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Abstract
1.	 While ecotoxicology has long recognised the importance of identifying levels at 

which contaminants pose threats to biota, most estimates of species responses to 
toxicants are derived from controlled laboratory studies and may hold limited rel-
evance to natural systems. However, designing appropriate field-based studies 
investigating contaminant induced changes in assemblages has been challenging, 
partially due to the difficulty in identifying comparable uncontaminated reference 
sites. The aim of this study is to characterise the effects of heavy metal contami-
nation on natural fish assemblages using an ecologically relevant catchment-scale 
design. We hypothesise that environmental variables, including discharge, sedi-
ment, and landscape variables, can be used to characterise differences in fish spe-
cies richness and abundances between sites contaminated with heavy metals and 
uncontaminated reference sites.

2.	 We apply a geographic information systems approach that uses assemblage–envi-
ronment relationships developed using hydrologic model outputs, land cover, and 
topographic data from uncontaminated reference sites to predict expected fish 
species richness and abundance at sites contaminated with heavy-metals within 
the Big River catchment in south-eastern Missouri, U.S.A. These predicted levels 
of richness and abundance are then compared to observed assemblages at con-
taminated sites to estimate the potential impacts of historical lead mining activi-
ties on freshwater taxa.

3.	 We developed models that characterised variation in Centrarchidae (bass and 
sunfish) richness and abundance, Cyprinidae (minnows) abundance, and Percidae 
(darters) richness using variables including streamflow regime, suspended sedi-
ment concentration, and land cover at uncontaminated sites. Using these relation-
ships, we predicted expected fish species richness and abundance at heavy metal 
contaminated sites across the Big River catchment and found a significant reduc-
tion in centrarchid abundance from field-collected data compared to predicted 
estimates.

4.	 Our results suggest that centrarchids, which tend to occupy a higher trophic level 
than cyprinids and percids, have lower abundances at sites contaminated with 
heavy metals than predicted by assemblage–environment relationships. These 
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1  | INTRODUC TION

Freshwater ecosystems represent some of Earth's most threatened 
habitats. Consequently, developing a robust understanding of fac-
tors that may impact taxa in these systems and cause reductions in 
population sizes or local extirpations of species is critical (Dudgeon 
et al., 2006; Sala et al., 2000). One such threat to freshwater species 
is pollution from heavy metals, which have long been recognised 
to pose serious threats to freshwater systems due to the acute and 
chronic effects heavy metals can have on aquatic taxa (Boyd, 2010; 
Dixit et al., 2015; Prosi, 1981; Warnick & Bell, 1969).

Most studies of heavy metals in freshwater systems focus on 
identifying toxicity thresholds associated with altered behaviour and 
death in laboratory trials or identifying bioindicators of exposure in 
field-collected samples (Adams, 1995; Authman, Zaki, Khallaf, & 
Abbas, 2015; Hickie, Hutchinson, Dixon, & Hodson, 1993; Roesijadi, 
1992; Schmitt et al., 2007; Vardy, Santore, Ryan, Giesy, & Hecker, 
2014). This bias toward laboratory experiments and biomonitoring 
has generated criticisms for the lack of ecological relevance of the 
results of these studies, as they do not account for how species ex-
posed to heavy metals will respond when they are subjected to other 
ecological pressures (competition, food acquisition, reproduction, 
etc.) (Cairns, 1992; Chapman, 2002; Filser, 2008; Forbes & Calow, 
2002). To realise the full range of effects toxicants have on ecosys-
tems, it is necessary to understand how exposure influences biota in 
natural environments. This approach can afford a more realistic per-
spective of the community-level effects of pollution and resulting 
alterations to ecosystems (Filser et al., 2008; Schmitt-Jansen, Veit, 
Dudel, & Altenburger, 2008).

Lead (Pb) mining can result in high levels of Pb contamination 
in freshwater systems as well as other associated heavy metals, 
including zinc (Zn), cadmium (Cd), and copper (Cu) (Gale, Adams, 
Wixson, Loftin, & Huang, 2002, 2004). These metals are known 
to bioaccumulate in the tissues of fishes, and laboratory studies 
have demonstrated that exposure to these pollutants can result in 
anaemia, decrease swimming performance, impede development 
and reproduction, and cause physical abnormalities (Atchison, 
Henry, & Sandheinrich, 1987; Authman et al., 2015; Pain, 1995). 

