
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Estimating reservoir evaporation losses for the United States: Fusing remote
sensing and modeling approaches

Gang Zhao, Huilin Gao⁎

Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA

A R T I C L E I N F O

Keywords:
Evaporation
Heat storage
Landsat
Water mapping
Brightening

A B S T R A C T

Evaporation from open surface water is a critical and continuous process in the water cycle. Globally, eva-
poration losses from reservoirs are estimated to be greater than the combined consumption from industrial and
domestic water uses. However, this large volume of water loss is only coarsely considered in modern water
resources management practices due to the complexities involved with quantifying these losses. By fusing remote
sensing and modeling approaches, this study developed a novel method to accurately estimate the evaporation
losses from 721 reservoirs in the contiguous United States (CONUS). Reservoir surface areas were extracted and
enhanced from the Landsat based Global Surface Water Dataset (GSWD) from March 1984 to October 2015. The
evaporation rate was modeled using the Penman Equation in which the lake heat storage term was considered.
Validation results using in situ observations suggest that this approach can significantly improve the accuracy of
the simulated monthly reservoir evaporation rate. The evaporation losses were subsequently estimated as the
product of the surface area and evaporation rate. This paper presents a first of its kind, comprehensively vali-
dated, locally practical, and continentally consistent reservoir evaporation dataset. The results suggest that the
long term averaged annual evaporation volume from these 721 reservoirs is 33.73×109m3, which is equivalent
to 93% of the annual public water supply of the United States (in 2010). An increasing trend of the evaporation
rate (0.0076 mm/d/year) and a slightly decreasing trend of the total surface area (−0.011×109m2/year) were
both detected during the study period. As a result, the total evaporation shows an insignificant trend, yet with
significant spatial heterogeneity. This new reservoir evaporation dataset can help facilitate more efficient water
management practices.

1. Introduction

It has been projected that 5.3 billion people will live under water
stress and water scarcity globally by 2030 (Organisation for Economic
Co-operation and Development, 2008). Most of the affected population
relies on surface water—especially the water impounded by reservoirs,
which can be easily accessed and managed (United Nations
Environment Programme, 2013). In addition to supplying water for
agricultural, municipal, and industrial uses, reservoirs can also be used
for flood control and hydropower generation. From 1950 to 2007, the
cumulative volume of water impounded by global reservoirs rose from
about 1000 km3 to 11,000 km3, reducing the global sea level rise by
30mm (Chao et al., 2008). According to the Global Reservoir and Dam
Database (GRanD; Lehner et al., 2011), the United States is the country
with the largest number of reservoirs. These reservoirs are capable of
storing 1300 km3 of water, which is almost equivalent to the region's
annual mean runoff (Graf, 1999).

Globally there are about 16.7 million reservoirs that have a surface
area of 100 m2 or greater (Lehner et al., 2011). These reservoirs have
increased the global terrestrial water surface area by about
305,000 km2. With the large amount of surface area that is produced by
these artificial impoundments, the evaporative loss is sig-
nificant—especially in semi-arid and arid regions (Ali et al., 2008;
Morton, 1979). For example, the annual evaporation loss from 200
reservoirs in Texas, USA, equals to 20% of their active storage (Zhang
et al., 2017). The long-term evaporation from Lake Tahoe, which is
located in the arid western United States, accounts for 40%–60% of the
total reservoir output (Friedrich et al., 2018). The reservoir evaporation
of Lake Mead (~1800mm/year; Moreo, 2015) is much larger than the
surrounding evapotranspiration (~50mm/year; Mu et al., 2011),
which can be regarded as pre-reservoir ET. From a global perspective,
Shiklomanov (1999) estimated a total of ~270 km3/year of reservoir
evaporation, which is larger than the combined domestic and industrial
water use in the year 2010 (~250 km3). Therefore, to better support
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efficient water resources management, it is essential to incorporate
accurate reservoir evaporation information into current reservoir op-
eration rules.

Despite the critical need for reservoir evaporation information, no
continentally consistent and locally practical evaporation dataset has
been produced that can be used in the policy making process at a re-
gional scale. To precisely quantify the evaporation losses from a given
reservoir, water surface area and evaporation rate data are needed.
However, both high quality reservoir surface area and evaporation rate
data can be difficult to gather.

Reservoir surface area is usually inferred from in-situ measure-
ments, or estimated from remote sensing images. By applying in-situ
measured reservoir elevation values to a known elevation-area re-
lationship, a reservoir's area can be calculated. The elevation-area re-
lationship is typically derived from bathymetry investigations (either
before or after the reservoir is constructed) using sonar/laser and GIS
technologies. However, this method is limited by its large expense and
the changes of reservoir bathymetry due to sedimentation. Remote
sensing has the advantage of estimating water surface area from sa-
tellite images at low cost (McFeeters, 1996; Sawaya et al., 2003; Gao,
2015). Even though there is always a compromise between spatial and
temporal resolution with remote sensing technologies, usually high
quality images with acceptable time intervals can be obtained. Com-
pared with other remote sensing data, Landsat has the advantages of
long temporal coverage and high spatial resolution, which makes it
suitable for water surface area change studies (Pekel et al., 2016;
Donchyts et al., 2016; Khandelwal et al., 2017). However, a major
limitation of using Landsat images for continuous water area mon-
itoring is the frequent contamination from multiple sources, such as
clouds, cloud shadows, terrain shadows, and the Scan Line Corrector
(SLC) failure (for Landsat 7). As a result, direct water extraction from
the contaminated satellite images can lead to significant under-
estimation. To generate reliable water area estimates, most studies have
simply removed the contaminated images. For instance, Busker et al.
(2018) removed all of the images which are> 5% contaminated to get
the surface area time series for 135 global lakes. However, this has led
to many missing values in the time series, especially for the regions that
have frequent cloud coverage. To bridge this gap, Zhao and Gao (2018)
developed an image enhancement algorithm to automatically repair the
contaminated reservoir images extracted from the Global Surface Water
Dataset (GSWD; Pekel et al., 2016). The new algorithm resulted in a
Global Reservoir Surface Area Dataset (GRSAD), which significantly
improved the continuity of the reservoir area time series (i.e., 81%
improvement on a global scale).

The evaporation rate of open water has been studied for decades.
Comprehensive reviews of evaporation rate estimation methods can be
found in Morton (1994) and the more recently Friedrich et al. (2018).
The pan evaporation method has been employed by the National
Weather Service (NWS) for estimating the point evaporation rate op-
erationally for many decades. In addition to the primary purpose of
assessing the spatial variability of atmospheric evaporative demand
(AED) for irrigation scheduling, the pan evaporation data are also used
for other applications such as investigating climate change and esti-
mating reservoir evaporation (Stanhill, 2002; Ohmura and Wild, 2002;
Rotstayn et al., 2006). Although there are about 950 pan evaporation
stations across the CONUS, only a very small portion of these are lo-
cated close enough to dams to estimate reservoir evaporation. Fur-
thermore, lake evaporation estimation based on pan evaporation is
subject to large errors due to multiple factors. These include ignoring
the microclimate difference between the reservoir and the pan, not
accounting for heat storage effects, extra heat absorption from the pan's
sides, water splashing, overflow due to intensive rainfall, freezing
conditions, human error, and others (McMahon et al., 2013; Friedrich
et al., 2018). Thus, it is regarded as one of the least accurate eva-
poration estimation methods and is not suitable for precise water
management practices (Tanny et al., 2008; Harwell, 2012; McJannet

et al., 2017). In addition to the pan evaporation method, eddy covar-
iance (EC), scintillometer, mass balance, Bowen ratio energy budget
(BREB), and combination equation methods are frequently used. In
general, EC is considered the most accurate approach—but it has been
primarily used for evapotranspiration related research. Constrained by
the expensive cost and the sensitivity to wind direction (relative to both
sensor and reservoir location), very few lake evaporation data have
been collected using this approach. By measuring the sensible heat flux,
a scintillometer can estimate the latent heat flux if other energy terms
are known, even though it has multiple limitations (such as signal sa-
turation) (Moene et al., 2009). The mass balance and BREB methods are
both data intensive. Mass balance requires inputs of inflow (tribu-
tary+ lateral), outflow (outlet+ lateral), storage change, and water
use data. The BREB method requires measuring heat storage changes
and water surface temperatures, in addition to other meteorological
forcings (Morton, 1986; Morton, 1994). Both methods can result in
considerable error introduced by the complex inputs (Stannard et al.,
2013; Friedrich et al., 2018).

