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ABSTRACT

Numerous algorithms have been developed to retrieve chlorophyll-a (Chla) concentrations (mg m %) from Earth
observation (EO) data collected over optically complex waters. Retrieval accuracy is highly variable and often
unsatisfactory where Chla co-occurs with other optically active constituents. Furthermore, the applicability and
limitations of retrieval algorithms across different optical complex systems in space and time are often not
considered. In the first instance, this paper provides an extensive performance assessment for 48 Chla retrieval
algorithms of varying architectural design. The algorithms are tested in their original parametrisations and are
then retuned using in-situ remote sensing reflectance (R.s(\), sr~ 1) data (n = 2807) collected from 185 global
inland and coastal aquatic systems encompassing 13 different optical water types (OWTs). The paper then de-
monstrates retrieval performance across the full dataset of observations and within individual OWTs to de-
termine the most effective model(s) of those tested for retrieving Chla in waters with varying optical properties.
The results revealed significant variability in retrieval performance when comparing model outputs to in-situ
measured Chla for the full in-situ dataset in its entirety and within the 13 distinct OWTs. Importantly, retuning
an algorithm to optimise its parameterisation for each individual OWT (i.e. one algorithm, multiple para-
meterisations) is found to improve the retrieval of Chla overall compared to simply calibrating the same algo-
rithm using the complete in-situ dataset (i.e. one algorithm, one parameterisation). This resulted in a 25%
improvement in retrieval accuracy based on relative percentage difference errors for the best performing Chla
algorithm. Improved performance is further achieved by allowing model type and specific parameterisation to
vary across OWTs (i.e. multiple algorithms, multiple parameterisations). This adaptive framework for the dy-
namic selection of in-water algorithms is shown to provide overall improvement in Chla retrieval across a
continuum of bio-geo-optical conditions. The final dynamic ensemble algorithm produces estimates of (log;o-
transformed) Chla with a correlation coefficient of 0.89 and a mean absolute error of 0.18 mg m 3. The OWT
framework presented in this study demonstrates a unified approach by bringing together an ensemble of algo-
rithms for the monitoring of inland waters at a global scale from space.

1. Introduction

Yang et al., 2013). Satellite data have also been used in the monitoring
of inland waters to provide information on a suite of functionally re-

Since the successful launch of the Coastal Zone Color Scanner
(CZCS) in 1978, satellite remote sensing (RS) has played an increasingly
important role in observing the complex biogeochemical interactions
that occur in the global ocean and its response to drivers of environ-
mental change (Gordon et al., 1980; Antoine et al., 1996). Radiometric
sensors mounted on satellites have provided the capability to deliver
synoptic maps of global chlorophyll-a concentration (Chla) (McClain,
2009) which have led to fundamental contributions in oceanographic
research, coastal management and climate change studies (Brown and
Yoder, 1994; Behrenfeld et al., 2005; Hu et al., 2005; Nair et al., 2008;
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levant indicators of water quality and ecosystem condition (Gitelson,
1993; Kutser et al., 1998; Lindell et al., 1999; Dekker et al., 2002;
Kutser et al., 2005; Simis et al., 2005; Giardino et al., 2010; Tarrant
et al., 2010; Hunter et al., 2010; Matthews et al., 2010; Odermatt et al.,
2010; Nechad et al., 2010; Dogliotti et al., 2015; Palmer et al., 2015a)
however optical complexity in these waters often limits operational use.
In this context, Chla is the main bioindicator of water quality re-
trievable from EO data and its variations over space and time offer
unique insight into the changing status of inland waters (Adrian et al.,
2009) and the effects of environmental stressors (e.g., nutrient

Received 6 November 2017; Received in revised form 24 April 2019; Accepted 25 April 2019

0034-4257/ © 2019 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2019.04.027
https://doi.org/10.1016/j.rse.2019.04.027
mailto:claire.neil@stir.ac.uk
https://doi.org/10.1016/j.rse.2019.04.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2019.04.027&domain=pdf

C. Nelil, et al.

enrichment, hydrological modifications, climate change) at local, re-
gional and global scales.

Various studies have shown promising results for retrieving Chla
from inland waters using EO data (Palmer et al., 2015a; Matthews and
Odermatt, 2015; Tyler et al., 2016) but the majority of these evaluate
performance on individual or small populations of lakes with often
limited variability in their optical properties. With a large number of
algorithms available to the EO community it can be difficult to ascertain
the applicability range and limitations of each method when applied
globally (Morel et al., 2007; Matthews, 2011; Odermatt et al., 2012;
Blondeau-Patissier et al., 2014; Tilstone et al., 2017). Algorithm per-
formance often varies in response to changes in the optical properties of
the water column (Sathyendranath, 2000; Schalles, 2006) which in turn
are related to the presence of the non-covarying optically active con-
stituents suspended particulate matter (SPM, mgm™>) and coloured
dissolved organic material (CDOM, m~1); a simple example is the Case
1 or Case 2 bipartite classification scheme (Morel and Prieur, 1977)
which predefines the conditions where standard ocean colour Chla al-
gorithms are expected to break-down (McKee et al., 2007; Moore et al.,
2009; Mouw et al., 2015). This paper aims to extend this strategy to
assess algorithm performance in relation to a number of distinct Optical
Water Types (OWT) with the ambition of not only improving the overall
performance of retrieval algorithms across a continuum of optical
properties but also improving our ability to select appropriate algo-
rithms and parameterisations for a given scenario. The accuracy of a
number of Chla algorithms will be assessed over a diverse range of
OWTs derived from inland (and some transitional) waters in support of
the UK's Natural Environment Research Council funded GloboLakes'
project, which is developing a global observatory for inland waters
using archived and near real-time processing of ocean colour imagery
(Envisat MERIS and Sentinel-3 OLCI). In the context of this research,
the performance methodology presented here will inform the robust
selection of an ensemble of candidate algorithms capable of accurately
retrieving concentrations of Chla in approximately 1000 lakes globally
(and > 50% of the Earth's surface water by area) (Politi et al., 2016;
Tyler et al., 2016). The overarching idea is not to advocate a single
algorithm for global application, but to combine several retrieval
models in an ensemble and use the OWT framework to dynamically
select optimal models in space and time and thereby improve the
overall accuracy of Chla retrieval across a wider range of water bodies.
To this end, the study was partitioned into the following subtasks: (1)
existing (hereafter denoted original) algorithms and their para-
meterisations were tested against an extensive database of in-situ re-
flectance and Chla measurements; (2) algorithms were calibrated by
empirically adjusting model coefficients where applicable using in-situ
measurements as a training dataset; (3) calibration was applied using
in-situ data grouped by OWT cluster; (4) the performance of original
(ORG), calibrated (CAL) and cluster (CLUS) retuned algorithms was
compared and ranked to benchmark suitable Chla retrieval algorithms
for each defined OWT.

2. Methods
2.1. Data

The validation and training dataset used to investigate Chla re-
trieval algorithms consists of 17 individual datasets collected from lakes
and other inland water bodies worldwide (https://www.limnades.org/
home.psp). The number of lakes and samples per dataset is shown in
Table 1. A full description of the individual datasets with corresponding
measurement and processing protocols are provided in Spyrakos et al.
(2018a). The database comprises in-situ measurements of inherent and
apparent optical properties (IOPs and AOPs respectively) and biogeo-
chemical constituents collected from 185 aquatic systems representing
a variety of bio-geo-optical conditions. The primary input to the Chla
algorithms considered in this study is the remote sensing reflectance,
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Table 1
Summary of the datasets used for algorithm development and validation.

Dataset Number of lakes Number of samples
1 1 71
2 3 251
3 63 131
4 44 181
5 5 218
6 5 301
7 1 29
8 1 38
9 3 190
10 6 144
11 3 48
12 41 543
13 2 192
14 3 10
15 1 14
16 1 243
17 2 203
Total 185 2807

R.s(\) (st~ 1) which can be defined as the wavelength dependent ratio
of water-leaving radiance and downwelling irradiance just above the
water surface. R (\) collected in-situ above the water surface is es-
sentially the spectral distribution of reflected radiation a satellite sensor
would detect with no atmospheric contribution and is considered re-
ference data for RS algorithm development and radiometric validation.
The validation dataset comprised 2807 hyperspectral Ry (A) (sr™%)
measurements (interpolated to a common 1nm spectral resolution)
with corresponding concentrations of Chla. Measurements were ob-
tained following generally accepted methods originating from > 40
published studies (Spyrakos et al., 2018a). Approximately 73% of Chla
estimates used in this study were obtained spectrophotometrically. Of
the remaining estimates, 13% were determined from HPLC-based
methods, 7% fluorometrically and 7% were calculated from absorption
coefficients using the equation of Ritchie (2008). It is known that
variability in Chla quantification methods and interlaboratory protocols
may contribute to uncertainty in the final the Chla estimate (Claustre
et al., 2004; Hooker et al., 2005; Sgrensen et al., 2007; McKee et al.,
2014). Often refinement and optimization of measurement procedures
are required in inland waters to tackle extreme optical complexities,
thus prohibiting the standardisation of protocols. Nonetheless, Sprensen
et al. (2007) suggests that discrepancy due to measurement variability
is particularly consequential when monitoring case 1 waters. Further-
more, spectrophotometric methods, which account for a majority of
Chla samples analysed in this study, have been shown to produce more
consistent results between laboratories when compared to HPLC esti-
mates (Sgrensen et al., 2007). All of the datasets used in this study were
validated by the individual data providers and then quality checked
before inclusion in the LIMNADES database. Hyperspectral R (\)
measurements were spectrally resampled to the wavebands of MERIS
(412, 442, 490, 510, 560, 620, 665, 681, 708, 753 nm) using the sensor
spectral response function (https://earth.esa.int). No radiometric re-
sampling was performed. The measurement range of corresponding
biogeochemical constituent concentrations is shown in Fig. 1. A mean
Chla concentration of approximately 33.9mgm~°
(median = 16 mgm ™~ 3) indicates a slight over representation in the
dataset of high-biomass eutrophic systems relative to current global
estimates (e.g., Sayers et al., 2015). However, the dataset also included
measurements from a number of oligotrophic or hypereutrophic (Chla
up to 1000 mgm~3) systems as well as humic-rich and mineral-laden
systems.