Although recent work has addressed the impacts of Pb-mining on 
natural fish and invertebrate populations by identifying reductions 
in species densities or richness in contaminated areas compared to 
non-contaminated reference sites (Allert et al., 2009, 2013; Maret 
& MacCoy, 2002; Maret, Cain, MacCoy, & Short, 2003), compari-
sons between contaminated and reference sites rarely account for 
variation in physical habitat between sites, or how this variation 
may influence species diversity and population sizes. Furthermore, 
a limited amount of research has specifically investigated how the 
effects of continued heavy metal exposure on fish species richness 
and abundance may vary among taxonomic and ecological (e.g. tro-
phic) groups. Moreover, while recent studies have used geographic 
information systems (GIS) to characterise and predict fish assem-
blage responses to anthropogenic impacts at catchment or broader 
scales (e.g. Bailey, Linke, & Yates, 2014; Clarke, Furse, Wright, & 
Moss, 1996; De Zwart, Dyer, Posthuma, & Hawkins, 2006; Kapo, 
Burton, De Zwart, Posthuma, & Dyer, 2008; Knouft & Chu, 2015; 
Pletterbauer, Melcher, Ferreira, & Schmutz, 2015), this approach has 
yet to be applied at a catchment scale to assess the impacts of heavy 
metals at contaminated sites compared to uncontaminated refer-
ence sites using hydrologic model outputs and landscape variables.

The Big River catchment (BRC) lies within the Old Lead Belt of 
south-eastern Missouri and has high levels of heavy metal contam-
ination due to historical Pb-mining (Pavlowsky, Owen, & Martin, 
2010; Pavlowsky, Lecce, Owen, & Martin, 2017; Schmitt & Finger, 
1982). Fishes within these contaminated areas contain high levels 
of heavy metals in their tissues (Czarnezki, 1985; Gale et al., 2002, 
2004; Schmitt & McKee, 2016). The objectives of this study are to 
use catchment-scale environmental variables relevant to the distri-
bution and abundance of fishes within the BRC, including stream-
flow, sediment, land cover, and topography, to predict fish species 
richness and abundance at uncontaminated sites within the BRC. 
We then use these assemblage–environment relationships to pre-
dict expected fish species richness and abundance within an area 
of known contamination from Pb-mining activities. These expected 
assemblages are then compared to the observed fish assemblages 
at contaminated sites to assess whether pollution from historical 
Pb-mining may be influencing species richness or abundance. To 

decreases in abundance are not associated with decreases in centrarchid species 
richness, cyprinid abundance, or percid richness.

5.	 This geographic information systems-based approach provides a useful and eco-
logically relevant framework for understanding the response of taxa to the pres-
ence of contaminants without assuming habitat equivalence across sites. Our 
findings also suggest the need for further research regarding how heavy metals 
impact fishes of varying trophic levels in natural settings.
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investigate the role of variation in heavy metal impacts among tro-
phic levels, we focused our analyses on Centrarchidae (bass and sun-
fish), Cyprinidae (minnows), and Percidae (darters), as centrarchids 
represent the highest trophic level of fishes in the BRC, while cy-
prinids and percids represent the most abundant and diverse fish 
prey species in the BRC. We hypothesise that contaminated sites 
will be characterised by decreased species richness and abundance 
relative to predicted richness and abundance based on relationships 
at uncontaminated sites.

2  | METHODS

2.1 | Study area

The Big River is a primary tributary of the Meramec River, which 
lies in south-eastern Missouri, U.S.A. Land cover within the BRC 
is approximately 72% forested, 18% grassland, 7% developed, 1% 
agriculture, and 1% water (MODNR, 2013). One hundred of the 
approximately 200 species of fishes found in Missouri occur in the 