Among the various approaches for estimating the evaporation rate
on a large scale, the most practical one involves using a physically
based combination equation such as the Penman equation (Penman,
1948). Some variants include PenPan (Rotstayn et al., 2006; for esti-
mation of pan evaporation), Penman-Monteith (Monteith, 1965; com-
monly used for potential evapotranspiration estimation), and the
Priestley-Taylor equations (Priestley and Taylor, 1972; for quantifying
wet-surface evaporation in advection-free conditions). The PenPan
equation has the same form as the Penman equation but includes dif-
ferent parameterizations. The Penman-Monteith equation introduced
physically based aerodynamic resistance to replace the empirical wind
function. For the Priestley-Taylor equation, an empirical coefficient
(αPT=1.26) was used to approximate the aerodynamic term in the
Penman equation. The value 1.26 was found to be appropriate for non-
advective conditions but may change under advective conditions
(Assouline et al., 2016; Eichinger et al., 1996; Flint and Childs, 1991).
Detailed comparisons of these methods can be found in McMahon et al.
(2013) and Wang and Dickinson (2012). These physically based models
are proven to be reliable for applications over shallow water reservoirs
(typically< 3m in depth) where heat storage is insignificant (Abtew,
2001; Linacre, 1993; Zhao et al., 2016). However, lakes and reservoirs
usually have a considerable heat storage effect, causing combination
equations to be biased with regard to seasonal evaporation rate esti-
mation (Finch and Hall, 2001; McMahon et al., 2013). For example, in
Lake Tahoe (California, US), the air temperature is highest in July, but
the largest evaporation rate occurs in September (Tahoe Environmental
Research Center, 2015). To address this issue, Edinger et al. (1968)
introduced the equilibrium water temperature, and de Bruin (1982)
incorporated it into evaporation rate estimation. The equilibrium
temperature is the water temperature at which there is no heat ex-
change between the air and water under constant forcings. It can help
calculate the water column temperature and (then) the heat storage
changes. This concept has been used in several studies, and has proven
to be appropriate for open-water evaporation estimation (Finch, 2001;
Finch and Hall, 2001; Bogan et al., 2003; Caissie et al., 2005; McJannet
et al., 2008; Mekonnen and Hoekstra, 2012). Although the derivations
of the equilibrium temperature in these studies were all based on the
energy balance of the water body, different studies have adopted dif-
ferent simplified energy terms. For instance, the most generic form of
the equilibrium temperature was from Mohseni and Stefan (1999),
which used a simplified latent heat flux formulation. Therefore, there is
a lack of a generalized formulation of the equilibrium temperature to
improve upon the open-water evaporation estimation using the Penman
equation.

Therefore, this study focuses on breaking the above key barriers in
reservoir evaporation quantification to better support more precise
water resources management at both local (individual reservoir) and
regional (multiple reservoirs) scales. A total of 721 reservoirs, which
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account for 90.2% of the large reservoir storage capacity in the CONUS
(Fig. 1), were chosen as our study sites (Lehner et al., 2011). Specifi-
cally, our three objectives were to: 1) adopt continuous reservoir sur-
face area time series generated from a Landsat-based water classifica-
tion dataset that is free of image contamination; 2) quantify heat
storage changes in the Penman equation to better simulate the monthly
reservoir evaporation rate; 3) generate the long-term monthly eva-
poration volume dataset for the 721 reservoirs and analyze the long-
term trends of reservoir evaporation. Even though this study focuses on
reservoirs in the CONUS, the retrieval algorithms and the data analysis
approaches are transferable to other regions or to a global scale. These
objectives provide the structural sub-headings used in the following
Methods, Results and Discussions sections.

2. Data and methods

2.1. Estimation of reservoir surface area

The surface area time series data for the 721 reservoirs were ex-
tracted from the Landsat based GRSAD by Zhao and Gao (2018). The
dataset was built upon the GSWD, which includes the global water
areas for each month from March 1984 to October 2015 (Pekel et al.,
2016). By applying a complex expert system classification method (on
~3 million Landsat images from 1984 to 2015), the GSWD generated
monthly global water coverage maps at 30-meter resolution. Each 30m
by 30m pixel was classified as open water, land, or no-data. The no-
data class indicates that the pixel is covered by snow, ice, cloud,
shadow, or sensor-related issues. Because these types of contamination
are very common—and because Landsat 7 also suffered from SLC
failure (since 2003)—a large portion of the pixels in the GSWD were
assigned as no-data. As a result, the direct area extraction of open water
class can result in significant underestimation of the reservoir surface
area. Zhao and Gao (2018) developed an image enhancement algorithm
to automatically repair the contaminated images to get the full water
coverage (i.e., directly seen water area, and the water area covered by
contaminated sources such as clouds). Compared with the raw time
series directly extracted from the GSWD, the enhanced time series from
the GRSAD has significantly improved continuity and thus is more

appropriate for evaporation volume quantification. More detailed va-
lidation results about the surface area estimations can be found in Pekel
et al. (2016) and Zhao and Gao (2018).

2.2. Estimation of reservoir evaporation rate

2.2.1. Data for calculating evaporation rate
The monthly meteorological data used for calculating the evapora-

tion rate includes air temperature, vapor pressure deficit, wind speed,
and surface shortwave radiation. These are the four primary meteor-
ological variables governing the evaporation process (McVicar et al.,
2012). To consider the uncertainties from the inputs, these variables
were adopted from three long-term datasets: 1) TerraClimate (1/24°
spatial resolution; Abatzoglou et al., 2018); 2) North American Land
Data Assimilation System phase 2 (NLDAS-2) forcings (1/8°; Xia et al.,
2012); and 3) Global Land Data Assimilation System Version 2 and
Version 2.1 (GLDAS-2 and GLDAS-2.1; 1/4°; Rodell et al., 2004).

TerraClimate inherited the solar radiation and wind speed from the
Japanese 55-year Reanalysis (JRA-55) project, while air temperature
and vapor pressure were extracted from the Climate Research Unit time
series data version 4.0 (CRU Ts4.0). Both JRA-55 and CRU Ts4.0 were
downscaled to the TerraClimate resolution using the 1/24° WorldClim
dataset (Abatzoglou et al., 2018). Primarily based on the North Amer-
ican Regional Reanalysis (NARR) dataset, NLDAS-2 combined multiple
data sources—including ground and satellite data—to generate a me-
teorological dataset with a high temporal resolution (3-hourly). The
monthly data were calculated by simply averaging the 3-hourly values.
Validations against in-situ observations suggest that the NLDAS retro-
spective forcing data are of high quality (Luo et al., 2003; Xia et al.,
2012). GLDAS-2 and GLDAS-2.1 data extend the periods from 1948 to
2010 and from 2000 to present, respectively. GLDAS-2 was generated
primarily from the Princeton global meteorological dataset (Sheffield
et al., 2006), while GLDAS-2.1 was driven by a set of land surface
models and observation data (Rui and Beaudoing, 2011). To cover the
entire period of this study (i.e., 1984 to 2015), we used data from both
GLDAS-2 (from 1984 to 1999) and GLDAS-2.1 (from 2000 to 2015).