2.2. Optical water type framework

Previous work has been done to formally classify the R, spectra
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Fig. 1. Biogeochemical constituent range of water bodies included in the validation dataset. Trophic class divisions (based on Carlson and Simpson, 1996) are
indicated with dashed lines on the Chla constituent histogram (a).
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Fig. 2. (a) Ry spectra used in the validation dataset coloured by classified optical water type. (b) Average R, spectra per optical water type.

161



C. Nelil, et al.

300

200

0 .-_—

80

40

8
4
0 [ _-—-

400
300
200

N O

Median Value

100

i 1 8 6 12 11 4

owT

Remote Sensing of Environment 229 (2019) 159-178

so|dwes Jo 'oN

Fig. 3. In-situ biogeochemical constituent median values for OWT groups ordered by median Chla concentration.

contained within the validation dataset into optical water typologies. In
Spyrakos et al. (2018b), a k-means classification was adopted to iden-
tify and categorise OWTs based upon the differences in magnitude and
shape of the hyperspectral R,; spectra. This procedure identified 13
distinct OWTs, each corresponding to a specific combination of bio-geo-
optical characteristics. R, spectra coloured according to OWT are
shown in Fig. 2a (and the mean R, spectra for each OWT is shown in
Fig. 2b). There are obvious differences in spectral shape and magnitude
of R, for each defined OWT suggesting the applied classification
scheme broadly captures the unique characteristics of the in-situ re-
flectance measurements. Median values of the optical constituent
components Chla, SPM and CDOM are shown for each OWT group in
Fig. 3. The highest median Chla concentrations are observed in OWT 7,
whilst SPM and CDOM occur in the highest concentrations in OWTs 5
and 1 respectively. Differences in the descending order of OWT group
median values for each constituent confirm that OWTs have not been
derived from a simple Chla concentration threshold and instead rely on
a mixed combination of each optical constituent.

2.3. Chlorophyll algorithms

Based on bio-optical theory, R.(\) is related to water IOPs such as
absorption, a, and backscattering, b, (Gordon et al., 1988; Kirk, 1994;
Mobley, 1999; Maritorena et al., 2002). Total IOPs, which are de-
termined by the additive contribution of individual optically active
constituents found in a water body, can be calculated by multiplying
the concentration of each constituent by the appropriate specific in-
herent optical property (SIOP). As such the spectral signature of R
varies according to changes in constituent composition and con-
centration. Algorithms developed for the quantitative assessment of in-
water constituents exploit the bio-optical model in different ways.
Empirical methods establish a relationship between optical measure-
ments and concentrations of constituents based on experimental data.
They are simple to develop and implement, yet their intrinsic design
make them particularly sensitive to changes in the composition of water
constituents. An alternative analytical approach is to first infer IOPs
from the reflectance signal and solve the radiative transfer equation to
produce simultaneous estimates of optically active water constituents
(Gordon et al., 1988; Mobley, 1994). The relationships between IOPs
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and the constituent concentrations are empirically derived, and thus
these algorithms are said to be semi-analytical. There are a number of
different approaches to semi-analytical modelling which include spec-
tral matching or look-up-table methods (Kutser et al., 2001; Louchard
et al.,, 2003; Mobley et al., 2005; Brando et al., 2009), non-linear op-
timization (Kuchinke et al., 2009), matrix inversion (Hoogenboom
et al., 1998; Brando and Dekker, 2003), and direct inversion methods
such as the multiband quasi-analytical model (QAA) (Lee et al., 1999;
Lee et al., 2002) and the GSM semi-analytical model (GSM) (Maritonera
et al., 2002). Semi-analytical methods have shown varying performance
in case 2 waters (Shanmugam et al.,, 2010; Dekker et al., 2011;
Odermatt et al., 2012). While based on solid physical principles, the
general assumptions and simplifications of the semi-analytical methods,
along with empiricism in the relations between IOPs and AOPs, often
lead to ambiguities in water constituent retrieval (Bricaud et al., 1995;
Defoin-Platel and Chami, 2007; McKee et al., 2014). Advanced analy-
tical methods such as neural networks (Doerffer and Schiller, 2007) also
retrieve simultaneous combinations of biogeochemical constituents but
these rely heavily, from a coverage and performance standpoint, on the
quality of the spectral libraries employed in the training data sets. In
this study, we assess the efficacy of empirical 1, 2 and 3 band algo-
rithms, semi-analytical bio-optical models and a neural network which
focus on the retrieval of Chla concentration. All algorithms included in
the validation exercise, as summarised in Table 2 and described in the
following section, were openly published (proprietary models were
excluded from the exercise), well documented and developed for a
range of optically variable environments. The tested algorithms can be
generally categorised by their architectural designs as: (i) empirical
methods which exploit ratios between R, collected remotely at blue
and green wavelengths typically used for open ocean waters (O'Reilly
et al., 1998); (ii) empirical NIR-red band ratio methods which are ty-
pically employed in turbid or eutrophic coastal and inland waters
where Chla concentrations exceed 3 mg m ™2 (Gitelson, 1992) and red
reflectance may be relatively high; (iii) peak height methods which
quantify the reflectance peak in relation to a standard baseline (Letelier
and Abbott, 1996; Huot et al., 2005; Gilerson et al., 2008) and use the
resulting relationship to empirically evaluate Chla; (iv) neural net-
works; and (v) semi-analytical methods.

Derived model coefficients have been denoted a, b, c... in each
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Table 2
Summary of validated models including their original Chla training range.
Model Architectural Chla training range Reference
approach (mgm™~2)

Model A NIR-red band ratio 0-70 Moses et al., 2009

Model B NIR-red band ratio 0-70 Moses et al., 2009

Model C  NIR-red band ratio 2.3-200.8 Gurlin et al., 2011

Model D NIR-red band ratio 2.3-200.8 Gurlin et al., 2011

Model E Semi-analytical 0-80 Gilerson et al., 2010

Model F NIR-red band ratio 0-1000 Gilerson et al., 2010

Model G Semi-analytical 0-80 Gilerson et al., 2010

Model H  Semi-analytical 0-100 Gons et al., 2002

Model I NIR-red band ratio 0-100 Yang et al., 2010

Model J NIR-red band ratio 0-30 Mishra and Mishra,
2012

Model K NIR-red band ratio 0-30 Mishra and Mishra,
2012

Model L~ Blue-green band ratio  0.012-77 O'Reilly et al., 2000

Model M Blue-green band ratio  0.012-77 O'Reilly et al., 2000

Model N Blue-green band ratio  0.012-77 O'Reilly et al., 2000

Model O  Peak height 1-10 Gower et al., 1999

Model P Peak height 0-350 Matthews et al., 2012

Model Q  Semi-analytical 0-100 Maritorena et al.,
2002

Model R Semi-analytical 59-1376 Mishra et al., 2013

Model S Neural network 0.02-70 Ioannou et al., 2013

method where applicable. For models estimating the coefficient of ab-
sorption by phytoplankton (a,,) as an output parameter (Model R and
Model S), Chla was calculated as a function of a,, using the expression
(Bricaud et al., 1998);

Chia = (—a"h (443) )'1’

a

(€8]

where a and b are derived empirically from the calibration dataset.
2.4. Model A

Model A refers to the two-band ratio algorithm of Dall'Olmo et al.
(2003), Moses et al. (2009) and Gitelson et al. (2011), originally pro-
posed by Gitelson and Kondratyev (1991) and later adapted to MERIS
bands. This is an empirical formula based on a linear relationship be-
tween in-situ Chla and the ratio of MERIS satellite remote sensing re-
flectance, measured at NIR, R4(708), and red, R,s(665), wavelengths;

Ry (708)) +h

Chla_A = a X
R, (665)

2)
where a = 61.324 and b = —37.94 are determined empirically.

2.5. Model B

Model B refers to the three-band algorithm developed by Moses
et al. (2009) and adapted by Gitelson et al. (2011) to include Ry
measured at 753 nm, R.(753);

Ry (753)
(Rrx (665) - Rrs (708))

Chla_B = a X (
3)
where a = 232.329 and b = 23.174 are determined empirically. In
theory, the combination of three bands alters the model sensitivity to
the presence of optically active constituents by removing the effects of
SPM and CDOM (Rs(665) and R,;(708) are comparably influenced by
SPM and CDOM and R,5(753) is mainly driven by backscattering).

2.6. Model C

Model C refers to the two-band empirically derived ratio algorithm
of Gurlin et al. (2011);
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2
Chla_C=ax (—R” (708)) + b x (—R'S (708)) +c

Ry (665) Ry(665) Q]

where a = 25.28, b = 14.85 and ¢ = —15.18.
2.7. Model D
Model D refers to the three-band ratio algorithm of Gurlin et al.

(2011) which was calibrated using field measurements of R, and Chla
taken from Fremont lakes Nebraska;
2
) + b X
+c

where a = 315.50, b = 215.95 and ¢ = 25.66.

Ry5(753)
(Rrs (665) - Rrx (708))

Chla_D = a x ( ( Ry (753) )
(R (665) — Ry (708))

()

2.8. Model E

Model E refers to the advanced two-band semi-analytical algorithm
proposed by Gilerson et al. (2010). While this is governed by the ratio
of NIR to red reflectance, model coefficients are determined analytically
from individual absorption components contributing to the total IOPs of
the water body. It is assumed that the water term dominates (at red —
NIR wavelengths) where Chla concentration is > 5mg m~3, and that
the contribution to absorption by CDOM and backscattering terms are
significantly smaller to give the following expression;

Ry (708)

Chla_E = | a8 X
a4 [a 708 (R,(665)

) - aw665:|/a;h665

(6)
where a,,705 = 0.7864m ™' and a,¢s5 = 0.4245m ™! are absorption by
water at the specified wavelengths (Pope and Fry, 1997) and phyto-
plankton specific absorption (a*ps) at 665nm, aj, 665 = 0.022 x Chla®
01675 Substituting ajy, ess into Eq. (6) gives;

1.124
Chla_E = [35.75 X (M) - 19.30]

R (665) @)

which can also be modified to allow for regional calibration of the
@hees variable;

1/b

] (8)

Chla_F = [0.7864 N (R,S (708))
a R, (665)

Here a may be determined empirically and b is parameterised to fit
the data. The water term becomes less dominant when
Chla < 5mgm ™3, and therefore the assumed negligibility of the in-
fluence of CDOM and SPM is no longer valid under these conditions.