BRC (MDC, 1997; Pflieger, 1997). The BRC is considered highly 
impaired due to historical Pb-mining within the catchment, which 
began in the 1800s and concluded in the 1970s (Czarnezki, 1985; 
Gale et al., 2002, 2004; Pavlowsky et al., 2010, 2017; Schmitt & 
Finger, 1982). Erosion of chat and tailing piles as well as spillo-
ver from tailing ponds, have resulted in extensive contamination 
from heavy metals across the BRC, with nearly 160 km of streams 
within the catchment designated as impaired based on their ex-
ceedance of state water quality standards for Pb, Zn, and Cd 
(MODNR, 2010a,b). The mine and metallic mineral waste piles 
are located northeast of the Irondale United States Geological 
Survey (USGS) streamflow gauge, resulting in contamination along 
the remainder of the downstream portion of the Big River to its 
confluence with the Meramec River, as well as in Flat River Creek 
(Figure 1b). Environmental Protection Agency designation of the 
Big River Mine Tailings/St. Joe Minerals Corporation Superfund 
sites have included stabilisation, covering, and revegetation of 
the chat and tailings piles to prevent further erosion and slough-
ing into streams (EPA, 2011); however, there have been limited 

F IGURE  1 Map of the Meramec River Watershed (Missouri, U.S.A). The green shaded area represents the Big River catchment. (a) Grey 
outlines represent the sub-catchments where SWAT model estimates of streamflow and sediment regime were derived. Black points denote 
locations of the eight USGS streamflow gauges as well as the USGS suspended sediment gauge (Byrnesville). (b) Sections of the stream 
network labelled in red that are considered impaired due to exceedance of water quality standards for Pb, Zn, and Cd from Pb-mining waste 
contamination. Fish sampling sites are divided into those that do not exhibit heavy metal contamination (circles) and sites that are within the 
area of contamination (triangles) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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attempts to remediate the contamination already present in the 
streams and high levels of contaminants remain in these areas. 
These impaired areas are also under a fish consumption warning 
by the Missouri Department of Health and Senior Services due 
to increased heavy metal concentrations in the tissues of fishes 
inhabiting these stream reaches (MODNR, 2013).

2.2 | Fish assemblage data

Fishes were sampled across the BRC from 1984 to 2009 by the 
Missouri Department of Conservation using seining and electro-
fishing based on the standardised methodology of the Resource 
Assessment and Monitoring Program (Fischer & Combes, 2003) 
(Figure 1b). All sites were sampled via electrofishing once and seining 
up to twice to provide thorough coverage and standardise sampling 
efforts across sites of varying habitat composition. If samples were 
collected in multiple years at the same site, we used only the most 
recent year of sampling. We divided sites into non-contaminated 
and mining-contaminated sites based on whether the sampled lo-
cation was within the water bodies considered impaired based on 
water quality standards (MODNR, 2010a,b). In total, we used fish 
data from 46 sites for analyses, 33 of which occurred within the 
non-contaminated portion of the catchment and 13 in contaminated 
areas. Fish species with inconclusive identifications across sampling 
locations were removed from the data set prior to analyses (these 
included Campostoma anomalum, Campostoma oligolepis, Cyprinella 
spiloptera, and Cyprinella whipplei of the family Cyprinidae). Hybrid 
individuals were also removed from the data set. Following removal 
of these records, we calculated species richness (total number 
of species at a location) as well as the total number of individuals 
across species (hereafter referred to as abundance) at each site for 
Centrarchidae, Cyprinidae, and Percidae (Supporting Information 
Table S1).

2.3 | Hydrologic modelling

We developed a Soil and Water Assessment Tool (SWAT) hydro-
logic model to estimate the streamflow (i.e. discharge) and sediment 
across the entire Meramec River Watershed (Figure 1a). SWAT is a 
semi-distributed, hydrologic model that can simulate the impacts 
of land cover and management on water and sediment in complex 
catchments. The major components of SWAT include climate, hy-
drology, sediment yields, land management practices, plant growth, 
nutrient loads, pesticides applications, and bacteria and pathogen 
dynamics (Arnold et al., 2012; Neitsch, Arnold, Kiniry, & Williams, 
2011). A detailed description of the SWAT model and its varied appli-
cations can be found at the SWAT website (http://swat.tamu.edu/).

During the modelling process, a catchment is divided into mul-
tiple sub-catchments and each sub-catchment is composed of one 
or more hydrologic response units (HRUs) based on unique com-
binations of land cover, soil, and slope classifications. Water yields 
from HRUs are calculated using the water balance equation. Water 
and sediment loads (SLs) from each HRU are aggregated within the 

respective sub-catchment and then routed to the catchment outlet 
through the stream network (Arnold et al., 2012).