For each of the reservoirs, the forcing data time series were gener-
ated by averaging the overlapping cells from the gridded forcing data

Fig. 1. The 721 reservoirs over the CONUS selected in this study. The five reservoirs with EC or BREB evaporation rates were shown in red. Among these reservoirs,
718 of them are major reservoirs with a storage capacity larger than 108m3, and the remaining 3 are smaller reservoirs (but with in situ evaporation rate data
available, which is used for validation purposes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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with the reservoir shapefiles. This can help reduce the uncertainty of
gridded forcing data and facilitate the usage of universal fetch for all of
the cells.

2.2.2. Algorithm for evaporation rate
With both energy budget and mass transfer terms included, com-

bination equations can provide precise reservoir evaporation estima-
tion. In 1948, Penman derived the first combination equation for open
water evaporation estimation (Eq. (1)):

=
− ∆ + −

+
E

s R U γf u e e
λ s γ

( ) ( )( )
( )

n s a

v (1)

where E is the open water evaporation rate (mm·d−1); s is the slope of
the saturation vapor pressure curve (kPa·°C−1); Rn is the net radiation
(MJ·m−2·d−1); ΔU is the heat storage changes of the water body
(MJ·m−2·d−1); f(u) is the wind function (MJ·m−2·d−1·kPa−1); es is the
saturated vapor pressure at air temperature (kPa); ea is the air vapor
pressure (kPa); λv is the latent heat of vaporization (MJ·kg−1); and γ is
the psychrometric constant (kPa·°C−1). The Penman equation and its
variants (e.g., the Penman-Monteith equation) have been widely em-
ployed for potential evapotranspiration as well as for open water eva-
poration estimations (McJannet et al., 2008; Tanny et al., 2008;
McMahon et al., 2013).

However, there are two key factors that need to be considered when
applying the Penman equation to open water evaporation estimation.
The first is associated with the meteorological data that are used to
drive the Penman equation. Ideally, the meteorological data should be
directly collected over the water surface. However, due to the diffi-
culties, logistics, and costs associated with acquiring measurements
over water, most studies have employed land-based meteorological
data as a substitute (Winter et al., 1995; dos Reis and Dias, 1998;
McJannet et al., 2012). Direct use of land-based meteorological data in
the Penman equation is likely to result in a biased estimation, given the
meteorological differences between land and water areas (Weisman and
Brutsaert, 1973). Specifically, when air moves from land across the
water body, its humidity gradually increases due to the evaporation
processes on the water surface. This will lead to decreasing evaporation
fluxes in the downwind direction.

To solve this problem, McJannet et al. (2012) developed a generally
applicable wind function that facilitates the open-water evaporation
rate calculation using standard land-based meteorology. This empirical
function uses a fetch length to include the effect of air becoming
moister when moving from land to water surface (Eq. (2)):

= + −f u λ u L( ) (2.33 1.65 )v f2 2
0.1

(2)

where f(u2) is the wind function (MJ·m−2·d−1·kPa−1); u2 is the wind
speed at the height of 2m (m·s−1); and Lf is the fetch length of the water
body (m). The coefficients in Eq. (2) were identified by regressing u2
and Lf against data from 19 previously published wind functions, which
represent a range of water bodies with various sizes and climate con-
ditions (McJannet et al., 2012). Because the wind speed values from
reanalysis datasets are generally reported at a 10-m height, they were
converted to 2-m values using the standard grass surface roughness
(Allen et al., 1998). Open water roughness was not used in order to be
consistent with the generalized wind function from McJannet et al.
(2012).

The fetch length was calculated for each reservoir and each month
(Fig. 2). With a given wind direction (monthly dominant wind direction
derived from NLDAS), the width is defined as the distance between the
two reservoir-tangent lines that are parallel to the wind direction. Then
fetch length was calculated by dividing the total area with the width.

The second key factor to be considered when applying the Penman
equation to open water evaporation is the heat storage quantification
(i.e., ΔU in Eq. (1)). For instance, reservoirs/lakes tend to store heat in
the spring/summer and release heat in the fall/winter. Without

considering this heat storage effect, the evaporation rate would be
overestimated in the former and underestimated in the latter.

To represent the heat storage effect when calculating the evapora-
tion rate, an approach using “equilibrium temperature” was adopted.
The equilibrium temperature is defined as the water temperature at
which there is no heat exchange between air and water (Edinger et al.,
1968). If the water is under constant radiative forcing for a long enough
time, the water will reach a steady state with the water temperature
equal to the equilibrium temperature. In reality, the actual water
temperature tends to approach the equilibrium temperature gradually.
The lag time, which is defined as τ, is dependent on the water body
depth. Built upon previous studies (Edinger et al., 1968; de Bruin, 1982;
Mohseni and Stefan, 1999; McMahon et al., 2013), we have derived a
more general and accurate equation for calculating the equilibrium
temperature described as follows.

The calculation of equilibrium temperature is based on the energy
balance equation (Eq. (3)):

− + − − − =↓ ↓ ↑α K L L λ E H(1 ) 0v (3)

where α is the water surface albedo; K↓ is the downward shortwave
radiation (MJ·m−2·d−1); L↓ is the downward longwave radiation
(MJ·m−2·d−1); L↑ is the upward longwave radiation (MJ·m−2·d−1); λvE
is the latent head flux (MJ·m−2·d−1); and H is the sensible head flux
(MJ·m−2·d−1).

When the water temperature at the surface is within −30 °C to
50 °C, L↓ and L↑ can be approximated using Eqs. (4) and (5) (Mohseni
and Stefan, 1999). Because the water body is at an equilibrium state,
the outgoing longwave radiation is calculated as a function of Te.

= + ≈ +↓L ε σ T ε kT b( 273.15) ( )a a a a
4 (4)

= + ≈ +↑L ε σ T ε kT b( 273.15) ( )w e w e
4 (5)

where εa is the emissivity of air with cloudiness factor (Satterlund,
1979; Brutsaert, 1984); εw is the emissivity of water (0.97 after Mohseni
and Stefan, 1999); σ is the Stefan-Boltzman constant
(4.9× 10−9 MJ·m−2·K−4·d−1); Ta is the air temperature (°C); Te is the
equilibrium temperature (°C); and k and b are constants of 0.46
MJ·m−2·d−1·°C−1 and 28.38 MJ·m−2·d−1, respectively.

The latent and sensible heats are calculated after Eqs. (6) and (7). As
with Eq. (5), Te is used for calculating the sensible heat flux (Eq. 7).

Fig. 2. Calculation of the reservoir fetch for a given wind direction.
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After inserting Eqs. (4), (5), (6) and (7) into Eq. (3) (and some re-
arrangement), an equation for the equilibrium temperature (Eq. (8))
can be derived.
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Then the actual water column temperature can be estimated after de
Bruin (1982) using Eqs. (9) and (10):

= + − ∙ −∆T T T T e( )w e w e
t τ

0
/ (9)

=
+ + +

τ
ρ c h

σ T f u s γ4 ( 273.15) ( )( )
w w

wb wb
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where Tw is the water column temperature at the current time step (°C);
Tw0 is the water column temperature at the previous time step (°C); Δt is
the time step (set as one month in this study); τ is the lag time (d); ρw is
the water density (kg·m−3); cw is the specific heat of water
(MJ·kg−1·°C−1); h is the average water depth (m); Twb is the wet-bulb
temperature (°C); and swb is the slope of the saturation vapor pressure
curve at Twb (kPa·°C−1).

Various time steps for calculating equilibrium temperature have
been used in previous studies (Finch and Hall, 2001; McVicar et al.,
2007). Finch and Hall (2001) compared the impacts of different time
steps (5, 10, and 30 days) on evaporation rate estimation and found that
30 days can still generate acceptable results. To be consistent with the
TerraClimate dataset and the surface area values, we used a time step
(Δt) of one month here. The reservoir depth data were collected from
Lehner et al. (2011). If the lake depth was>20m, a constant value of
20m was used. This is because the incoming radiation only affects the
epilimnion layer, which is usually< 20m (Patalas, 1984). More com-
plex reservoir stratification was not considered in this study.