0.4245
a

2.9. Model F

Model F refers to a simplified version of Gilerson et al. (2010) which
relates Chla to the NIR-red reflectance band ratio through a simple
power function;

Rm(708>)”

Chla_F =a x
Ry5(665)

©)
where a and b are defined empirically as opposed to analytically as per
Model E.

2.10. Model G

Model G refers to the advanced three-band semi-analytical algo-
rithm proposed by Gilerson et al. (2010). As per Model E, the three-
band model is based on a semi-analytical expression for the red-NIR
ratio of reflectance in combination with water absorption and @, 665
(=0.022 x Chla®'¢7%);
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R, (753)
(Rrs (665) - Rrs (708))

Chla_G = [aw753 X ( ) — Qy7o8 + aW(,(,S:l/a;h()ﬁs

(10)

where a,,753 = 2.494m™! (Pope and Fry, 1997). Substituting the ex-
pression for aj, 65 gives;

R, (753) 1.124
Chla_G = [ 113.36 X ( o ) - 16.45

(Rrs (665) - Rrs (708)) (11)

Or for regional calibration of aj, 665;
1/b

Chila_G = 2.494 R, (753) _0.7864 04245

(Rrs (665) - Rrs (708)) a a

12)

where a and b are determined empirically. This expression is valid
under the same conditions as defined by Model E.

2.11. Model H

Model H refers to the semi-analytical algorithm presented by Gons
et al. (2002, 2005, 2008) which incorporates information on water
absorption and backscattering in relation to the MERIS red-NIR re-
flectance ratio;

Chla_H = [(w) X (@wros + Bp) — Quges — b,f}/a*

R,5(665) (13)

where water absorption coefficients are approximated as
Qwyos = 0.7M 1, @yees = 0.4m ™! (Pope and Fry, 1997), Chla specific
absorption coefficient a* = 0.016 m® g~ !, empirical constant p = 1.063
and by, is related to R,s at 778 nm by conversion factor;

by = 1.61 X 7R, (778)/(0.082 — 0.67R,; (778)) 14)

The algorithm may be recalibrated by adjusting a* and p, denoted a
and b respectively in Eq. (15) for model parameterisation brevity to
give;

Chla_H = [(W) X (0.7 + by) — 0.4 — bZ | /b

R, (665) (15)

2.12. Model I

Model I refers to the band index algorithm presented by Yang et al.
(2010), which is based on a conceptual model (Gitelson et al., 2008)
that adopts relevant wavebands according to their sensitivity to water
absorption properties;

(R5*(665) — R5'(708))
(R (753) — R (708))

Index =
16)
where it is assumed R,4(665) has maximum sensitivity to phytoplankton
absorption, R.(708) is insensitive to phytoplankton absorption but
comparably sensitive to CDOM and R,(753) is insensitive to phyto-
plankton and CDOM absorption and is mainly influenced by back-
scattering. Chla is estimated from a three-band index using a simple

empirical formula;
Chla_I = a X Index + b a7z

where coefficients a = 161.24 and b = 28.04 have been calibrated for
lakes in Japan and China.

2.13. Model J

Model J refers to the normalized difference chlorophyll index
(NDCI) proposed by Mishra and Mishra (2012). This uses a two-band
difference ratio to predict Chla concentration in estuarine and coastal
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turbid waters;

2
ChiaJ = a + b x (R,S(708) — Ry (665)) (R,S(708) — Ry (665))

R, (708) + R, (665) R, (708) + Ry (665)
(18)

where a = 42.197, b = 236.5, ¢ = 314.97. This version of the model
has been calibrated using modelled R, spectra.

2.14. Model K
Model K refers to the normalized difference chlorophyll index
(NDCI) proposed by Mishra and Mishra (2012) calibrated using field
data collected from Chesapeake and Delaware Bay;
Ry5(708) = Ry (665)) , . (R (708) — Ry (665) :
Ry5(708) + Ry (665) Rys(708) + R, (665)

a9

Chla_K=a+b><(

where a = 14.039, b = 86.115, ¢ = 194.325.

2.15. Model L

Model L refers to the NASA OC 4-band ratio algorithm set at MERIS
wavebands (OC4E) (O'Reilly et al., 2000) which relates log transformed
Chla concentration to the maximum ratio of blue (443, 490, 510) to
green (560) R;;

Chla_L = 10(a+bX+cX>+dx> +ex?) -
where

X = log 10(Rs (443) > Ry(490) > Ry5(510)/R/5(560)) a1
and coefficients a = 0.3255, b= —2.7677, ¢ = 2.4409,

d= —1.1288, e = —0.4990 have been derived empirically from the
NASA bio-Optical Marine Algorithm Data set (NOMAD) (Werdell and
Bailey, 2005).

2.16. Model M

Model M refers to a previous version of the NASA OC 3-band ratio
algorithm set at MERIS wavebands (OC3E) which employs the max-
imum R ratio of two blue wavebands (443, 490) and green (560) to
determine Chla concentration;

Chla_ M = 10(a+bx+cx2+dx3+ex4) (22)
where

X = log 10(R,5(443) > R,5(490)/R,s(560)) (23)
and coefficients a = 0.2424, b= —2.2146, ¢ =1.5193,

d= —0.7702, e = —0.4291 have been derived from the NOMAD da-
taset.

2.17. Model N

Model N refers to the earliest version of the NASA OC 2-band ratio
algorithm set at MERIS wavebands (OC2E) where the ratio of blue
(490) to green (560) R, is used to determine Chla concentration;

Chla_N = 10(@+bX+eX?+dX+ex*) (24)
where

X = log 10(R, (490)/R, (560)) (25)
and coefficients a=0.2389, b= —1.9369, c¢=1.7627,

d

—3.0777, e = —0.1054 have been derived from NOMAD.
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2.18. Model O

Model O refers to the NASA fluorescence line height (FLH) algo-
rithm presented by Gower et al. (1999). It produces an estimate of the
magnitude of sun induced chlorophyll fluorescence (SICF) at 681 nm
above a baseline interpolated between 665 and 708 nm;

FLH = Rygs51 — | Rys(708) + (Ry5(665) — Ry (708)) X (M)
/1708 - /1665

(26)

As the output of FLH is a difference in R, the algorithm requires
empirical calibration to convert to Chla concentration;

Chla_O = a + b x FLH 27)

The operational range of FLH depends, among other factors, on the
concentrations of optically active constituents present in the water
column.

2.19. Model P

Model P refers to the maximum peak height (MPH) algorithm pre-
sented by Matthews et al., 2012. This is designed with a conditional
peak position selector, which searches for the maximum radiance over
three bands, as opposed to one fixed peak as seen in model N. The
baseline is calculated over a larger spectral range, 664 to 885 nm, and
the maximum peak intensity and position is determined from the
maximum radiance measured at wavelengths 681, 709 or 753 nm. SICF
is then estimated as follows;

MPH = brpq, — briges — [(b”’sss — briges) X (M)]

Asgss — Aeea (28)

where brry,q, and A, are magnitude and position of the greatest in
magnitude Bottom of Rayleigh reflectance from bands 681, 709 or
753 nm. In this context, brr is assumed to be generally consistent with
in-situ measured R,. Concentration of Chla was then determined in
waters identified as non-cyanobacteria dominant;

Chla_P = 5.24 X 10°MPH* — 1.95 X 108MPH? + 2.46 X 10°MPH?

+ 4.02 X 103MPH + 1.97 (29)

Model P was not recalibrated in this study as it is based on brr and
not R,,.

2.20. Model Q

Model Q refers to the Garver-Siegel-Maritorena (GSM) semi-analy-
tical inversion model that was developed by Garver and Siegel in 1997
and updated by Maritorena et al. (2002). It is based on an underlying
quadratic relationship relating R, to the IOPs of the water body at a
given wavelength (A);

2
Z 8i (
i=1

IOPs are partitioned into their contributing components where
by(A) = by, (L) + byy(A) for water and SPM and a
A) = a,A) + apr(A) + acgom() for water, phytoplankton and CDOM.
The IOP spectra are then parameterized as a known shape with an
unknown magnitude using the following expressions;

by ()

t2
O 2t mm e

(30)

apn (1) = Chla x ag, (), (3D
Aegom (A) = Qedom (1) X '3XP(_S(/1 - 20)), (32)
by, (1) = b (/I)X(ﬁ)y

1o (B) = by (o) X = 33)

Originally designed for SeaWiFS, the GSM model uses wavebands
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that overlap with available MERIS wavelengths. Inversion of the model
produces simultaneous estimates of the unknown quantities of Chla,
CDOM and by, from R, by application of a nonlinear least square op-
timisation routine. Global parameters, a,,(A), by,(A), n, t, and g; were
taken from the literature (Pope and Fry, 1997; Smith and Baker, 1981;
Gordon et al., 1988), while a*ph, S and Y were derived empirically from
the SeaWiFs Bio-Optical Algorithm Mini-Workshop (SeaBAM) in-situ
dataset.

2.21. Model R

Model R refers to the QAA method devised by Mishra et al. (2013,
2014). This was developed primarily for the retrieval of cyanobacteria
in turbid waters, however produces estimates of Chla as a routine by-
product. As a first step, total absorption and particulate backscattering
are estimated from subsurface Ry (7ys, st~ 1) at a given wavelength;

A = u@)(beow ) + by (1))

e = u(h) 34)
where
w(l) = -8, + /(8% + 4g x rrs()
2xg (35)

and g, = 0.089, g; = 0.125. The absorption signal is then decom-
posed into CDOM and phytoplankton components using known rela-
tions and empirical estimations;

Qedom (1) = Aedom (443) X eXP(—S(/l — 443)), (36)

Aph @A) =a@) — aw@) — acgom (1) (37)

The slope of CDOM, S, was derived empirically from samples col-
lected from aquaculture ponds in Mississippi.

