in spring or winter. By comparing the
estimated TN and TP criteria with the measured nutrient data in 2017, only the
measured TP concentrations in summer were much larger than the estimated nutrient

criteria (from July to October), while in other seasons, the measured values



approached or were even lower than the estimated thresholds (Figure 5). However, in
actual environmental management, the nutrient control target is usually fixed for the
same lake throughout the whole year (Huo et al., 2019; Liu et al., 2018), which
neglects the natural variations in nutrient concentrations and other environmental
variables that occur. This means that many waterbodies are probably overprotected,
which increases the economic costs of environmental protection. Specifically. for the
studies lakes, the control of TP concentrations in summer con!d be considered a
priority, while the nutrient criteria might be relaxed slightly i1 otiier scasons.
4. Conclusion

In this study, we applied random forest modcls to long-term nutrient monitoring
and meteorological observational datasets for Lake [aihu, Lake Dianchi, and Lake
Taihu in China. This was done to characicrize the relationships between chlorophyll a
concentrations and various enviionmental drivers, establish season-specific nutrient
thresholds for each lake, and assess the potential declines in chlorophyll a
concentrations that could be achieved through nutrient management. In general, the
random forest modcls performed well at predicting chlorophyll a concentrations, and
succes: fully displayed monthly variations in chlorophyll a concentrations. The
estimaicd TN and TP thresholds were quite variable among different months, and
were usually stricter in summer than in winter. To limit chlorophyll a concentrations
to remaining below 20 pg/L in August, the estimated TN thresholds in Lakes Taihu,
Dianchi, and Chaohu were 2145 + 683, 2372 £ 918, and 1527 + 71 pg/L, respectively,
and the corresponding TP values were 82 + 24, 149 + 22, and 120 + 22 pg/L. The

model results showed that it is more important to control the TP concentration in



summer than the TN concentration to reduce the chlorophyll a concentration. The
strong seasonal variations in the estimated nutrient thresholds suggest that a
‘one-size-fits-all’ nutrient control target could overprotect these water bodies and
increase the economic costs of eutrophication control. In addition, our results showed
that natural changes in water temperature should be considered when establishing
such nutrient criteria and establishing a nutrient management strategy.
Acknowledgements
This study was funded by the National Natural Science poundation of China
(41977324, 41630748 and 41671492), Ministry of Science and Technology, China
(#2015FY111000) and Tibet University 201¢ Cential Financial Support Special
Funds for Local Colleges and Universities ([2018] No. 54).
References
Béjaoui, B., et al., 2018. Machine learning predictions of trophic status indicators and
plankton dynamic 111 coastal lagoons.Ecol. Indic. 95, 765-774.
Cardoso, A.C., et al, 2007. Phosphorus reference concentrations in FEuropean lakes.
Hydrobiologia 534(1), 3-12.
Carpenter, S.2., 2008. Phosphorus control is critical to mitigating eutrophication.Proc. Natl.
Acad. Sci. U. S. A, 105(32), 11039-11040.
Chou, J.-S., Ho, C.-C., Hoang, H.-S., 2018. Determining quality of water in reservoir using
machine learning.Ecol. Inform. 44, 57-75.
Conley, D.J., et al., 2009. Controlling Eutrophication: Nitrogen and Phosphorus. Science
323(5917), 1014-1015.

Davis, T.W., Berry, D.L., Boyer, G.L., Gobler, C.J., 2009. The effects of temperature and



nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis
during cyanobacteria blooms. Harmful Algae 8(5), 715-725.

Ding, S., et al., 2018. Internal phosphorus loading from sediments causes seasonal nitrogen
limitation for harmful algal blooms.Sci. Total Environ. 625, 872-884.

EPA, U., 2000a. Nutrient criteria technical guidance manual: lakes and reservoirs.
EPA-822-B-00-001. U.S. Envirpnmental Protection Agency, Office of Water,
Washington, DC.

EPA, U., 2000b. Nutrient criteria technical guidance manual, rivers and streems.
EPA-822-B-00-002. Office of Water, US Environmentai Protection Agence,
Washington, DC.

EPA, U.,, 2010. Using stressor-response relationships to derive numeric nutrient criteria.
EPA-820-S-10-001. U.S. Environmenial Protection Agency, Office of Water,
Washington, DC.

Finlay, J.C., Small, G.E.. Sterner, R.W., 2013. Human Influences on Nitrogen Removal in
Lakes. Science 342(6155), 247-250.

Garcia Nieto, P.J., Garcia-Gonzalo, E., Alonso Fernandez, J.R., Diaz Muniz, C., 2019. Water
eutrophication assessment relied on various machine learning techniques: A case study
in the Englishmen Lake (Northern Spain). Ecol. Model.