Soil and Water Assessment Tool model inputs include topo-
graphic, soil, land cover, and climate data. The digital elevation 
model (DEM) data, which represents the topographic surface for the 
Meramec River Watershed region, was downloaded from the USGS 
3D Elevation Program (Sugarbaker et al., 2014). The DEM has a 1 
arc-second resolution (approximately 30 m × 30 m) and was used 
for delineating the entire catchment and sub-catchments. By set-
ting 1,200 m2 as a threshold for the minimum sub-catchment area, a 
total of 470 sub-catchments and 1,409 HRUs were delineated. Land 
cover data at a 30-m resolution for the Meramec River Watershed 
were obtained from the Multi-Resolution Land Characteristics 
Consortium: National Land Cover Dataset 2011 (Homer et al., 2015). 
Soil data were downloaded from the United States Department of 
Agriculture Natural Resources Conservation Service Soil Survey 
Geographic Database (1:12,000 scale). Long-term precipitation (10 
stations) and air temperature data (four stations) for the Meramec 
River Watershed were downloaded from the National Oceanic and 
Atmospheric Administration—National Climatic Data Center. The 
precipitation and air temperature data span the 1978–2014 period. 
Relative humidity, solar radiation, and wind speed data were simu-
lated using the SWAT built-in weather generator.

The period of simulation is from 1 January 1978 to 31 December 
2014. The first 3 years of simulation (1978–1980) were used as a 
warm-up period to obtain the initial conditions of the models. The 
model was calibrated using the observed streamflow data from eight 
USGS streamflow gauges distributed across the Meramec catch-
ment while SL was calibrated to the suspended SL measured at a 
gauge located at the outlet of BRC at Byrnesville (Figure 1a). The cal-
ibration period for streamflow was January 1996–December 2012, 
while the validation periods were January 1981–December 1995 
and January 2013–December 2014. The calibration and validation 
periods for SL were November 2011–December 2012 and January 
2013–September 2013, respectively. Model simulations were con-
ducted at a monthly time step.

The SWAT model uses many parameters in simulating hydrologic 
and sediment transport processes. In this study, an auto-calibration 
program, SWAT-CUP, was applied and the Sequential Uncertainty 
Fitting algorithm was used to perform model calibration, validation, 
and uncertainty analyses (Abbaspour, Johnson, & van Genuchten, 
2004; Abbaspour et al., 2007). The statistical criteria used for model 
performance evaluation were the coefficient of determination (R2) 
and the Nash–Sutcliffe coefficient (Nash & Sutcliffe, 1970).

2.4 | Environmental predictor variables

Streamflow, sediment concentration, land cover, and topography 
were selected as variables likely to influence fish assemblages across 
the BRC (Allan, 2004; Helms, Schoonover, & Feminella, 2009; Knouft 
& Chu, 2015; Niu, Franczyk, & Knouft, 2012; Park, Grenouillet, 
Esperance, & Lek, 2006; Poff & Allan, 1995; Poff et al., 1997; 
Sutherland, Meyer, & Gardiner, 2002; Waite & Carpenter, 2000; 

http://swat.tamu.edu/
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Walters, Roy, & Leigh, 2009). The SWAT model-derived monthly 
estimates of streamflow and sediment for each sub-catchment 
across the BRC were used to develop several metrics that poten-
tially drive the assemblage–environment relationships. From these 
monthly estimates, we calculated the average annual streamflow  
(Flowavg, m3/s), maximum annual streamflow (Flowmax, m3/s), mini-
mum annual streamflow (Flowmin, m3/s), and intra-annual coefficient 
of variation in streamflow (Flowvar), which quantifies intra-annual 
streamflow variability. Flowavg was calculated as the average across 
the 12 monthly averages for the year. Flowmax and Flowmin repre-
sent the highest and lowest monthly average stream-flows within 
the year, respectively. Flowvar represents the standard deviation of 
monthly streamflow averages divided by the average of all monthly 
averages for the year. Each of these metrics was paired with the fish 
sampling locations using the hydrologic data from the year prior to 
when fish were collected.