2.22. Model S

Model S refers to the artificial neural network (NN) model presented
by Ioannou et al. (2013) which was developed to retrieve IOPs from R,
at available MODIS (or similar satellite) wavelengths. This is based on a
synthetic dataset of R,;, where IOPS app, dcdom, byp (and subsequently
Chla) are computed directly from the R, signal. The model was trained
for Chla concentrations ranging from 0.02 to 70 mg m ™3, and as such is
only expected to perform within these conditions. Model S produces
Chla as a standalone product (Model S) and Chla derived from IOPs
(Model S2).

2.23. Model version denotations for algorithm calibration and validation

Models were denoted as ORG, CAL or CLUS according to the para-
meterisation of the model coefficients. In the first case, the ORG algo-
rithm form represents the original published parameterisation of the
algorithm. Here, model coefficients have been taken directly from the
literature. In CAL form, model coefficients were reparametrized using
the best-fit model for entire in-situ training data set. In CLUS form,
model coefficients were determined for each OWT by sub-setting the
training dataset into OWT groups before refitting the models using the
subset data. Coefficients a, b, ¢, d and/or e correspond to those pre-
sented in models A to R (Egs. (1)-(33)).

2.24. Analysis of performance

Standard statistical metrics were used to formally evaluate and
describe the performance of selected Chla algorithms. These were
combined as error metrics in a quantitative scoring system designed to
objectively rank each algorithm according to the collective average
performance (based on a modified version of the methodology proposed



C. Nelil, et al.

by Brewin et al., 2015). Points were assigned based on the median value
calculated for each error metric whereby one point was awarded where
an algorithm's error statistics were shown to be similar to the median
error statistic for all models, and two and zero points were awarded
where the calculated metrics were statistically better or worse respec-
tively. The total number of metric points were then summed for each
algorithm and performance rank was allocated based on the total point
score. Consequently, a high score corresponds to the best performing
models whilst comparatively low scores indicate poor model perfor-
mance. To encourage a fairer representation of the validation data and
limit bias towards the larger individual datasets contained within the
combined validation dataset, a jack-knife routine was used to randomly
subset 50% of the validation dataset 1000 times before calculating error
metrics. In the case of OWT groups, a leave-p-out cross validation
method was used to randomly subset data, where p was defined as 10%
of the OWT grouped data. This produced a probability distribution of
error statistics for each algorithm, from which the mean value was used
to determine the final algorithm score. Metrics used as objective per-
formance indicators are described in the following section along with
the corresponding scoring criteria. All error metrics were applied to
log;o-transformed values of Chla concentration, which follows an ap-
proximate lognormal distribution (Campbell, 1995). Transformation to
log-log space was aimed primarily to improve symmetry and hetero-
scedasticity of skewed regression residuals for statistically compliant
metric calculations (in terms of residual distributions) and to reduce the
influence of high concentration independent variable extremities
(within an OWT) on metric results.

2.25. Root mean square error

The absolute root mean square error (RMSE) was used to provide a
general description of the difference between measured (Chlase,s) and
predicted (Chlay,,q) Chla concentration (units in mg m~3) (Antoine
et al., 2008). It is defined as follows:

N
1
RMSE = \/N 3" (log 10ChIameq — l0g 10ChIAmee;)*

i=1

(38)

where N is the number of model retrievals. The 95% confidence in-
tervals for RMSE were also calculated to determine similarity between
models. These were defined as statistically different where the con-
fidence intervals did not overlap for two or more models. As such, the
scoring system was defined as:

e 0 points awarded where RMSE is higher than median RMSE and
95% confidence levels do not overlap.

e 1 point awarded where RMSE 95% confidence levels overlap with
median RMSE 95% confidence levels.

e 2 points awarded where RMSE is lower than median RMSE and
median 95% confidence levels do not overlap.

2.26. Mean absolute error

The mean absolute error (MAE) was used in this study to quantify
the difference between the modelled and measured Chla variables
(Willmott and Matsuura, 2005 and Seegers et al., 2018). MAE was
calculated using the following expression;

MAE = % S 110g 10Chl;n0q — log 10ChIa, e 39
where N is the number of model retrievals. The 95% confidence in-
tervals for MAE were used to determine similarity between models
which were defined as statistically different where confidence intervals
did not overlap for two or more models. As such, the scoring system was
defined as:
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e 0 points awarded where MAE is higher than median MAE and 95%
confidence levels do not overlap.

e 1 point awarded where MAE 95% confidence levels overlap with
median MAE 95% confidence levels.

® 2 points awarded where MAE is lower than median MAE and
median 95% confidence levels do not overlap.

2.27. Slope and intercept of type-II linear regression

Least squares linear regression was used to calculate the slope (m)
and intercept (c) of a best fit line plotted between Chla,oq and Chla e
(units in mg m~3). Type II regression was used to account for un-
certainty in the in-situ data by calculating the perpendicular offsets
between Chla,,.,s and the linear fit:

log 10Chla,,0q = m X log 10Chlaye.s + ¢ (40)

and assumes that residuals are normally distributed. The scoring
system for m and ¢ was based on the median and standard deviation
calculated for each parameter individually such that:

e 0 points awarded where the standard deviation of m is greater than
median standard deviation of m for all models and m =+ its standard
deviation does not overlap with 1 *+ two times the median standard
deviation of m for all models.

1 point awarded where the standard deviation of m is less than
median standard deviation of m for all models or m = its standard
deviation overlaps with 1 + two times the median standard de-
viation of m for all models.

2 points awarded where the standard deviation of m is less than
median standard deviation of m for all models and m * its standard
deviation overlaps with 1 + two times the median standard de-
viation of m for all models.

0 points awarded for a particular model where the standard devia-
tion for c is greater than median standard deviation of c¢ for all
models and ¢ =+ its standard deviation does not overlap with
zero = two times the median standard deviation of c.

1 point awarded where the standard deviation of c for a particular
model is less than the standard deviation of c for all model or ¢ * its
standard deviation overlaps with zero = two times the median
standard deviation of c for all models.

2 points awarded where the standard deviation of c for a particular
model is less than the standard deviation of ¢ for all model and
¢ + its standard deviation overlaps with zero + two times the
median standard deviation of ¢ for all models.

2.28. Pearson's correlation coefficient

The Pearson's correlation coefficient r, is a useful statistic for de-
termining the strength of a linear relationship between measured and
predicted variables (Doney et al., 2009) In this study, r was used in
combination with the 2y, to determine if a model value of r was sta-
tistically higher or lower than the mean r-value for all models. zs.,. Was
calculated using the following expression;

Zmod — Zmean

Zscore =
AL (Noa = 3] + [1/(Nopean — 3)11172 (41)
where
S O.SIOg(M)
1- Tmod (42)
Zmean = 0.5 10g(m)
— Fmean (43)

and r,,q is the model r-value, rpeq, is the mean r-value for all
models, N,,,q and N,,.., are the number of model retrievals and the
mean number of retrievals for all models respectively. Zs.oe Was
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converted to a p-value assuming a normal probability distribution and
statistical difference was defined where p-value < 0.05. The scoring
system for r was then based on the determined p-value and the location
of the model r-value in relation to mean r such that;

e 0 points were awarded where r is lower than mean r and is statis-
tically different.

e 1 point awarded where model r and mean r were statistically si-
milar.

® 2 points awarded where model r was statistically higher than the
mean r-value for all models.

2.29. Average absolute percent difference

Uncertainty between modelled and measured variables (Antoine
et al.,, 2008) was determined using the average absolute (unsigned)
relative percent difference (RPD) defined as;

1i:N
RPD =100 X —
22

i=1

M)

Chlaeqs (44)

The scoring system for RPD was again based on a mean value of RPD
calculated across all algorithms with the inclusion of the 95% con-
fidence interval. This accounts for lower confidence in retrieved esti-
mates where a low value of RPD is observed. As such, the RPD scoring
classification was defined as;

e 0 points awarded where RPD for a particular model is greater than
mean RPD and RPD = its 95% confidence interval does not overlap
with mean 95% confidence interval for all models.

® 1 point awarded where RPD = its 95% confidence interval overlaps
with the mean 95% confidence interval for all models.

e 2 points awarded where RPD for a particular model is less than
mean RPD and RPD = its 95% confidence interval does not overlap
with mean 95% confidence interval for all models.

2.30. Bias

Calculation of the bias was used to assess the likelihood of sys-
tematic errors in algorithm outputs (units in mg m~3) (Seegers et al.,
2018);

1 i=N
bias = 100 X — log 10Chla — log10Chla
N z ( g mod g meas)

i=1

(45)

A value close to zero indicates the algorithm corresponds well with
in-situ measurements. As such, the bias scoring system was defined as
follows;

e 0 points awarded where the bias confidence interval for a particular
model is greater than median bias * its 95% confidence interval for
all models plus the model bias confidence interval does overlap with
zero = median confidence interval.

1 point awarded where the model bias confidence interval overlaps
with median bias * its 95% confidence interval or the model bias
overlaps with zero + median confidence interval for all models.

2 points awarded where the model bias confidence interval overlaps
with median bias =+ its 95% confidence interval and the model bias
overlaps with zero + median confidence interval for all models.

2.31. Percentage of retrievals

The percentage of possible retrievals (%n) was included as a sta-
tistical indicator to assess an algorithm's capability of producing global
estimates of Chla and not, therefore, contributing to data gaps. This was
calculated as follows;
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%n = Nmod
(46)

meas

where Np,,q is the number of algorithm retrievals and Ny,s is the
number of in-situ measurements. The scoring system for %n was based
on the average number of retrievals for all algorithms such that;

e 0 points awarded where %n is less than mean %n for all models.

® 1 point awarded where %n is greater than mean %n for all models
but < 99%.