Gubert, P.M., 2017. Eutrophication, harmful algae and biodiversity — Challenging
paradigms in a world of complex nutrient changes.Mar. Pollut. Bull. 124(2), 591-606.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd, ed. Springer Science & Business: New York.

Huang, J., Zhang, Y., Huang, Q., Gao, J., 2018. When and where to reduce nutrient for



controlling harmful algal blooms in large eutrophic lake Chaohu, China?Ecol. Indic. 89,
808-817.

Huisman, J., et al., 2018. Cyanobacterial blooms.Nat. Rev. Microbiol. 16(8), 471-483.

Huo, S., et al., 2019. Stricter nutrient criteria are required to mitigate the impact of climate
change on harmful cyanobacterial blooms.J. Hydrol. 569, 698-704.

Huo, S., et al., 2018. Development of methods for establishing nutrient criteria in !akes and
reservoirs: A review.J. Environ. Sci. 67, 54-66.

Le, C., et al., 2010. Eutrophication of lake waters in China: cost, causes, and control. Environ.
Manage. 45(4), 662-668.

Lewis, W.M., Wurtsbaugh, W.A., Paerl, H.W., 2011. Rationale for Control of Anthropogenic
Nitrogen and Phosphorus to Reduce Futrophication of Inland Waters.Environ. Sci.
Technol. 45(24), 10300-10305.

Liu, L., et al., 2018. Impacts of climate change and land use on the development of nutrient
criteria.J. Hydrol. 563, 533-54Z.

Liu, X., Feng, J., Wang, V., 2019. Chlorophyll a predictability and relative importance of
factors governing lake phytoplankton at different timescales.Sci. Total Environ. 648,
472-48(

Ministiy of Ecology and Environment, China, 2002. Environmental Quality Standards for
Surface Water (GB3838-2002).

Ministry of Ecology and Environment, China, 2012. Plan for water pollution control in the
key watersheds in China.

Ministry of Ecology and Environment, China, 2019. Technical guideline for deriving nutrient

criteria for lakes (HJ 838-2017).



Nelson, N.G., et al., 2018. Revealing Biotic and Abiotic Controls of Harmful Algal Blooms in
a Shallow Subtropical Lake through Statistical Machine Learning.Environ. Sci. Technol.
52(6), 3527-3535.

Olson, J.R., Hawkins, C.P., 2013. Developing site-specific nutrient criteria from empirical
models. Freshw. Sci. 32(3), 719-740.

Ouyang, Z., Guo, H., Wang, W., Gao, W., 2015. Analysis of Water Quality Change and
Impacts from Socio-economic Development in Lake Dianchi from 1922 to 2012 (in
Chinses with English abstract). Environmental monitoring in China 31(2), 69-73.

Paerl, HW., et al.,, 2016a. Mitigating cyanobacterial harmtu! algal blooms in aquatic
ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54,
213-222.

Paerl, HW., et al., 2016b. It Takes Two to 1ango: When and Where Dual Nutrient (N & P)
Reductions Are Needed to Protect Lakes and Downstream Ecosystems.Environ. Sci.
Technol. 50(20), 16805-10813.

Paerl, H.W., et al., 201 1. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake
(Lake Tathu, China): The need for a dual nutrient (N & P) management strategy. Water
Res. 45(5), 1973-1983.

pal, Y., Cho, K.H., Park, J., Cha, S.M., Kim, J.H., 2015. Development of early-warning
protocol for predicting chlorophyll-a concentration using machine learning models in
freshwater and estuarine reservoirs, Korea.Sci. Total Environ. 502, 31-41.

Pefiuelas, J., et al., 2013. Human-induced nitrogen—phosphorus imbalances alter natural and
managed ecosystems across the globe.Nat. Commun. 4, 2934.

Poikane, S., et al., 2010. Defining Chlorophyll-a Reference Conditions in European Lakes.



Environ. Manage. 45(6), 1286-1298.

Posch, T., Koster, O., Salcher, M.M., Pernthaler, J., 2012. Harmful filamentous cyanobacteria
favoured by reduced water turnover with lake warming.Nat. Clim. Chang. 2, 809.

Richardson, J., et al., 2018. Effects of multiple stressors on cyanobacteria abundance vary
with lake type. Global Change Biol. 24(11), 5044-5055.

Rigosi, A., Carey, C.C., Ibelings, B.W., Brookes, J.D., 2014. The interaction bctween climate
warming and eutrophication to promote cyanobacteria is dependent on wophic state and
varies among taxa.Limnol. Oceanogr. 59(1), 99-114.