The change of heat storage can subsequently be calculated after
McMahon et al. (2013) by Eq. (11), which is then implemented into the
Penman equation (Eq. (1)) for an improved estimation of the eva-
poration rate. A detailed algorithm flowchart, all the necessary equa-
tions, and a worked example are provided in the Appendix.

∆ =
−

∆
U ρ c h T T

tw w
w w0

(11)

2.3. Evaporation losses from the reservoirs

For each reservoir, the monthly evaporation volumes were calcu-
lated as the product of the monthly surface area and the monthly
evaporation rate. Compared with the evaporation rate, evaporation
losses from a specific reservoir are more important with regard to water
management practices, as they directly affect water availability.

Using the evaporation data developed above, we introduce the re-
servoir evaporative losses index (RELI) for quantifying the role of
evaporation in reservoir storage losses. The water storage losses of a
reservoir include human water use, evaporation, and groundwater re-
charge. For any given reservoir, the water mass balance can be re-
presented by Eq. (12).

− = + − − − −−S S P Q Q EV WU Φt t in out1 (12)

where S is the reservoir storage; t is the time step; P is the precipitation;
Qin and Qout are the inflow and outflow of the reservoir; EV is the
evaporation volume; WU is the water use of the reservoir that is directly
pumped from the reservoir; and Φ represents the other water losses. Φ
can be positive (e.g., groundwater recharge) or negative (e.g.,

groundwater discharge) (Woessner and Sullivan, 1984).
By moving the water loss components to one side and the directly

measurable terms to the other side, Eq. (12) can be rearranged into Eq.
(13).

+ + = + − − − −EV WU Φ P Q Q S S( ) ( )in out t t 1 (13)

This way, the RELI can be calculated (Eq. (14)) to quantify the
partitioning of evaporation in the total water losses of a given reservoir.

=
+ +

=
+ − − − −

RELI EV
EV WU Φ

EV
P Q Q S S( ) ( )in out t t 1 (14)

3. Results

3.1. Reservoir surface area

3.1.1. Validation of reservoir surface area
Detailed validations of the GSWD and the GRSAD can be found in

Pekel et al. (2016), and Zhao and Gao (2018), respectively. In addition,
two reservoirs are used as examples here to demonstrate the robustness
of the remotely sensed surface area results. The Amistad Reservoir is
located between the USA and Mexico, and it has a maximum area of
about 150 km2. Lake Mead is located between the states of Nevada and
Arizona, USA and has a maximum area of about 600 km2. The remotely
sensed surface area time series were compared with observed eleva-
tion/storage data (Fig. 3a and Fig. 4a). For the Amistad Reservoir, the
coefficient of determination (R2) between the remotely sensed area and
the observed elevation was improved from 0.38 (before the enhance-
ment) to 0.98 (after the enhancement). For Lake Mead, the R2 was
improved from 0.32 to 0.99. Since the remotely sensed area and gauge
elevation/storage values are completely independent of each other,
these results suggest that the area estimations can accurately capture
the seasonal and inter-annual variations. For each of the two reservoirs,
we also selected a high-water-level image (Fig. 3b–c, and Fig. 4b–c) and
a low-water-level image (Fig. 3d–e, and Fig. 4d–e) to show the per-
formance of the enhancement algorithm.

3.1.2. Magnitude and trends of the surface area
As shown in Fig. 5a, the areas of the reservoirs have a large spatial

heterogeneity ranging from 0.1 km2 to 1350 km2. Because the surface
area data from the GSWD is from Mar 1984 to Oct 2015, we selected the
complete years from 1985 to 2014 to conduct all of the following trend
analysis. To make the trends comparable among reservoirs, we calcu-
lated the relative trends—i.e. the value of a given trend divided by the
long-term average area value (Fig. 5b). From 1985 to 2014, 429 re-
servoirs show insignificant trends, 134 reservoirs show negative trends,
and 158 reservoirs show positive trends. The reservoirs with increasing
surface area are mostly located in the eastern US while the reservoirs
with decreasing surface area are located in the central and western US.
Specifically, the negative trends generally have larger values than the
positive trends. The average value for all of the negative trends is
−1.0% while the average value for all of the positive trends is 0.4%.

The long-term trend of surface area is generally correlated with the
precipitation trend (Fig. 5b). In particular, the three central states (i.e.,
Texas, Oklahoma, and Louisiana) have the largest decreasing pre-
cipitation trend. As a result, the surface areas of most of the reservoirs
in this region have been decreasing. In the eastern US (such as in
Tennessee and North Carolina), increasing precipitation leads to a
slightly increased surface area. In addition to the precipitation trend,
local water management can also affect the changes of surface area. For
instance, there are no significant trends for 32 of the reservoirs in
Texas.
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3.2. Reservoir evaporation rate

3.2.1. Validation using evaporation data collected by EC and BREB
methods

As mentioned in Section 1, EC is considered to be the most reliable
approach for measuring evaporation/evapotranspiration fluxes
(Rimmer et al., 2009). It estimates the heat, water vapor, and carbon
dioxide fluxes by directly detecting the variation of eddies at a high
frequency. Uncertainties of EC open water evaporation are usually at-
tributed to the location of the measurements, as accurate EC

measurement requires a homogeneous fetch. Both the EC instrument
and the choice of processing model can also introduce uncertainties, but
these should be less than those from the turbulences (Hollinger and
Richardson, 2005). BREB is another widely used evaporation estimation
approach that is considered to be reliable, but it is less accurate than EC
(because each energy flux component can introduce errors)
(Rosenberry et al., 2007). BREB approaches are typically applied to
small water bodies due to the difficulties involved with quantifying the
heat storage of the large ones (Friedrich et al., 2018).

Through literature review, three reservoirs with EC measurements

Water
Not water
No data

b) Jun 1991 (raw) c) Jun 1991 (enhanced)

d) Apr 2013 (raw) e) Apr 2013 (enhanced)

Fig. 3. Remotely sensed surface area of the Amistad
Reservoir on the border between the USA and Mexico. a)
Time series of reservoir surface area and gauge observed
elevation from March 1984 to October 2015. b) The GSWD
classification result for June 1991; c) enhanced water area
from the GRSAD for June 1991; d) the GSWD classification
result for April 2013; and e) enhanced water area from the
GRSAD for April 2013.

b) Apr 1985
(raw)

c) Apr 1985
(enhanced)

d) Feb 2012
(raw)

e) Feb 2012
(enhanced)

Water
Not water
No data

Fig. 4. Water surface extraction for Lake Mead in Nevada/
Arizona. a) Time series of reservoir surface area and gauge
observed storage from March 1984 to October 2015. b) The
GSWD classification result for April 1985; c) enhanced water
area from the GRSAD for April 1985; d) the GSWD classifi-
cation result for February 2012; and e) enhanced water area
from the GRSAD for February 2012.
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and two reservoirs with BREB data were selected to be used as the
validation sites (Fig. 6). For Lake Mead and White Bear Lake, the un-
certainties from the EC estimates are 5.6% and 5.3%, respectively
(Moreo, 2015; Xiao et al., 2018). The uncertainties with regard to the
BREB are expected to be< 10% (Winter, 1981). The reservoir in-
formation and their error statistics are summarized in Table 1. These
five lakes are located in different states with various climatic condi-
tions. In addition, they have a wide range of depths and fetch lengths.
Thus, the validation results are deemed representative.