® 2 points awarded where %n is > 99%

3. Results

Error metrics were determined for two arrangements of the vali-
dation data. In the first case, objective performance scores were cal-
culated per model for the entire R, dataset converted to Chla in ORG,
CAL and CLUS algorithm forms (2807 sample points). In the case of the
CLUS form, coefficients derived for an OWT group subset were used to
estimate Chla from corresponding OWT group spectra. All subsets were
then recombined (number of rows equivalent to ORG and CAL outputs)
to calculate error metrics on the entire validation dataset. In the second
validation arrangement, Chla concentrations derived from ORG, CAL
and CLUS algorithm forms were subset into groups defined by their
assigned OWT and performance scores were calculated for each model
within the OWT subset group.

3.1. Full dataset comparison

Fig. 4 shows a quantitative comparison of Chla generated from each
of the examined models against the in-situ measurements. Corre-
sponding error metrics are presented in Fig. 5. Scatterplots in Fig. 4
demonstrate the high variability of algorithm performance generated
across the range of tested models. Several algorithms are shown to
perform poorly, some are simply unable to retrieve Chla at the con-
centrations observed. Apparent failures occur with three-band Models
B, D and G which may be attributable to the elevated values of R,5(708)
leading to negative estimates of the independent ratio variable. None-
theless, several models perform reasonably well in terms of the accu-
racy of the Chla retrieval when considering the significant range of
constituent concentrations included in the validation dataset (Fig. 1).
Most notably, empirical Models A, C and J produce r-values in excess of
0.85 and regression slopes close to 1 when compared to in-situ mea-
surements. For all models, error residuals are heteroscedastic and vary
as a function of Chla concentration, with the most obvious spread of
data observed at low concentrations of Chla. This suggests a targeted
water type specific algorithm could improve performance across the
Chla concentration continuum and is further implied by the notable
differences in performance produced by ORG, CAL and CLUS algorithm
forms. In almost every case, the CLUS model form produced more ac-
curate estimates of Chla, as demonstrated in Models E, F, I and R. For
some models, reparametrizing model coefficients with the entire
training dataset (CAL version) causes algorithm performance to de-
grade, as is the case with Models B, D and G. No obvious differences in
overall algorithm performance were observed between empirical and
semi-analytical model architectural approaches (Table 2 for archi-
tectural summary). Ignoring OWT classification, i.e. ignoring CLUS
model forms, the most accurate retrievals of Chla were obtained using
Models A_ORG, C_ORG, H_ORG and J_CAL, which each estimate log
transformed Chla with a MAE of < 0.27 mgm ™3,

The corresponding performance scores as determined by the ob-
jective scoring system are shown in Fig. 6. These are ranked according
to total error score, with a maximum score denoting the best per-
forming model of those tested for producing accurate estimates of Chla
concentration. Results are consistent with conclusions inferred from the
scatter plots presented in Fig. 4, indicating the objective scoring system
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Modelled Chla (mg m3)

' Measured Chla (mg m?3)

Fig. 4. Comparison of model derived and in-situ measured Chla concentrations.
The 1:1 relationship between measured and modelled Chla is represented by a
dashed line.

is capable of accurately classifying algorithm performance. The highest
scoring algorithms are Models A, C, J, L,M and R which translate to 3
red-NIR band ratio based algorithms, 2 blue-green ratio based algo-
rithms and a QAA model. Error statistics for the top-ranked models are
shown in Table 3. In almost every case, the CLUS version of the algo-
rithm, coloured by light blue on Fig. 5, produced a greater score when
compared to ORG and CAL counterparts (dark and mid blue respec-
tively). With a total error score of 14, these are the best performing
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algorithms when comparing modelled and measured Chla for the full
validation dataset. Those models exhibiting high discrepancies between
modelled and measured Chla are represented with low scores, such as
ORG and CAL versions of Models B, D, E and F. The objective scoring
systems also identifies the apparent poorly performing algorithms of
Models G and Q which produce a zero score in one or more algorithm
form. Again, it is shown that recalibrating a model with the entire ca-
libration dataset (CAL form) using a best-fit approach does not always
improve model performance. The Chla constituent range of the training
dataset may be too large to effectively calibrate the evaluated models
(as shown in Fig. 1) and as such produce a detrimental effect on error
metrics. This is particularly obvious in the MAE calculated for Models
A, H and N, where an error increase of approximately 2%, 83% and
11% respectively is observed when comparing ORG and CAL outputs.
Nonetheless, significant improvement in terms of performance score is
achieved when converting to the CLUS algorithm form for low scoring
models.

3.2. Performance per OWT

The second stage of the algorithm validation focussed on perfor-
mance within a specific OWT group. Chla concentrations generated
using the OWT training subsets (CLUS parameterisations) were com-
pared to outputs from CAL and ORG models for only the corresponding
OWT assigned spectra. For example, 425 of 2807 spectra were assigned
as OWT 2 and error metrics were calculated for these 425 points in
ORG, CAL and CLUS versions to determine algorithm performance
within OWT 2. Results from objective scoring are shown in Fig. 7. Each
model/OWT combination was assigned a performance score based on
the median value calculated for a metric within an OWT and as such,
scores are independent of OWT group. Algorithm performance is highly
variable across the tested models, with scores ranging from zero to 13
or 14 in several of the OWTs. Several models are shown to perform
reasonably well across several OWTs, for example, Model J displays a
relatively high score (jointly ranked first) in OWT 2, 4, 5, 6, 11 and 12.
Conversely, Models D, G and O perform poorly in every OWT. One
noticeable difference when generating error statistics based on OWT
subsets as opposed to the entire validation dataset is the performance
per algorithm version. We now have several cases where the ORG or
CAL version of a model produces more accurate estimates of Chla when
compared to those derived from the refined OWT CLUS reparame-
trisation. For example, the CAL version of Model J was found to be a
leading candidate model in three OWT groups. This result may be a
consequence of unsuitable model parametrisation in under-sampled
OWTs with comparatively small training datasets, i.e. OWTs 1, 7, 10
and 13.

Corresponding error and regression statistics for the maximum OWT
model scores are shown in Table 4. It is clear that significant variability
in performance is observed across each water type, even for maximum
scoring algorithms. In five of the 13 OWTs, one or more models produce
a correlation coefficient between measured and modelled Chla which
is > 0.7. This indicates only a proportion of the validation dataset is
sufficiently characterised by the algorithms tested; these are OWTs 2, 4,
8, 9 and 12, and collectively they comprise 58.4% of the total validation
dataset (1639 spectra from 2807). These OWTs mainly lie within the
mid-range of the Chla concentration distribution, with median values of
Chla per OWT ranging from 4.2mgm > to 102mgm 3. The higher
section of the Chla concentration range (OWTs 7, 1, 8 and 6) is re-
trieved reasonably well with model outputs producing r-values in ex-
cess of 0.5 for each OWT. The lower section of the Chla range is shown
to be the most challenging, with maximum r-values for OWTs 3 and 13
calculated as 0.372 and 0.595 respectively. In these waters where
median concentrations of Chla are < 1.5mgm ™3, a number of valida-
tion sample points lie outside the original training range for the tested
models which may influence the derived error metrics.
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Fig. 5. Error metrics calculated when comparing model outputs of Chla with in-situ Chla concentrations.
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3.3. Recommendation for a dynamic OWT switching algorithm

Based on objective scoring and individual error statistics, the re-
commended algorithm selection for inland waters exhibiting water-
leaving reflectance characteristics similar to those described by
Spyrakos et al. (2018b) is shown in Table 5. The confirmed choice of
models over the OWT range is varied and complex. Of the 13 groups,
eight models identified as high performers in terms of Chla retrieval
appear in their CLUS form, where the re-calibration of the model was
based on the OWT group subset data. Two OWTs are more accurately
characterised in terms of Chla retrieval by their original published al-
gorithms (ORG) and three OWTs by parameterising the proposed
models using the complete training dataset (CAL). This observation is
contrary to results presented in the full dataset comparison, where the
performance of almost every model was improved by switching to CLUS
algorithm form, and may be a consequence of the variation in the
number of observations per OWT which in turn affects the retuning of
the algorithm. Furthermore, the process of defining OWTs will in-
evitably generate extremes where no algorithm will perform sa-
tisfactorily. A general pattern relating to the architecture of the best
performing models per OWT is also evident, whereby OWTs consisting
of predominantly low concentrations of Chla are better characterised by
the blue-green ratio Models M and N, which were developed for low
chlorophyll, open ocean conditions. Conversely, Model R, which was

originally developed for regions of mid to high Chla concentration, has
been identified as a leading candidate for eutrophic OWTs 6 and 7.
Model H was the leading performer for OWT 10 where concentrations
of Chla are often high but the optical signal is primarily dominated by
the presence of other optically active constituents. The remaining mid-
range Chla concentrations have been captured by several versions of the
red-NIR band ratio algorithm.