Sediment regime within each sub-catchment was computed 
using SWAT model derived monthly estimates of total suspended 
sediment (TSS; mg/L) and monthly sums of total SL (tons) for the year 
in which the fish sample was collected at each site. The metric used 
to characterise the TSS at each site was the average annual TSS, 
which was calculated as the average across the monthly estimates 
within each year. SL at each site was characterised by the sum of 
SL across the year. Sediment data from the year prior to fish collec-
tion at each site were used in subsequent assemblage–environment 
relationships.

Land cover for each site was characterised as the percentage of 
forested land cover within the sub-catchment containing each site. 
To calculate this variable, we used 2006 land cover data (30-m reso-
lution) for the catchment and the Zonal Tabulate Area tool in ArcGIS 
10.4.1 to determine the summed area of forested land cover (includ-
ing deciduous, evergreen and mixed forest) and divided the sum by 
the total area of each sub-catchment (Fry et al., 2011). The use of 
forested land cover allows for the application of a single variable 
with ecological relevance to in-stream habitat (Meador & Goldstein, 
2003). Topography was represented by the slope at each site using 
the same DEM for the Meramec River Watershed region that was 
used in hydrologic model development (Sugarbaker et al., 2014). 
Slope was used to characterise how quickly water moved through 
a stream reach. All spatial data organisation and analyses were con-
ducted in ArcGIS 10.4.1 using the NAD 1983 UTM Zone 15N pro-
jected coordinate system.

2.5 | Data analyses

We used data from non-contaminated sites to characterise the rela-
tionship between the selected environmental variables (streamflow, 
sediment, land cover, and slope) and species richness and abundance 
across the BRC. To meet assumptions of normality for linear regres-
sion, percent forested land cover was logit transformed, and log10 
transformations were applied to Flowavg, Flowmax, Flowmin, Flowvar, 
SL, and slope. Flowavg, Flowmax, and Flowmin were highly correlated 
(r > 0.88). As a result, we conducted a principal component analysis 

(PCA) to encapsulate the variation explained by these streamflow 
metrics into uncorrelated principal component (PC) scores. PCs 
that characterised up to a total of 90% of the variation in Flowavg, 
Flowmax, and Flowmin along with the normalised Flowvar, TSS, SL, land 
cover, and slope metrics were used as predictor variables in multiple 
regressions describing variation in species richness and abundance 
across the non-contaminated sites within the BRC. To minimise the 
total number of predictor variables in these models, only linear re-
lationships were assessed. Optimal predictive models were selected 
using forward stepwise regression with Akaike's information crite-
rion corrected for small sample size (AICc) to select the model that 
explained the greatest variation in the assemblage metric with the 
fewest variables. Variables were retained in the model based on the 
largest improvement to AICc (Burnham & Anderson, 2004). The final 
model retained had ∆AICc > 2 from the model with the next lowest 
AICc.

Centrarchid species generally become piscivorous throughout 
their lives and tend to feed at higher trophic levels compared to in-
sectivorous cyprinids and percids. To characterise the differing re-
lationships exhibited by species feeding at different trophic levels, 
separate regression analyses were conducted to investigate the rela-
tionships between the environmental variables and species richness 
and abundances among Centrarchidae, Cyprinidae, and Percidae. 
Sample sites with zero observations for a family were not used in 
model development.

When environmental variables predicted variation in richness or 
abundance at uncontaminated sites, we used these relationships to 
predict richness and abundance at contaminated sites. We assessed 
the potential impacts of contamination from Pb-mining on fish as-
semblages by determining the difference between the predicted and 
observed fish species richness and abundance at each contaminated 
site using paired t tests with a Bonferroni correction for multiple 
comparisons. The effect sizes of all significant differences between 
the expected and observed communities were determined using 
Cohen's D (Cohen, 1992). Statistical analyses were conducted using 
R 3.2.4 (R Development Core Team, 2017).