For Lake Mead (Fig. 6a), there are clear time lags (and magnitude
differences) between the observed and modeled evaporation when heat

storage is not considered. By incorporating the heat storage term into
the calculation, the R2 value is improved from 0.29 to 0.84. The un-
derestimation is likely to be caused by the advective energy (Moreo,
2015), which is not considered in our approach, and discussed further
in the limitations section. White Bear Lake is the only one of these five
lakes that has a decreased R2, and yet a slightly smaller root mean
square error (RMSE), after adding heat storage. This is attributed to an
overestimation in 2014, as the R2 in 2015 is improved from 0.34 to
0.78. The Ross Barnett Reservoir (Fig. 6c) is a relatively shallow re-
servoir, which leads to small time lags. However, there is a clear
overestimation of the evaporation rate in 2008 associated with NLDAS

Fig. 5. a) Long-term average (from 1985 to 2014) of the
surface area for the 721 reservoirs and b) their trends
(%/year) as detected by linear regression and Student's t-
test with a 95% significance interval. The trends are
shown as percentage values per year and were calculated
by dividing the area losses per year with the long-term
average areas. The precipitation trend in b) was based on
TerraClimate data from 1985 to 2014.
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Fig. 6. Comparisons of the modeled and observed evaporation rates for a) Lake Mead (Nevada/Arizona) from Mar 2010 to Dec 2011 with EC measurements; b) White
Bear Lake (Minnesota) from Jul 2014 to Oct 2015 with EC measurements; c) Ross Barnett Reservoir (Mississippi) from Sep 2007 to Dec 2008 with EC measurements;
d) Lake Calm (Florida) from Apr 2005 to Oct 2007 with BREB estimates; e) Lake Five-O (Florida) from Jun 1989 to Dec 1990 with BREB estimates. The shaded area
represents the estimation uncertainty from different input forcing datasets (i.e., TerraClimate, NLDAS, and GLDAS).
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(RMSE=0.97mm/d). For both TerraClimate and GLDAS, the RMSE
values are 0.54mm/d. The time lags are barely noticeable for Lake
Calm (Fig. 6d), which is a 3-m deep lake in Florida. As a result of its
shallow depth, the R2 is only improved from 0.93 to 0.94. However,
results for the deeper Lake Five-O in Florida (Fig. 6e) show clear im-
provement after considering heat storage.

3.2.2. Comparison with pan evaporation
Pan evaporation has been widely used for monitoring reservoir

evaporation operationally (Tanny et al., 2008). Because of the errors
introduced by multiple factors, intensive quality control processes need
to be implemented with regard to the raw data to provide reliable in-
formation for further applications. Additionally, to reduce the impacts
of the side heat absorption and the heat storage effect, a “pan coeffi-
cient” (i.e., the ratio of lake evaporation over pan evaporation) is
usually applied to the pan observation measurements to approximate
reservoir evaporation. Despite its many limitations, pan evaporation
provides a source for large scale validation.

Based on the observed pan evaporation across Texas—and on the
pan coefficients from NWS Technical Report 33 (TR-33)—the Texas
Water Development Board (TWDB) generated a dataset containing
monthly lake evaporation rates for 92 quadrangles over the entire state
of Texas. The calculated evaporation rates of 86 Texas reservoirs were
compared with the TWDB pan evaporation data (Fig. 7a). The R2 and
relative bias (in parenthesis) values between the observed pan eva-
poration and the simulated results of the three forcing datasets are 0.56
(−1.6%), 0.49 (3.4%), and 0.53 (−7.1%) for TerraClimate, NLDAS,
and GLDAS, respectively. These relatively low R2 values are caused by
the fact that pan evaporation does not have a heat storage effect. By
assuming a zero heat storage in the Penman Equation (Eq. (1)), the R2

between the simulated evaporation rates and pan evaporation are found
to be 0.82, 0.80, and 0.83, respectively for the three datasets.

Another pan evaporation dataset employed for validation is the
widely used TR-33 lake evaporation, which is a climatology dataset
based on long-term pan evaporation observations (with the spatially
varying pan coefficients) from 1956 to 1970 in the CONUS. For each
lake, we extracted the average pan evaporation rate, and then com-
pared the value with the modeled average value from 1985 to 2014
(Fig. 7b). The R2 and relative bias (in parenthesis) values between the
observed pan evaporation and the simulated results of the three forcing
datasets are 0.83 (−0.4%), 0.78 (5.7%), and 0.81 (−7.6%) for Terra-
Climate, NLDAS, and GLDAS, respectively.

3.2.3. Magnitude and trends of the evaporation rate
The long-term average evaporation rates are shown in Fig. 8a. Re-

servoirs that are located in the southern CONUS have significantly
larger values than other regions due to stronger radiation. For instance,
the average evaporation rate for the 86 reservoirs in Texas is 3.82
(3.53–4.09) mm/d (with the uncertainty range quoted after the average
value thereafter), while the average rate for the 26 reservoirs in Min-
nesota is only 1.92 (1.74–2.12) mm/d.

With respect to the long-term trends of evaporation rate (Fig. 8b),
most reservoirs show significant increasing trends (426 out of 721). The
remaining 295 reservoirs have no significant trends (according to Stu-
dent's t-test) and most of them are located in the northern US. The
primary reason for this increase is found to be the increasing level of
shortwave radiation (Fig. B-1 in the Appendix). The overall R2 value
between the evaporation rate trends and the shortwave radiation trends
for the 721 reservoirs is 0.56. In particular, the central US shows a
significant brightening trend, which leads to an increasing evaporation
rate for the reservoirs in this region. The R2 values between the eva-
poration rate trends and the trends of air temperature, vapor pressure
deficit, and wind speed are 0.33, 0.53, and 0.22, respectively. In par-
ticular, the increase of vapor pressure deficit—which is caused by in-
creased air temperature—is also highly correlated with the evaporation
rate trend.Ta
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3.3. Evaporation losses from the reservoirs

3.3.1. Magnitude and trends of evaporation volume
The volume of evaporation loss for each reservoir was estimated by

multiplying the reservoir surface area by the evaporation rate (Fig. 9).
For reservoirs located in the same geographical region with the same
(or similar) climate, the evaporation volume is primarily determined by
the surface area (see Fig. 9a as compared with Fig. 5a).

However, the evaporation volume trends for individual reservoirs
can be affected by both surface area and evaporation rate trends. If

there is a significant surface area trend, the evaporation volume gen-
erally follows the same trend. For instance, the reservoirs in the states
of Texas, New Mexico, Arizona, and Colorado generally show de-
creasing trends for both surface area and evaporation volume.
However, an increasing evaporation rate trend can offset a slightly
decreasing area trend for some reservoirs. Due to the severe 2010–2013
drought, 44 out of the 86 reservoirs in Texas show a decreasing surface
area trend during the study period (i.e., 1985–2014), yet only 15 of
them show a significant declining evaporation volume trend, while the
remaining 29 show no significant trend. When there is no significant

Fig. 7. Comparison between a) modeled monthly evaporation rates and TWDB scaled pan evaporation; and b) modeled long-term average evaporation rates and TR-
33 scaled pan evaporation. The shaded area represents± 15% of the 1:1 line.

Fig. 8. a) Long-term average evaporation rates (mm/d) and b) long-term trends of evaporation rate (mm/d/year). The base map for b) shows the shortwave radiation
trend from 1985 to 2014 derived from the average of TerraClimate, NLDAS, and GLDAS.
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surface area trend, the trend in evaporation rate will propagate to the
evaporation volume trend. For example, the reservoirs in the eastern US
generally have increasing trends for both evaporation rate and eva-
poration volume. The number of reservoirs with no evaporation volume
trend is 311, while those with positive and negative trends are 358 and
52, respectively.

3.3.2. Long term trends for the CONUS
In terms of the annual time series, the average evaporation rate,

total surface area, and total evaporation volume of these 721 reservoirs
have shown non-stationary characteristics (Fig. 10 and Table 2). The
average evaporation rate has a significant increasing trend of about
0.0076 (0.0052–0.0106) mm/d/year (p=0.00). This trend is mainly
caused by an increased shortwave radiation of 0.221W/m2/year from
1985 to 2014. These trends of shortwave radiation are consistent with
the findings from Long et al. (2009) and Gan et al. (2014), which
suggest that there is a global brightening trend in recent decades.