OWT recommended algorithms (as shown in Table 5) were com-
bined to form a dynamic switching algorithm, which selects the op-
timum Chla model for a given OWT. Estimates generated by the dy-
namic switching algorithm are compared to in-situ measurements of
Chla concentration in Fig. 8 (c). Points are coloured according to OWT
group and shaped according to the chosen algorithm architectural ap-
proach. In order to qualitatively compare overall performance, scat-
terplots of the output from the best performing original form algorithm
Model C_ORG (8 a) and the top performing single (non-dynamic) al-
gorithm Model J_CLUS (8 b) are also shown in this figure. The corre-
sponding histogram of residuals for Model C_ORG, Model J_CLUS and
the dynamic switching algorithm are shown in Fig. 8 d. It is clear that
overall improvement in Chla retrieval accuracy is achieved by focussing
on an OWT framework. Firstly, retuning model coefficients within an
OWT group (Fig. 8 b) improved the overall RPD calculated between
measured and modelled Chla from 158% for Model C_ORG to 81.9% for
the optimised Model J CLUS. Next, dynamically altering the chosen

Table 3

Error statistics generated when comparing modelled log;, Chla with in-situ measurements for each of the first ranked models, ordered by mean absolute error.
Model r Slope RMSE (mgm ™) MAE (mgm ™~ %) RPD Bias (mgm ™) Intercept %n
C_CLUS 0.885 0.914 0.256 0.188 79.49 0.057 0.156 98.82
J_CLUS 0.888 0.885 0.248 0.189 81.92 0.066 0.200 99.46
A_CLUS 0.883 0.909 0.260 0.191 85.20 0.068 0.173 98.64
R_CLUS 0.872 0.889 0.267 0.205 91.48 0.079 0.206 98.21
L_CLUS 0.825 0.839 0.291 0.261 91.04 0.001 0.184 100
M_CLUS 0.823 0.875 0.306 0.266 96.16 0.015 0.157 100
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Optical Water Type 1 2 3 4 5 6 7 8 9 10 11 12 13
Model A Org 9 10 4 &8 8 9 9 13 4 8 9 10 4
Model A Cal 9 8 4 8 8 8 9 13 4 8 9 10 5
Model A Clus 9 9 9 8 9 1M 8 6 12 10
Model B Org 1 5 6 3 2 1 1 1 5 1 4 3 5
Model B Cal 7 4 6 4 8 7 6 5 5 8 6 5 7
Model B Clus 8 6 9 6 7 7 9 9 6 8 7 5 Af
Model C Org 8 11 6 10 8 8 9 10 9 8 9 10 6
Model C Cal 9 8 3 9 8 8 9 13 4 8 9 10 1
Model C Clus 13 9 10 9 11 8 g8 11 10 10
Model D Org 7 4 5 2 3 2 3 2 5 4 4 3 6
Model D Cal 7 4 6 4 8 7 6 5 4 8 7 5 7
Model D Clus 9 6 9 6 8 6 8 9 7 8 8 5 9
Model E Org o 8 6 7 8 6 7 5 6 4 7 & 6
Model E Cal 8 7 6 6 6 7 7 5 6 3 7 5 6
Model E Clus 9o 8 9 8 8 7 10 7 8 7 8 6 9
Model F Cal 10 6 6 8 7 7 8 6 6 5 8 4 6
Model F Clus o 8 9 8 7 7 9 8 8 8 8 5 10
Model G Org 1 4 4 2 2 1 1 1 4 1 4 2 6
Model G Cal 1 6 8 5 5 1 1 1 71 7 5 9
Model G Clus 1 6 9 5 7 1 1 1 g8 8 8 5 9
Model H Org 4 9 6 10 4 9 9 12 6 9 122 9 7
Model H Cal 8 9 6 7 4 7 9 8 6 6 9 1 7
Model H Clus 4 13 5 8 6 10 8 711 g 6
Model | Org 1 6 2 7 5 8 4 10 6 5 9 10 1
Model | Cal 1 6 4 7 7 & 5 10 4 7 8 9 3
Model | Clus g8 7 9 8 8 g8 10 6 6 11 9 9
Model J Org 8 10 5 9 6 6 9 7 7 7 8 8 6
Model J Cal o 9 5 g 9 1M 7 8 -1£I-II 7
Model J Clus 9 9 10 0 9 11 9 8 10 10
Model K Org 9 9 5 10 8 8 11 g8 8 12 10 7
Model L Org 8 7 8 7 6 5 5 5 9 6 9 7 10
Model L Cal 8 6 7 7 7 5 7 & 8 8 8 8
Model L Clus 8 o 9 9 9 s 0o o 11
Model M Org &8 6 8 6 7 5 5 4 8 8 7 & 10
Model M Cal 8 6 7 7 8 5 7 6 8 8 7 6 10
Model M Clus 8 9 9 9 9 A 11 10 L 8
Model N Org 7 5 8 6 8 4 4 3 8 4 7T 7 10
Model N Cal 8 4 8 5 7 2 5 4 7 4 6 6 9
Model N Clus 8 9 9 9 9 8 10 9 1
Model O Cal °© 4 4 7 7 7 7 8 2 1 8 6 7
Model O Clus 8 6 9 7 7 7 8 8 6 7 8 & 10
Model P Org 5 3 5 4 5 3 5 3 4 8 6 4 7
Model Q Cal 1 1 7 1 2 4 1 1 4 1 ¥ 2 1
Model R Cal °© 8 5 8 7 °© 6 6 9 9 5
Model R Clus 13 9 10 7 8 9 10 8 7 9 10 10
Model S Org 8 7 10 7 6 7 5 5 8 6 6 5
Model S2 Org 6 6 9 7 6 4 8 5 8 6 7 5 AY

Fig. 7. Performance scores for models tested within each OWT determined from objective scoring. A high score indicates better performance relative to all tested
models within an OWT. Highest ranking scores (i.e. joint ranked first or second) have been coloured blue. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

algorithm per OWT (Fig. 8 c¢) further reduced the RPD to 68.5%. The
final version of the dynamic switching algorithm estimates log-trans-
formed Chla from R,; with a MAE of 0.18 mgm‘3 (Fig. 8 ¢). In terms of
objective scoring, improvements in the final Chla outputs generated by
the dynamic switching algorithm produced a total score of 15, which
was the highest recorded score from all 48 algorithms tested.

4. Discussion
4.1. Implications for remote sensing
In this validation exercise we have shown how accuracy in the re-

trieval of Chla from R,s can be improved by targeting specific OWTs in
algorithm development. In a comparison of single model retrievals, in
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Table 4
Error statistics generated when comparing modelled Chla with in-situ measurements for each of the first and second jointly ranked models in an OWT.
Cluster Model r Slope RMSE (mgm ™) MAE (mgm ) RPD Bias (mgm™%) Intercept %n
1 C_CLUS 0.629 0.757 0.205 0.167 67.65 —0.054 0.593 100
1 F_CAL 0.443 0.495 0.153 0.268 52.49 0.191 0.931 100
1 L_CLUS 0.596 0.575 0.159 0.213 53.49 0.009 0.936 100
1 M_CLUS 0.621 0.738 0.200 0.246 75.19 —0.115 0.698 100
1 N_CLUS 0.632 0.738 0.199 0.245 75.03 —0.116 0.699 100
1 R_CLUS 0.625 0.612 0.165 0.175 66.42 —0.080 0.942 100
2 A_CLUS 0.816 0.958 0.211 0.158 50.36 —0.029 0.072 96.71
2 C_CLUS 0.789 0.991 0.239 0.165 52.27 —0.028 0.036 98.58
2 H_CLUS 0.813 0.978 0.218 0.160 49.13 —0.014 0.036 96.70
2 J_CLUS 0.782 0.948 0.235 0.160 52.08 —0.030 0.082 100
2 R_CLUS 0.774 1.035 0.258 0.171 53.39 —0.023 —0.012 98.35
3 L_CLUS 0.268 0.270 0.084 0.230 80.96 —0.001 0.079 100
3 M_CLUS 0.352 0.450 0.136 0.219 80.13 —0.029 0.088 100
3 N_CLUS 0.372 0.375 0.112 0.217 75.15 0.000 0.067 100
4 C_ORG 0.777 0.682 0.175 0.207 109.9 —-0.157 0.510 100
4 C_CLUS 0.705 0.891 0.254 0.194 82.75 —0.047 0.170 98.23
4 H_ORG 0.742 0.976 0.256 0.198 70.05 0.034 —0.007 95.45
4 J_CAL 0.790 0.852 0.213 0.187 62.13 0.018 0.146 100
4 J_CLUS 0.671 0.806 0.243 0.207 83.75 —0.047 0.263 100
4 K_ORG 0.782 0.617 0.157 0.221 67.40 0.074 0.351 100
4 R_CLUS 0.772 0.845 0.211 0.171 66.94 —0.045 0.222 94.70
5 C_CLUS 0.442 0.574 0.196 0.239 134.2 —0.092 0.582 99.58
5 J_CAL 0.474 0.422 0.141 0.246 137.4 —0.118 0.783 100
5 J_CLUS 0.450 0.544 0.184 0.239 131.2 —0.093 0.618 100
5 K ORG 0.477 0.335 0.111 0.244 103.4 —0.002 0.767 100
5 L_CLUS 0.286 0.257 0.094 0.268 116.8 —0.030 0.885 100
5 M_CLUS 0.336 0.315 0.112 0.262 113.6 —0.030 0.819 100
5 N_CLUS 0.352 0.331 0.118 0.261 111.7 —0.030 0.799 100
6 A_ORG 0.462 0.564 0.122 0.127 57.71 —0.058 0.770 100
6 A_CLUS 0.461 0.564 0.123 0.128 55.41 —0.035 0.749 100
6 C_CLUS 0.466 0.520 0.113 0.126 54.41 —0.037 0.823 100
6 H_ORG 0.476 0.633 0.136 0.136 51.94 —-0.017 0.617 100
6 H_CLUS 0.474 0.589 0.127 0.134 52.70 —0.030 0.702 100
6 1.CLUS 0.535 0.598 0.123 0.127 49.89 —0.033 0.691 100
6 J_CLUS 0.463 0.526 0.114 0.126 54.67 —0.037 0.812 100
6 L_CLUS 0.205 0.202 0.048 0.171 53.75 —0.003 1.308 100
6 M_CLUS 0.160 0.160 0.039 0.175 54.25 0.002 1.372 100
6 N_CLUS 0.162 0.161 0.039 0.175 54.58 0.000 1.373 100
6 R_CAL 0.521 0.360 0.075 0.134 47.53 —0.014 1.061 100
7 E_CLUS 0.256 0.631 0.192 0.252 79.22 0.020 0.862 100
7 H_CLUS 0.563 0.642 0.141 0.152 43.89 4.455 0.866 97.73
7 R_CAL 0.608 0.759 0.191 0.178 42.79 0.040 0.537 100
8 A_ORG 0.663 0.841 0.129 0.119 26.86 0.038 0.278 100
8 A_CAL 0.667 0.856 0.131 0.118 29.89 —0.011 0.300 100
8 C_CAL 0.668 0.850 0.130 0.118 30.32 —-0.017 0.316 100
8 H_CLUS 0.712 0.891 0.129 0.108 26.62 0.006 0.210 100
9 L_CLUS 0.646 0.644 0.192 0.221 71.56 0.001 0.245 100
9 M_CLUS 0.708 0.704 0.194 0.212 61.34 0.002 0.203 100
9 N_CLUS 0.713 0.714 0.200 0.211 61.61 —0.001 0.199 100
10 H_ORG 0.539 0.316 0.166 0.720 989.1 -0.716 1.309 90.16
10 L_CLUS 0.495 0.489 0.256 0.433 152.7 0.001 0.441 100
10 M_CLUS 0.382 0.380 0.210 0.458 169.1 0.001 0.534 100
10 N_CLUS 0.509 0.504 0.259 0.417 161.2 —0.004 0.431 100
11 J_CLUS 0.697 0.910 0.301 0.233 75.12 —0.043 0.147 100
12 A_ORG 0.794 0.686 0.180 0.177 60.74 —0.005 0.429 99.70
12 A_CAL 0.796 0.730 0.188 0.169 62.00 —0.026 0.391 99.10
12 A_CLUS 0.778 0.824 0.221 0.175 68.34 —0.059 0.300 99.10
12 C_ORG 0.801 0.635 0.165 0.183 72.11 —0.065 0.557 100
12 C_CAL 0.792 0.764 0.199 0.168 61.39 —0.022 0.342 99.10
12 C_CLUS 0.763 0.911 0.249 0.182 68.42 —0.046 0.166 98.49
12 1.ORG 0.700 0.969 0.270 0.191 66.61 —0.048 0.092 92.17
12 J_CAL 0.796 0.856 0.225 0.190 54.87 0.077 0.118 100
12 J_CLUS 0.768 0.777 0.213 0.184 71.74 —0.074 0.373 100
12 K ORG 0.788 0.648 0.174 0.264 58.24 0.175 0.297 100
12 R_CLUS 0.792 0.602 0.160 0.204 83.87 —0.107 0.642 100
13 B_CLUS 0.262 0.404 0.233 0.620 328.8 —0.431 —0.190 100
13 L_CAL 0.528 0.381 0.193 0.320 71.72 —0.020 —0.622 100
13 L_CLUS 0.595 1.238 0.594 0.581 72.72 0.436 —0.190 100
13 M_CLUS 0.595 1.238 0.594 0.581 72.72 0.436 —0.190 100
13 S_ORG 0.272 0.381 0.219 0.343 53.30 0.220 —0.862 100
13 S2_ORG 0.500 0.432 0.223 0.398 48.34 0.362 —0.951 100
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Recommended model for each defined OWT (Spyrakos et al., 2018b) ordered by OWT group median Chla concentration (Fig. 3). Calibration coefficients for each