Robson, B.J., 2014. State of the art in modelling of phosphorus in aguatic systems: Review,
criticisms and commentary.Environ. Modell. Softw. 61, 339-359.

Schindler, D.W., Carpenter, S.R., Chapra, S.C.. Hecky, R.E., Orihel, D.M., 2016. Reducing
Phosphorus to Curb Lake Futrophication is a Success.Environ. Sci. Technol. 50(17),
8923-8929.

Shen, J., Qin, Q., Waung, Y., Sisson, M., 2019. A data-driven modeling approach for
simulating algal blooms in the tidal freshwater of James River in response to riverine
nutrient loading.Ecol. Model. 398, 44-54.

Shimoda, Y., Arhonditsis, G.B., 2016. Phytoplankton functional type modelling: Running
belore we can walk? A critical evaluation of the current state of knowledge.Ecol. Model.
320, 29-43.

Stone, R., 2011. China Aims to Turn Tide Against Toxic Lake Pollution. Science 333(6047),
1210-1211.

Taranu, Z.E., Zurawell, R.W., Pick, F., Gregory-Eaves, 1., 2012. Predicting cyanobacterial

dynamics in the face of global change: the importance of scale and environmental



context. Global Change Biol. 18(12), 3477-3490.

Tong, Y., et al., 2017a. Estimation of nutrient discharge from the Yangtze River to the East
China Sea and the identification of nutrient sources.J. Hazard. Mater. 321, 728-736.
Tong, Y., et al., 2017b. Decline in Chinese lake phosphorus concentration accompanied by

shift in sources since 2006.Nat. Geosci. 10, 507-511.

Tong, Y., et al., 2019. Impacts of water residence time on nitrogen budget of !akes and
reservoirs.Sci. Total Environ. 646, 75-83.

Tong, Y., et al., 2018. Human activities altered water N:P ratios in the populated regions of
China. Chemosphere 210, 1070-1081.

Van de Waal, D.B., Smith, V.H., Declerck, S.AJ., Stam, E.C.M., Elser, J.J., 2014.
Stoichiometric regulation of phytoplankton toxins.Ecol. Lett. 17(6), 736-742.

Wang, J.-H., et al., 2019. Meteorological factors and water quality changes of Plateau Lake
Dianchi in China (1990- 2015 and their joint influences on cyanobacterial blooms.Sci.
Total Environ. 665, 406-418.

Wu, Z., Liu, Y., Liang, 2., Wu, S., Guo, H., 2017. Internal cycling, not external loading,
decides the nutrient limitation in eutrophic lake: A dynamic model with temporal
Bayesian hierarchical inference.Water Res. 116, 231-240.

Xu, H., et al., 2015. Determining Critical Nutrient Thresholds Needed to Control Harmful
Cyanobacterial Blooms in Eutrophic Lake Taihu, China.Environ. Sci. Technol. 49(2),
1051-1059.

Yao, L., Jiang, X., Chen, C., Liu, G., Liu, W., 2016. Within-lake variability and
environmental controls of sediment denitrification and associated N20O production in a

shallow eutrophic lake.Ecol. Eng. 97, 251-257.



Yu, C,, et al., 2019. Managing nitrogen to restore water quality in China. Nature 567(7749),
516-520.

Zhang, Y., et al.,, 2017. Global loss of aquatic vegetation in lakes.Earth-Sci. Rev. 173,
259-265.

Zhong, J., et al., 2010. Seasonal variation of potential denitrification rates of surface sediment
from Meiliang Bay, Taihu Lake, China.J. Environ. Sci. 22(7), 961-967.

Figure captions

Figure 1. Flowchart of model development and application in prediciing nutrient thresholds

and response to different nutrient reductions;

Figure 2. Monthly changes of TN, TP and chlorophyll a concentration in Lake Taihu,

Dianchi and Chaohu between 2006 and 2017:

Figure 3. Overall cross-validated predictions by the random forest model in Taihu, Chaohu

and Dianchi. A. Comparison between predicted chlorophyll a concentration and measured
value in the testing data set; B. Prediction of monthly chlorophyll a concentration in three
lakes in 2017;

Figure 4. Partial dependence plots of chlorophyll a concentration to different explanatory
variabics in the random forest model

Fignre 5. Estimated monthly nutrient thresholds for (A) TP concentration and (B) TN
concentration in Taihu, Dianchi and Chaohu;

Figure 6. Response of chlorophyll a concentration to decrease of TP (A) and TN (B)
concentrations in the lakes;