The Student's t-test suggests that the trend of surface area
(−0.011×109m2/year) is not statistically significant. This slightly
negative trend is mostly attributed to the decreasing nature of the re-
servoir areas in the southwestern US (Fig. 5). The inter-annual fluc-
tuations of the overall surface area are notable. This pattern is con-
sistent with the wet-dry conditions in the CONUS, including the
powerful El Nino event in 1997–1998 (Changnon, 2000) and the sev-
eral severe flooding events in 2010 and 2011 (Vining et al., 2013).

In general, the total evaporation volume follows the evaporation
rate variation, even though the surface area is also playing an important
role. The maximum evaporation volume, which was caused by the high
evaporation rate, occurred in 1999 with a value of 36.83
(34.67–38.87)× 109m3. Although the evaporation rate peaked in
2012, the evaporation volume was compromised by the relatively low
surface area, which was due to the severe drought that covered> 60%
of the CONUS during that time period (Wolf et al., 2016). Different
from the evaporation rate trends, evaporation volume trends derived
from both TerraClimate and GLDAS show no notable changes while the

results from NLDAS do show significant trends. This is because the
surface area has a negative trend (i.e., −0.011× 109m2) even though
it is not statistically significant according to the t-test. When the eva-
poration volume was calculated, the slight negative trend in surface
area was counterbalanced by the small increasing trend in evaporation
rate (in the cases of TerraClimate and GLDAS). After averaging the
three datasets, the overall trend of the evaporation volume is
0.066×109m3/year/year.

3.4. Evaporation in total water losses

Four reservoirs were selected to evaluate the role that evaporation
plays in the total water losses (Fig. 11). They are Lake Mead in Nevada/
Arizona, the E.V. Spence Reservoir, the Sam Rayburn Reservoir, and
Wright Patman Lake in Texas. The inflow, outflow, and storage data
were collected by the United States Geological Survey (USGS; https://
waterdata.usgs.gov/nwis) (for Lake Mead) and United States Army
Corps of Engineers (USACE; http://www.swf-wc.usace.army.mil/cgi-
bin/rcshtml.pl) (for the three Texas reservoirs). The precipitation data
was collected from the TerraClimate dataset.

Lake Mead—the largest reservoir in the CONUS by capacity—is
critical to the regional socio-economic development (Christensen et al.,
2004). Thus, the recent depletion of lake storage has raised great con-
cern for the water managers in the Southwest (Barnett and Pierce,
2008). The average RELI value for Lake Mead from 1990 to 2014 is 65%
(61%–67%). This suggests that most of the storage losses of Lake Mead
are through evaporation, while the rest are attributed to the combina-
tion of direct water use (WU) (by the Las Vegas Valley) and ground-
water leakage (L). The WU only accounts for the direct pumpage from
the reservoir and it does not include the downstream water use. As the
water level decreased, the storage losses, the evaporation, and its un-
certainties all decreased (Fig. 11a).

The computed inflow (by incorporating all sources of inflow) and
the observed outflow data for 29 reservoirs in Texas were provided by
USACE. Following Eq. (14), the average RELI values for the E.V. Spence

Fig. 9. a) Long-term average evaporation volume (106 m3/year) and b) their trends (%/year) detected by linear regression and Student's t-test. The trends are shown
as percentage values and were calculated by dividing the annual evaporation trends with the long-term average evaporation volumes.

G. Zhao and H. Gao Remote Sensing of Environment 226 (2019) 109–124

118

https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/nwis
http://www.swf-wc.usace.army.mil/cgi-bin/rcshtml.pl
http://www.swf-wc.usace.army.mil/cgi-bin/rcshtml.pl


Reservoir, the Sam Rayburn Reservoir, and Wright Patman Lake are
59% (55%–61%), 46% (42%–50%), and 35% (32%–38%), respectively.
The shrinking of the E.V. Spence Reservoir was accompanied by re-
duced evaporation volume and storage losses (Fig. 11b). The RELI also
decreased from 65% (in the period of 1985–1999) to 49% (in the period
of 2000–2014), indicating the relatively higher loss percentage of WU
and L. For the Sam Rayburn Reservoir and Wright Patman Lake
(Fig. 11c and d), both evaporation volume and storage losses are

relatively stable. Located in humid eastern Texas, both reservoirs can
maintain sufficient storage most of the time.

4. Discussion

4.1. Reservoir surface area

This long term reservoir evaporation dataset directly benefits from
the high quality remotely sensed surface area estimations. Satellite
images captured by VIS/NIR sensors usually suffer from multi-source
contaminations including clouds, cloud shadows, and terrain shadows.
For Landsat 7, the collected images also suffer from gaps due to the SLC
failure. As a result, direct extraction of water area from the satellite
images can lead to notable underestimations. Compared with the GSWD
raw water classification results, those from the GRSAD can significantly
improve the continuity of the reservoir area time series. Most of the
contaminated classification results have been corrected to get the full
water coverage. For example, there are 98 monthly area values (which
is equivalent to> 8 years of the data record) that were corrected for the
Amistad Reservoir (Fig. 3) – improving the R2 between the surface area
and the observed storage from 0.38 to 0.98.

The reservoir area variations are driven by a number of factors.
Because reservoirs accumulate all of the water from upstream, the
changes of area/storage of downstream large reservoirs can be affected
by climate change at a regional scale. For instance, the surface areas of
the reservoirs in the southwestern region of the US have shown sig-
nificant decreasing trends, which can be explained by the reduced
precipitation during the last three decades (reported in Prein et al.,
2016 and Barnett and Pierce, 2008). This is particularly manifested in
large reservoirs such as Lake Mead and Lake Powell. This phenomenon
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Table 2
Student's t-test for the forcing data, evaporation rate, surface area, and eva-
poration volume. The first value and second value (in parentheses) in each cell
represent the trend and p-value for the variable. The p-values were calculated
using 95% as the confidence interval.

TerraClimate NLDAS GLDAS Average

Shortwave radiation
(W/m2/year)

0.164 (0.004) 0.239
(0.000)

0.260
(0.000)

0.221
(0.000)

Air temperature
(°C/year)

0.020 (0.045) 0.024
(0.021)

0.004
(0.710)

0.016
(0.104)

Vapor pressure
deficit
(kPa/year)

0.002 (0.088) 0.005
(0.000)

0.002
(0.072)

0.003
(0.003)

Wind speed
(m/s/year)

0.001 (0.538) 0.011
(0.000)

−0.003
(0.131)

0.003
(0.033)

Evaporation rate
(mm/d/year)

0.0052 (0.005) 0.0106
(0.000)

0.0069
(0.002)

0.0076
(0.000)

Surface area
(109m2/year)

−0.011 (0.453)

Evaporation volume
(109m3/year/
year)

0.033 (0.193) 0.105
(0.000)

0.061
(0.051)

0.066
(0.015)
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offsets the increasing trends of reservoir surface area in other regions
(Table 2). It is also worth noting that the increasing water use can be
another important factor that contributes to the decreasing reservoir
surface area (and thus storage), especially in areas undergoing fast
urbanization (McDonald et al., 2014). For example, with the fast po-
pulation growth in Texas, the surface water withdrawals for public
supply increased from 5.4× 106m3 in 1985 to 1.26× 107m3 in 2010
(https://water.usgs.gov/watuse). This exacerbated the reservoir de-
pletion during the 2010–2013 record drought (Scanlon et al., 2013).