model have been highlighted in bold.

OWT  Model Architectural approach ~ Equation a b c d e
7 R_CAL Semi-analytical a,(A) = al) — a,A) — acgom@) 0.0135
Qedom(A) = Aedom(443) exp (—a(d — 443))
1 C_CLUS NIR-red band ratio 2 86.09 -517.5 886.7
B Chla7C:a><(M) +bx(m)+c
Rrs665 Rrs665
8 H_CLUS Semi-analytical R 1.25 0.0174
5708
X (0.7 + bp)
Chi_H = [\ Ryse6s /b
— 04— bg
6 R_CAL Semi-analytical apA) = a\) — @A) — acgom@) 0.0135
Qoaom) = Acaom(443) exp (—a(d — 443))
12 A_CLUS NIR-red band ratio Chla A = a x (Rrs708) +b 80.7 53.18
Rys665
11 J_CLUS NIR-red band ratio Chla J= a+bx (Rmox _ Rrxsss) ex (Rmos _ Rr5665)2 19.31 153.5 105.4
- Rprs708 + Rrs665 Rrs708 + Rrs665
4 J_CAL NIR-red band ratio Chia T a+bx (Rrx708*Rn'665) tex (Rrx703*Rr3665)2 18.44 149.2 374.9
- Rrs708 + Rrs665 Rrs708 + Rrs665
5 K_ORG NIR-red band ratio Chia K —a+bx (Rmos ,RMGS) tex (Rrs708 _ Rmsss)z 14.039 86.115 194.33
- Rys708 + Rrs665 Rys708 + Rrs665
2 A_CLUS NIR-red band ratio Chla A=ax (Rmog) b 53.29 —30.08
Rrs665
10 H_ORG Semi-analytical R 1.063 0.016
708 | 5 (0.7 + bp)
Chla_H = Rys665 /b
—04—bg
9 N_.CLUS  Blue-green band ratio Chla_N = 10(a+bX+eX*+dX*+ex? 0.0536  7.308 116.2 412.4 463.5
X = log 10(Rrs490/Rrs560)
3 M_CLUS  Blue-green band ratio Chla_M = 1Q(a+bX+cX*+dX+eX? 0.1098  —0.755 -14.12 -117 -17.76
X = log 10(Rys443 > Rrs49(1/Rr54560)
13 M_CLUS  Blue-green band ratio Chla_M = 10(@+bX+eX*+dX+eX?) -5020 2.9e+04 —6.1e+04 5749e+04  —2.026e+04

X = log 10(R;s490/Rrss60)

other words, a single architecture across the entire dataset, it was
shown that accuracy of the models was highly variable (Figs. 4 and 5).
Models A, C, J and R were highlighted as leading performers based on
their objective score and error statistics. The empirical three-band ratio
algorithms were shown to perform poorly when compared their two-
band counterparts. For almost every model validated, the statistically
tuned per OWT CLUS version produced the most accurate results. When
comparing results on an OWT basis, the validation metrics were also
highly variable (Fig. 7). Model J appeared as a high scorer from ranked
objective scoring the greatest number of times, and 15 of the 48 tested
models were identified as leading performers in at least one OWT.
Improvement in the final objective score and the corresponding error
statistics was made by unifying an ensemble of the top performing al-
gorithms for each OWT, as presented in Table 5. The resulting dynamic
switching algorithm produced a relative percentage improvement in
log-transformed MAE of 25% when compared to the top performing
algorithm in its original form (Model C_ORG) (Fig. 8 a and c). This
result demonstrates that overall improvement in retrieval performance
can be achieved by focusing on distinct OWTs during algorithm de-
velopment. There remains uncertainty in the accuracy of retrievals
obtained from several of the associated OWTs, particularly where low
concentrations of Chla are observed in the presence of highly variable
CDOM. However, this adaptive method allows for a directed effort in
improving algorithms over specific OWTS and could be used to prior-
itise water bodies for future validation and algorithm development
exercises.

This study did not attempt to validate every algorithm developed for
retrieving concentrations of Chla from water colour observations.
Instead, the intention was to test a range of empirical, semi-analytical
and neural network model types to determine those best suited in terms
of performance statistics for RS in complex and optically deep inland
waters and to present those models in an adaptive framework that
delivered accurate retrievals across a global continuum of environ-
mental conditions. It was therefore interesting to observe apparent

clustering in the high-scoring-model architectural approaches, whereby
many OWTs were represented by similar models, as shown in Fig. 8 c.
These clusters appear at defined positions on the Chla concentration
continuum (independent of other optically active constituents which
also affect the R,s signal), with typical blue-green ratio ocean colour
algorithms representing clearer oligotrophic conditions, red-NIR band
ratios capturing the mid-range meso- to eutrophic concentrations and
more complex semi analytical models covering the hypereutrophic
events. This result has some physical meaning as the validated algo-
rithms have known capabilities and limitations in optically complex
waters (see Table 2 for algorithm training ranges). For example, the
blue-green ratio algorithms are more sensitive to changes in Chla
concentration at low reflectance levels due to the dominance of blue
wavelength absorption for chlorophyll pigments, whilst semi-analytical
models such as QAA are better equipped at dealing with additional
optical complexity instigated by the presence of independently varying
concentrations of other optically active constituents. Apparent archi-
tectural clustering suggests the defined OWTs may fall into higher-level
groupings that could be used to further simplify algorithm selection.
This result was also demonstrated by Spyrakos et al. (2018b) using
phylogenetic trees to identify sub groups within an OWT cluster and it
reaffirms our understanding of the limitations of the tested RS algo-
rithms in optically challenging aquatic systems. To this end, the number
of required algorithms and/or parameterisations may be collapsed
without significantly compromising overall performance and could lead
to a decision tree for algorithm selection based around dominant and
commonly occurring optical features, as shown in Fig. 9. Where formal
OWT classification is unachievable, the recommendation for a
switching algorithm based on biological conditions would be; blue-
green band ratio methods such as Model M in oligotrophic environ-
ments where Chla concentrations normally fall below 3 mgm ™3, NIR-
red band ratio methods such as Model C where Chla is frequently in
excess of 3 mgm ~° but < 155 mgm ™2 and the semi-analytical method
of Model R in hypereutrophic conditions where Chla concentrations



C. Nelil, et al.
1000 : : ———
r=083 3
Slope = 0.93
Intercept = 0.23
RMSE =0.30
U MAE = 0.24 =
(")A 100 RPD = 158 o
i bias = 0.15 A
E %n =96.3 2
o)) . '
é 10 [ . o 1
@ v, : °2
= B 3
(@] i 4 4
8 1+ LA 2 *5|]
= /’ oy o e * 6
[} P RN o7
e} 7
o] , ° 8
= /// . e 9
0.1¢ g £ s 101
“ .
P s 11
7 : ° 12
L * 13
0.01- ; : .
0.01 0.1 1 10 100 1000
Measured Chla (mg m'3)
(a)
1000 ;
=089
Slope =093
Intercept = 0.11
RMSE = 0.25
—~ 100 Rep2eos
e bias = 0.02
(= %n =99.3
(o)}
E 10¢
©
-~ 1
O : 2
el A 3
o 1 v s
] a A ® 5
L]
o < vV 6
[e] . 7 vz
= A A7 A v s
0.1¢ i A o
P o NIR/red b
,,/ ¥V Semi-analytical P4 1;
7 ™ A A Blue/green A 13
0.01 ' ' i
0.01 0.1 1 10 100 1000
Measured Chla (mg m'3)

(c)

Remote Sensing of Environment 229 (2019) 159-178

1000 T T T >
r=0.88 i
Slope = 0.88 °
Intercept = 0.20 °
RMSE =0.25
_ 100 |- ~
R bias = 0.07
1S %n =99.5
(&) ° '.
E 10} 14
© 2
=~ 3
O o 4
el | e 5 ||
g 1 ’ 4 L e 8
-, - L]
= . A e
0.1} . s 2ol
e * 11
L . 12
P4 ® 13
017 : : : :
0.01 0.1 1 10 100 1000
Measured Chla (mg m'3)
(b)
2.5 _-ModelcioRG > :
I Model J_CLUS
|:|Dynamic switching algorithm
2 - .
3151 1
=
@ L
T
g i
wo1f 1
0.5 1
O -
-3 -2 -1 0 1 2

Residual

(d)

Fig. 8. Validation of Chla estimated from Model C_ORG (a), Model J_CLUS (b) and a combination of the best performing models per OWT group denoted the dynamic
switching algorithm (c). Points have been coloured according to their OWT group classification and shaped according to the chosen model architectural approach (8 ¢
only). A dashed 1:1 line representing a perfect modelled relationship has been annotated for reference. Regression statistics of correlation coefficient, linear slope and
intercept, root mean square error (RMSE), mean absolute error (MAE), relative percentage difference (RPD) and bias are shown for each model. A histogram of

residuals for model outputs are shown in (d).

commonly exceed 160 mgm ~>. If no prior knowledge of water colour or
Chla variability is known, Model C_ORG would be the recommended
method.