Figure 7. Response of chlorophyll a concentration to the increases of water temperatures in

three lakes;



Figure 8. Correlation between water temperature and TN concentrations in Taihu, Dianchi

and Chaohu;
Three typical lakes: Lake Taihu, Lake Chaohu and Lake Dianchi
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Figure 3. Overall cross-validated predictions by the random forest model in Taihu, Chaohu

and Dianchi. A. Comparison between predicted chlorophyll a concentration and measured

value in the testing dataset; B. Prediction of monthly chlorophyll a concentration in three
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Figure 5. Estimated monthly nutrient thresholds for (A) TP and (B) TN concentration in
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Table 1. Basic characteristics of selected lakes and distribution of variables in data set

(median and 95% confidence intervals, n=sampling number)

Lak Locati Lake area  Average Chl a TN TP NH4*-N SD
ake name ocation

(km?) depth (m)  (ug/L) (ng/L) (ng/L) (ng/L) (cm) |
. E: 120.14° N: 12 (3-71), 1920(690-6136), 60 (20-180), 110(30-2129), 30 (10-50), 19.3
Taihu 2329 22 G7D (690-6136) (20-150) ( ) (10-0) |
31.41° n=2800 n=2843 n=2843 n=2843 n=2830 N
. . E: 102.66°; N: 63(18-177), 2230(1290-1249), 144(66-1066), 279(110-8906), 43(27-76), 18.7
Dianchi 298 5.0 (&7 ( ) ¢ o) ( ) (@27°76) (
25.01° n=1430 n=1429 n=1429 n=1428 n=1430 i
E: 117.38° N: 9.3(1.7-69.0), 1520(646-3545), 94(41-275), 372(108-1460), 35(15-55), 19.7
Chaohu 787 2.6 ( ) ( ) ¢ ) ( ) ( ) |
31.56° n=1496 n=1496 n=1496 n=1496 n=1496 i

(1) All the variables in the data set were monitored monthly enduring from January 2006 to
December 2017. (2) The detailed locations of the monitoring sites were provided iu Figure
S1; (3) Chl a — Chlorophyll a; TN — total nitrogen; TP — total phosphorus; iN[H,"-IN — ammonia
nitrogen; SD — Secchi depth; WT — water temperature; Rad — daily suishine duration; Rain —
daily precipitation; Wind — wind speed; (4) The data is calculated based on the data set
throughout the study period.

Highlights

B Chlorophyll a concentrations predicica by random forest models successfully
displayed the seasonal variations.

B Estimated total nutiient thresholds were quite variable and higher in summer than
in winter.

B [t was more eftective to control the TP concentrations in these lakes than the TN
conicentiations to control algal growth.

B Seasonal variation in nutrient concentrations and environmental drivers should be

considered when establishing nutrient criteria.
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Abstract

Eutrophication and subsequent harmful cyanobacteria blooms are global water
quality problems, and identifying the key drivers of water eutrophication and
estimating nutrient thresholds for it in waterbodies have long been challenges for
water quality managers. Data-intensive machine learning models have been shown to
be better able to reveal the nonlinear relationships between variables i the study of
complex biotic community dynamics than traditional mechanistic imodels. In this
study, we applied random forest models to long-terni duatasets from nutrient
monitoring and meteorological observations to c¢haractcrize the relationships between
algal growth and different environmenta! drivers in thiree eutrophic lakes in China.
We further attempted to estimate the season-specific nutrient thresholds in these lakes,
and assess the potential (ccreases in chlorophyll a concentrations that could be
achieved through nutiient management. In general, chlorophyll a concentrations
predicted by the random ‘rest models were consistent with the values observed in the
lakes, and successiully displayed the same seasonal variations. The estimated total
nitrogen (1N) and total phosphorus (TP) nutrient thresholds were quite variable
ainong months, and were higher in summer than in winter. To maintain chlorophyll a
concentrations below 20 pg/L, the estimated TN thresholds in Lakes Taihu, Dianchi,
and Chaohu in August were 2145 + 683, 2372 + 918 and 1527 + 71 pg/L (mean +
standard deviation), respectively, and the corresponding TP thresholds were 82 + 24,
149 + 22, and 120 + 22 pg/L. The modelling results indicated that it was more

important to control the TP concentrations in these lakes than the TN concentrations



to control algal growth in summer. In summary, the strong seasonal variation in the
estimated nutrient thresholds suggests that a ‘one-size-fits-all’ nutrient control target
could overprotect these water bodies. Seasonal variation in nutrient concentrations
and environmental drivers should thus be considered when establishing nutrient

criteria and setting nutrient control targets.