3  | RESULTS

3.1 | Hydrologic modelling

The timing of occurrence for both low and peak flows predicted by 
the SWAT model was generally in accordance with observed data 
(Supporting Information Figure S1). The R2 values indicate a strong 
correlation between the observed and simulated streamflow dur-
ing both calibration and validation periods (Supporting Information 
Figure S1, Table 1). During calibration, the model's performance 
simulating streamflow was very good (NSE > 0.75) at all streamflow 
gauges based on the performance rating developed by Moriasi et al. 
(2007), except for the gauge at High Gate, which was still consid-
ered good (0.65 < NSE ≤ 0.75). Values of NSE were 0.91 and 0.37 in 
sediment simulation for the calibration and validation periods, re-
spectively (Supporting Information Figure S2, Table 1). The R2 value 
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for calibration indicated a strong correlation between observed and 
simulated SL.

3.2 | Assemblage–environment relationships

Principal component analysis of Flowavg, Flowmax, and Flowmin for 
the year of sampling revealed that the first principal component ex-
plained 95% of the variation across these flow metrics. Therefore, 
only the first principal component (hereafter referred to as FlowPC) 
was retained for analyses. Flowavg, Flowmax, and Flowmin had factor 
loadings of –0.586, –0.585, and –0.561, respectively. As the sign of 
factor loadings and PC scores are arbitrary, for ease of interpreta-
tion, the signs of factor loadings and PC scores were reversed prior 
to regression analyses.

Results from stepwise regression based on AICc scores indicated 
that environmental variables were useful for predicting variation in 
fish assemblages across non-contaminated sites within the BRC for 
Centrarchidae richness and abundance, Cyprinidae abundance, and 

Percidae richness (Table 2). These relationships exhibited R2 val-
ues ranging from 0.133 to 0.320 (Table 2). The variables included 
in the best models and the direction of relationships varied among 
families (Table 2). FlowPC explained substantial variation in both 
Centrarchidae richness and abundance, exhibiting positive relation-
ships in both cases. The retained model for Centrarchidae richness 
also included a positive relationship with percent forested land cover. 
Cyprinidae abundance was best predicted by percent forested land 
cover as well, although the direction of the relationship was nega-
tive. Percidae richness exhibited a positive relationship with TSS. No 
environmental metrics were better than a random model at predict-
ing Cyprinidae richness or Percidae abundance.

3.3 | Associations with contamination

There was a significant difference between observed and expected 
Centrarchidae abundance (df = 12, t = 3.402, p = 0.005) at con-
taminated sites, with the observed abundance being almost half of 

Streamflow Sediment load

Calibration Validation Calibration Validation

Station R2 NSE R2 NSE R2 NSE R2 NSE

Byrnesville 0.81 0.76 0.81 0.81 0.91 0.91 0.53 0.37

Richwoods 0.83 0.80 0.79 0.79

Irondale 0.80 0.78 0.71 0.70

Union 0.80 0.77 0.81 0.77

High Gate 0.81 0.74 0.87 0.80

Eureka 0.88 0.88 0.89 0.89

Sullivan 0.84 0.76 0.88 0.86

Steelville 0.82 0.69 0.86 0.81

TABLE  1 Model performance 
statistics, the coefficient of determination 
(R2) and Nash–Sutcliffe coefficient (NSE), 
of streamflow and sediment load 
simulation

TABLE  2 Results and model coefficients from forward stepwise selection using Akaike's information criterion corrected for small sample 
size (AICc) to determine the relationship between environmental data and richness (Rich.) and abundance (Abund.) of Centrarchidae, 
Cyprinidae, and Percidae within the Big River catchment. The model presented for each diversity measure is the best model determine by 
having a ∆AICc > 2 from the model with the next lowest AICc score. Diversity metrics for which no model is presented indicates cases in 
which none of the candidate variables explain more variation than the mean

Taxonomic group Number of sites Measure AICc R2 Variable Coeff. SE t-value p-value

Centrarchidae 32 Rich. 122.029 0.320 Intercept 3.935 0.428 9.189 <0.0001

FlowPC 0.653 0.208 -3.139 0.0039

Forest LC 0.667 0.302 2.211 0.0351

Abund. 353.743 0.179 Intercept 75.882 11.405 6.653 <0.0001

FlowPC 20.243 7.927 -2.554 0.0160

Cyprinidae 32 Rich. — — — — — — —

Abund. 427.841 0.133 Intercept 344.590 53.160 6.482 <0.0001

Forest LC −83.250 38.770 −2.147 0.0400

Percidae 33 Rich. 108.500 0.141 Intercept 3.716 0.232 16.020 <0.0001

TSS 0.030 0.013 2.253 0.0315

Abund. — — — — — — —
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the expected abundance, on average (Figure 2). The effect size of 
this difference is large based on the Cohen's D value of 0.944. No 
significant differences were found among observed and expected 
Centrarchidae richness (df = 12, t = 1.109, p = 0.289), Percidae rich-
ness (df = 9, t = −2.375, p = 0.042), and Cyprinidae abundance (df = 9, 
t = 0.731, p = 0.4836) based on Bonferroni corrections (α′ = 0.05/
number of tests; Figure 2).