Improvement in the accuracy of the Chla retrieval was demon-
strated by changing not only the architectural type of model used in the
retrieval but also by calibrating the chosen model with OWT specific
coefficients. In the case of single model top performer Model J, the RPD
decreased from 278 to 81% (correlation coefficient increased from 0.80
to 0.88 and MAE decreased from 0.36 to 0.26) simply by fitting the
model to data collected for a specific OWT. This method allows for
improved characterisation of regions with significant optical varia-
bility, both temporally and seasonally, which in turn improves the ac-
curacy and effectiveness of the method overall. As a consequence, the
recommended dynamic switching algorithm is more accurate than a
general algorithm and more effective than a regionally developed al-
gorithm. Several of the OWTs were under-represented by (a) our in-situ
data (b) the models tested in this study, resulting in poor error statistics

for OWTs 3, 5, 6, 10 and 13. While this appears a large number of
misrepresented spectra, it equates to 32.6% percent of the entire in-situ
validation dataset and embodies the very low or very high extreme Chla
concentrations. A useful by-product of the dynamic switching frame-
work is therefore its effective exposure of areas that require further
attention. Our results can be used to identify OWT-specific modelling
requirements for RS applications and highlight gaps in knowledge and
data needs. Additionally, with widely variable validation results found
across OWTs, the dynamic switching framework can act as a flagging
system to express confidence in the Chla retrieval. In this context, Chla
concentration determined in OWTs identified as poorly characterised
could be flagged as ambiguous in a manner similar to atmospheric
correction failures, hence providing a better insight into realistic un-
certainty budgets. Furthermore, this framework also allows for better
error characterisation by providing estimates of OWT-specific error
which are potentially more useful to end-users with interests in specific
water types.
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4.2. Methodologies

This paper investigated the accuracy of several algorithms designed
to retrieve concentrations of Chla from measurements of water colour
in optically complex aquatic environments. Chla was calculated from an
extensive database of in-situ R, measurements resampled at MERIS
wavebands (Spyrakos et al., 2018b). To our knowledge, this is the most
comprehensive dataset of inland water reflectance spectra that covers a
continuum of optical water types both spatially and temporally. Many
of the observations contained within this dataset have been used in
previous studies to parameterise algorithms tested in this paper (e.g.,
Matthews and Odermatt, 2015). Ideally, a validation exercise of this
magnitude would be conducted with an independent dataset of in-situ
observations to avoid the influence of data dependency on performance
results. This is currently not feasible due to a lack of systematic vali-
dation work covering the range of OWTs considered in this study and
most existing data have been acquired specifically for algorithm de-
velopment. Moreover, removing data that have been used to derive the
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original algorithms would make it difficult to undertake a fair com-
parison. Potential bias was dealt with to some extent by testing a
variety of model types, as well as varying model coefficients. Moreover,
a jack-knife method was applied to the validation dataset to subsample
data and determine error statistics as a distribution. The diversity of
performance results suggest model data dependency may not be
strongly influencing the outcome. For example, the blue-green ratio
ocean colour models (L, M and N) were identified as top performers in
several OWT clusters however, no oceanic observations have been in-
cluded in the R,s validation dataset. This is further demonstrated by
comparing the number of observations with the RMSE calculated for
the top performing models in each OWT (Table 4), as shown in Fig. 10.
Excluding OWT 13 (which is the most difficult type to model in terms of
Chla due to extreme low concentrations) a regression slope of —6.9e >
indicates no trend exists between the number of observations within an
OWT group and RMSE calculated for the OWT candidate model and as
such the final result is not influenced by data bias.

While this study focussed on the OWTs defined by Spyrakos et al.
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(2018b), it is recognised that these are unlikely to represent all water
types occurring in natural waters and that OWTs may be defined by
alternative methods (McKee et al., 2007; Moore et al., 2009) or un-
derrepresented by the availability of in-situ data e.g. OWTs 1 and 13.
Furthermore, uncertainty in OWT classification is expected, particularly
at class member boundaries where component optical properties
overlap (Spyrakos et al., 2018b). However, the OWT framework pre-
sented in this paper is the most comprehensive to date in terms of data
size and range. The proposed method of subdividing data into optical
water typologies before applying algorithms or assessing algorithm
performance is a key message of this study and is entirely transferrable
to other water environments or classification schemes. Additional data
may improve OWT classification accuracy and overall OWT coverage. It
may also improve individual algorithm performance by further refining
model coefficients (Salama et al., 2012). However it would not ne-
cessarily change the final recommendations for the dynamic switching
algorithm. Most importantly, it would not alter the general efficacy of
an ensemble method built on an OWT framework. We encourage the
algorithms and parameterisations published here to be further refined
and validated against new bio-optical datasets as they are collected.

The objective scoring system developed by Brewin et al. (2015) and
modified for this study proved an effective tool for automatically gen-
erating an overview of algorithm performance. It provided a means of
objectively ranking models based on their performance relative to
average error statistics as demonstrated in Figs. 6 and 7. However, it is
important to acknowledge that the resulting score does not represent
absolute performance and as such, the objective scoring system should
be used in conjunction with standard error statistics to determine the
most effective algorithms where equal scores are generated. The ob-
jective scoring system is also extremely effective for highlighting the
underperforming algorithms and the trophic conditions under which
the tested algorithms break down. This is particularly relevant when
validating a large number of models over a wide range of optical and/or
biological conditions.

4.3. Future work

In this paper, we have validated a host of algorithms to determine
those capable of accurately retrieving Chla concentration remotely in
inland waters. The ultimate ambition in this context is the production of
accurate global products that can be exploited for status assessment and
climate studies. Advances in computer processing power have allowed
the development of machine learning and artificial intelligence proce-
dures in satellite applications (Kim et al., 2014; Blix et al., 2018;
Ceccaroni et al., 2018). Whilst these are relatively under-validated on a
global scale, their approach to algorithm selection with limited a priori
knowledge of environmental condition is an exciting prospect, and has
similarities to the framework presented in this paper. Our tractable goal
requires a unified approach to data processing routines that are able to
adapt to the optical complexities of inland waters and the framework
presented in this study is a step forwards in achieving this (Palmer
et al., 2015b & Mouw et al., 2015). The analysis has focussed on an
extensive database of in-situ R, with the assumption that these corre-
spond to the true water-leaving reflectance at the bottom of the at-
mosphere. The next stage of this research is to transfer results to re-
flectance obtained from satellites including archived Envisat MERIS and
Sentinel-3 OLCI data. The presented methodology adopted for image
processing will guide a focussed effort in developing an operational RS
application suitable for optically complex inland waters.

5. Conclusions

With an ever-increasing number of published algorithms designed
for retrieving Chla concentration from space, it has never been more
crucial to report realistic limitations and uncertainties of well docu-
mented methods and to ensure that all algorithms are comprehensively
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validated and benchmarked against each other using datasets that in-
corporate the complexity of lake OWTs found globally. In this study, a
series of Chla retrieval models have been validated using a compre-
hensive dataset of in-situ measurements collected from over 185 inland
waters to determine those capable of recovering accurate concentra-
tions of Chla in optically complex environments. A total of 48 algo-
rithms were explored and an objective scoring system was developed to
automatically rank models based on their relative statistical perfor-
mance. From this study, several key conclusions can be made:

e The most suitable and accurate models of those assessed for esti-
mating Chla within the biogeochemical range presented where OWT
is uncategorised were Model A_ORG, Model C_ORG, Model H_ORG
and Model J_CAL (Moses et al., 2009, Gurlin et al., 2011, Gons et al.,
2005 & Mishra and Mishra, 2012 respectively) which produced a
MAE for log;o Chla of 0.23, 0.24, 0.23 and 0.27 mgm_3 respec-
tively.
The variable performance of the algorithms tested emphasises the
importance of model selection and validation and caution should
always be exercised when implementing models across a wide range
of water bodies. The presented dynamic switching algorithm at-
tempts to resolve performance variability by altering the selected
model for a given OWT. This produces estimates of Chla con-
centration from reflectance measurements with a final correlation
coefficient of 0.89 and a MAE of 0.18 mgm 3,
An objective scoring system is an extremely useful method for au-
tomatically determining performance for a wide range of models. It
promotes confidence in the result and insurance for reporting pur-
poses. However, it is not sufficient for making informed decisions
regarding algorithm choice and in these cases, results should be
considered in conjunction with error statistics.
Overall performance was improved by focussing algorithm devel-
opment within distinct OWT clusters. This was demonstrated in two
ways; by calibrating models for specific OWTs and by adjusting the
model architecture to better represent an OWT. This framework
should be exploited in the design of future operational models.
e This research is helping us progress towards a unified approach for
global monitoring of chlorophyll in inland waters from space.
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