4.2. Reservoir evaporation rate

Compared to the reservoir surface area results, the evaporation rate
estimates have much larger uncertainties. The errors are generally at-
tributed to several major sources, the first of which is the meteor-
ological forcing data. Even though TerraClimate, NLDAS, and GLDAS
are all based on well-tested dataset/models, they are still not quite the
same given the usage of different data sources. For example, the long-
term mean shortwave radiation over these 721 reservoir is 176.4W/m2

according to TerraClimate, but 188.7W/m2 and 177.8W/m2 according
to NLDAS and GLDAS, respectively. Compounding these with the un-
certainties from other meteorological variables, evaporation rates from
TerraClimate and GLDAS turn out to be lower than those from NLDAS.

The second potential source of error is the formulation of the wind
function in the Penman equation. Based on the wind functions from 19
previous studies, McJannet et al. (2012) developed a generalized wind
function with the fetch effect considered. As discussed in McJannet
et al. (2012), the uncertainties of the wind function include the un-
certainties from the curve-fitting process, measurement errors, upwind
roughness, stability conditions, and extrapolation (when applicable).
Thus, the evaporation rate estimation using this generalized wind
function still has large uncertainty, even though the use of a combi-
nation equation can reduce some of this by canceling the errors from
the energy and aerodynamic terms (McJannet et al., 2012).

The third type of uncertainty is due to the use of some of the em-
pirical equations. Although the Penman equation is physically based
and primarily relies on four observation based meteorological variables
(i.e., radiation, air temperature, vapor pressure, and wind speed), some

empirical parameterizations are involved. For example, when the wind
speed is converted from 10m (i.e., the height of the reanalysis data) to
2m (i.e., the height used in the wind function), a logarithmic wind
profile and a roughness of standard grass (0.12 m tall) are assumed
(Allen et al., 1998). The roughness of open water is not used because
the input for the generalized wind function is a land-based measure-
ment. Although these assumptions can help standardize the conversion,
they also introduce uncertainties (e.g. when the actual wind profile is
not logarithmic, and/or the actual land cover is not grass). Another
sensitive parameter is the air emissivity with the cloudiness factor (εa),
which is used to calculate the incoming longwave radiation (Eq. (4)). As
discussed in Choi et al. (2008) and Finch and Hall (2001), εa can be
affected by both the formulation of clear-sky emissivity and cloudiness.

Another potential source of error is associated with the difference
between air and water surface temperature (skin temperature). The skin
layer of a water body is typically< 1mm thick that drives the outgoing
longwave radiation (Donlon et al., 2002; Talley et al., 2011). In this
study, we used the air temperature as an approximation of the water
skin temperature to calculate the outgoing longwave radiation com-
ponent in the net radiation term (i.e., Rn in Eq. (1)). This assumption
might be challenged by the complex heat exchanges between air, skin,
and beneath water (Fairall et al., 1996). However, due to the direct
sensible heat fluxes between air and water surface, many studies sug-
gested that skin temperature is more correlated with air temperature
rather than bulk temperature (Trokhimovski et al., 1998; Livingstone
and Lotter, 1998; Nehorai et al., 2013). Nonetheless, we acknowledge
that approaches which incorporate skin temperature calculation will
improve the accuracy of the evaporation rate estimates. This issue can
be addressed by the incorporation of satellite derived land surface
temperature (LST). Over a water body, the remotely sensed LST—such
as that derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) or Landsat— represents the skin temperature.
However, the coarse spatial resolution of MODIS LST (1 km) and the
large uncertainties of Landsat-5 LST (due to its single-channel algo-
rithm) limit their applications in this study. Landsat-8 (launched in
2013) has two thermal bands, and the split-window algorithm can be
used to significantly improve the LST accuracy and spatial resolution.
Thus, future open water evaporation estimates can be improved by
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incorporating Landsat-8 LST. Similarly, MODIS LST can be adopted for
large lakes.

Validation results against observed (EC and BREB) evaporation rates
suggest that evaporation rate estimations can be notably improved for
relatively deep reservoirs (e.g., Lake Mead, White Bear Lake, and Lake
Five-O) by incorporating the heat storage term into the Penman equa-
tion. Specifically, the heat storage effect delays the timing of the peak
evaporation rate and reduces the seasonal variation. This phenomenon
is more significant for deeper reservoirs. For large scale validation
purposes, pan evaporation is the only in-situ data source. However, due
to multiple factors that hamper the accuracy of monthly pan evapora-
tion measurement, the long-term averaged evaporation validation
(Fig. 7b) has a higher R2 than that of the monthly evaporation valida-
tion (Fig. 7a).

From this study we have found a significant increasing evaporation
rate trend (0.0076mm/d/year), which seemingly contradicts the de-
clining pan evaporation. This phenomenon was reported as the “eva-
poration paradox” (Brutsaert and Parlange, 1998). Nonetheless, based
on comprehensive assessment, several studies have concluded that the
pan evaporation trend can be inversely correlated with the actual
evaporation (Brutsaert, 2006; Lawrimore and Peterson, 2000; Golubev
et al., 2001), which is in agreement with our results. Among the four
meteorological variables, solar radiation is the primary driving force for
the evaporation processes, and thus is the variable that evaporation is
most sensitive to (Brutsaert, 2006; Wild, 2012; Fig. B-1). However,
because our study period coincides with the global brightening period,
the trend of the evaporation rate cannot be linearly extrapolated into
the future (Wild, 2015). The evaporation rate is also found to be sen-
sitive to the vapor pressure deficit, which defines the humidity gradient
between the water surface and the air (McVicar et al., 2012).

The increasing air temperature can enhance the evaporation process
by increasing the Bowen ratio, with less sensible heat but more latent
heat (Wang et al., 2018). Our results (Fig. B-1b) also show a correlation
between evaporation rate changes and air temperature trends. With
respect to the wind speed, none of the three reanalysis based forcing
datasets have shown a significant stilling trend across the entire
CONUS—a phenomenon suggested by other studies (McVicar et al.,
2012; Vautard et al., 2010). This is because the reanalysis used the
rawinsonde data, which are upper-air measurements instead of earth
surface observations. In addition, the global stilling is still unexplained.
It can be caused by a variety of factors including increased ground
roughness (although this possibly does not apply on open water sur-
face), global circulation, and even possibly a worn bearing in the an-
emometer used for measurement (Azorin-Molina et al., 2018).

Although there are a number of studies suggesting an increasing
trend for evapotranspiration over the CONUS (0.95 mm/year/year for
1950–2000 in Walter et al., 2004; 0.32mm/year/year for 2000–2014 in
Mu et al., 2011), there have been no findings about reservoir eva-
poration losses and trends across the entire the region. Nonetheless,
increased lake evaporation has been reported in several other sub-
continental regions, such as the Canadian Prairies (Burn and Hesch,
2007) and subtropical China (Hu et al., 2017). In addition, the future
lake evaporation rate has been projected to increase in several studies
(Australia lakes in Johnson and Sharma, 2010; Great Lakes in Lofgren
et al., 2002; southeastern Australia reservoirs in McGloin et al., 2016;
global lakes in Wang et al., 2018). In contrast, lake evaporation in the
Tibetan Plateau has shown a decreasing trend, owing to the reduced
wind speed and the shortened duration of solar radiation (Lei et al.,
2014; Ma et al., 2016). Because of the inter-regional diversity, thorough
investigations of the sensitivities to the trends of the meteorological
forcings are necessary to identify the reasons for the evaporation
changes (McVicar et al., 2012).

To quantify the regional reservoir evaporation, an alternative
modeling method that is widely used is the Complementary
Relationship Lake Evaporation method (CRLE; Morton, 1983; Morton,
1994; Huntington and McEvoy, 2011; Huntington et al., 2015), which is

based on the Bouchet hypothesis (Bouchet, 1963). A brief comparison
between CRLE estimates from Huntington et al. (2015) as well as other
studies (shown in the Appendix) and estimates using our approach had
an R2, RMSE, and RB of 0.86, 0.35mm/d, and −4.3%, respectively
across 16 reservoirs in the U.S.. The CRLE method is also capable of
simulating the heat storage changes, but it does not use the wind speed
term in the calculation of the evaporation. According to Morton (1994),
the vapor transfer coefficient in the evaporation equation is in-
dependent of wind speed because 1) surface roughness is more domi-
nant than wind speed in effective vapor transfer; 2) atmospheric in-
stability increases the process of vapor transfer, especially at low wind
speeds; and 3) wind speed measurements have large uncertainties.
Thus, Morton assumed that the incorporation of wind speed might in-
crease the uncertainty of evaporation rather than reducing it. Yet, there
are also some limitations with regard to CRLE: 1) it is still to be de-
termined whether the complementary relationship is indeed asym-
metric (Szilagyi and Jozsa, 2008; McMahon et al., 2013); and 2) the
fetch effect, which relies on the size of the open water surface, is gen-
eralized (Morton, 1986).

4.3. Evaporation losses from the reservoirs

The total evaporation from the 721 reservoirs is one of the major
contributors to the storage losses. The average evaporation volume is
33.73 (31.00–36.24)× 109m3 per year from 1985 to 2014, which is
equivalent to 93% (85–100%) of the surface water that was used for
public supply in the United States in 2010 (36.34× 109m3 according
to Maupin et al., 2014). Specifically, the reservoirs that are located in
the arid southwestern US suggest that evaporation accounts for a large
portion of the overall storage losses. For example, the RELI for Lake
Mead (Arizona and Nevada) is 65% and the RELI for E.V. Spence re-
servoir (Texas) is 59%, both contributing significantly to the long-term
reservoir depletion.

Although the evaporation rates show an increasing trend for all
three datasets, the evaporation volume trends contain substantial un-
certainties. Both TerraClimate and GLDAS show no significant trend for
the total evaporation volume. This is because the decreasing (even not
statistically significant) trend of surface area counterbalances the slight
increasing trend of evaporation rate. Specifically, the reservoirs with
decreasing surface area trends are mostly located in the southwestern
US, where they are subjected to the most intensive evaporation pro-
cesses. Thus, even though the total number of these reservoirs is small,
their combined contribution to the total evaporation volume is notable.
For NLDAS, the results suggest a significant evaporation volume trend,
which is caused by the more quickly increasing evaporation rate than
that from TerraClimate and GLDAS.

4.4. Potential applications

A relevant study based on MODIS data found that global open water
evaporation accounts for 58% of the terrestrial secondary evaporation
(i.e., evaporation from all inland water bodies, including irrigated area;
van Dijk et al., 2018). However, due to the challenges involved with
estimating reservoir area and evaporation rate, there have been very
few studies focused on reporting evaporation over individual reservoirs
at a large scale. Most studies have either focused on a single reservoir or
a catchment scale such that the wind function can be calibrated
(Gianniou and Antonopoulos, 2007; Valiantzas, 2006; Linacre, 1993).
On a large scale, the evaporation rate is generally reported separately
without considering the surface area changes (Alvarez et al., 2008;
Mekonnen et al., 2015). By considering the heat storage term and
adopting a generalized wind function, this study has improved upon the
Penman equation which allows for estimating the evaporation rate
more accurately. Furthermore, the surface area data were extracted
from a remotely sensed dataset for which an enhancement algorithm
was applied to repair image contaminations. Subsequently, monthly
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time series of evaporation for the 721 reservoirs in the CONUS over a
long-term were generated.

This evaporation dataset can help decision makers better manage
water use for different purposes. First, the evaporation dataset from this
study can support the allocation of water rights. For example, in the
State of Texas, water rights are allocated to each water user for legal
extraction of surface water. Yet reservoir evaporation in the current
water rights allocation system has been represented in a simple manner.
As a result, water resources could be excessively exploited or not suf-
ficiently used. Second, in addition to evaporation, another major source
of reservoir water loss is leakage to groundwater—which is extremely
difficult to quantify due to the complex physical processes involved. By
employing the evaporation volume from this dataset in the reservoir
water balance equation, reservoir leakage can be derived (when inflow
and outflow data are also available). The results can potentially im-
prove the water management efficiency for both surface water and
groundwater. Third, it can be used for quantifying the blue water
footprint from hydropower generation. By constructing a reservoir, the
original evapotranspiration within the impounding area would be re-
placed by open water evaporation, which might be significantly larger.
This is especially true in the western US (Mekonnen and Hoekstra,
2012). Therefore, quantification of the blue water footprint is important
for future energy policies. Last, this data product potentially can be
used for improving reservoir operation rules under a changing climate.
For instance, reservoir managers might need to increase the conserva-
tion pool level (whose water is used for water supply) in order to
counterbalance the enhanced evaporation of some reservoirs.

This algorithm can be potentially used for near real-time applica-
tions. Benefiting from the recent launches of several earth observation
satellites (e.g., USGS Landsat-8, European Space Agency Sentinel-2, and
Chinese Gaofen program), high resolution optical imageries have be-
come more frequently available. By applying image classification and
enhancement algorithms on cloud computing platforms such as the
Google Earth Engine (Gorelick et al., 2017), submonthly or even daily
near real-time reservoir surface area can be estimated. Then evapora-
tion volumes can be obtained by combining these area values with
evaporation rates derived from the updated climate forcing dataset.

4.5. Algorithm caveats

Although the algorithms developed in this study focus on estimating
evaporation accurately by addressing many of the constraints that were
identified in previous studies, there are still several limitations that are
worth noting. First, because there are barely any observations directly
collected over lakes, the evaporation rate errors associated with the
forcing data (e.g., wind speed, shortwave/longwave radiation) are
difficult to quantify. Thus, the uncertainties from the forcing data were
approximated using the spread from three reanalysis datasets. Second,
due to the lack of reservoir bathymetry information at a large scale, the
effects of stratification on the water column temperature were not
considered. Third, the advective heat fluxes transferred by inflow,
outflow, and groundwater are not included. Varying by reservoir, the
advective heat flux can be a significant energy source for evaporation
(Friedrich et al., 2018). For example, some reservoirs release water at
the dam intake depth, at which the water has a notably different tem-
perature from that at the surface. In these cases, the evaporation rate
might be underestimated in the summer months and overestimated in
the winter months. Another simplification of the algorithm is associated
with ice coverage on the reservoirs. When the calculated water tem-
perature—or the evaporation rate—is less than zero, the evaporation
rate is set as zero. For more accurate results, the ice cover percentage
can be calculated through the original Landsat image classification or
the quality control band. Then the evaporation rate can be adjusted
accordingly.

5. Conclusion

This study presents an advanced algorithm framework for reservoir
evaporation quantification at a large scale. By applying the algorithm to
721 reservoirs in the CONUS, a first of its kind continentally consistent
and locally practical evaporation data product was generated, pro-
viding significant benefits to the water resources management, hy-
drology, and remote sensing communities. The major conclusions are as
follows:

1. For the 721 reservoirs in the CONUS, long term average evaporation
was found to be 33.73 (31.00–36.24)× 109m3 per year from 1985
to 2014. This amount is equivalent to 93% (85–100%) of the surface
water used for public supply in the United States in 2010.

2. Due to the increasing trend of shortwave radiation, the evaporation
rate has been elevated accordingly (0.0076mm/d/year). The long-
term trends of reservoir surface areas are largely connected with
regional climate and local water management practices.

3. The evaporation volume trend for individual reservoirs can be af-
fected by both surface area trend (mostly in the southwestern US)
and the evaporation rate trend (mostly in the eastern US). For all of
the 721 reservoirs, different meteorological datasets show various
trends (i.e., insignificant trends for TerraClimate and GLDAS while
significant trends for NLDAS). On average, the increasing trend for
the evaporation volume is 0.066×109m3 per year from 1985 to
2014.

4. Although there are some limitations with the algorithm (e.g. the
robustness needs to be further tested), this dataset has shown its
potential to support many applications directed toward more sus-
tainable water resources management in a changing environment.
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