4  | DISCUSSION

Prior research focused on the responses of aquatic assemblages 
to heavy metals has identified reductions in population densities 
or species richness in contaminated areas compared to uncontami-
nated reference sites (Allert et al., 2009, 2013; Maret & MacCoy, 
2002; Maret et al., 2003). While typically these studies quantify 
physical habitat characteristics other than the presence of con-
taminants among reference and contaminated sites, they attribute 
taxonomic differences among sites to the contaminant alone, for 
at least two reasons. First, no evidence is found for significant dif-
ferences in the environmental variables among sites, and therefore 
contaminated and uncontaminated sites are assumed to be ecologi-
cally equivalent (e.g. Maret et al., 2003). In other cases, significant 
differences are found among reference and contaminated sites, 
although the response in community composition is more strongly 
associated with the presence of contaminants (Allert et al., 2009, 
2013; Maret & MacCoy, 2002). In both cases, these studies as-
sume that differences in species assemblages are only due to the 
presence of contaminants, rather than also accounting for habitat 
differences between contaminated and uncontaminated sites. We 
avoid this assumption by using relationships between environ-
mental characteristics and stream fish assemblages throughout 
the catchment to estimate the fish assemblages that would be 
expected in the absence of the existing contamination. We then 
determined the effects of contamination based on deviations from 
the expected assemblages.

Results suggest that when determining the relationships between 
environmental characteristics and fish species assemblages in the 
BRC, the most important predictor variables are related to stream-
flow, sedimentation, and surrounding land cover. FlowPC is positively 
associated with centrarchid richness and abundance, which suggests 

that as streamflow volume and variability increase across the catch-
ment, so does the richness and abundance of centrarchids.

We found that the prevalence of forested landcover was an 
important predictor in our models; however, the direction of the 
relationship between percent of forested land cover and fish as-
semblages differed between taxonomic groups, with centrarchid 
richness being positively related to forested land cover and cyprinid 
abundance being higher at sites with lower proportions of forested 
land cover. These results, when considered with other literature in-
vestigating this relationship (e.g. Jones, Helfman, Harper, & Bolstad, 
1999; Roth, Allan, & Erickson, 1996; Wang, Lyons, Kanehl, & Gatti, 
1997; Walters et al., 2009) suggest that this relationship warrants 
further investigation given that responses often vary depending on 
response metric used to measure the fish assemblage (e.g. IBI or 
abundances) and among taxonomic groups.

The finding that percid richness is positively associated with TSS 
is not typically what would be expected given the generally nega-
tive effects of suspended sediment on fishes (Kemp, Sear, Collins, 
Naden, & Jones, 2011). Given the small magnitude of effect that TSS 
exhibited on percid richness (Table 2) and generally low levels of TSS 
across sites, subtle differences in unmeasured habitat characteris-
tics associated with greater TSS may also be responsible for higher 
percid richness. Furthermore, stream-dwelling percid species occur 
in a variety of habitats and at sites with heterogeneous environmen-
tal conditions that can support a broader array of species (Pflieger, 
1997).

Discharge, sediment, and landcover represent a fraction of the 
physical and biological environment in lotic ecosystems. The limited 
amount of variation (R2) explained by our assemblage–environment 
relationship models is not surprising and suggests the role of addi-
tional environmental characteristics in regulating local fish abun-
dance, particularly the amount of microhabitat (riffles, runs, and 
pools) available at a site (Knouft et al., 2011). Biological interactions 
are also important in structuring stream fish assemblages and infor-
mation on these interactions would probably have added informa-
tion to our predictions.

By determining contamination effects via differences between 
observed and expected assemblages, we demonstrated a negative 
response of centrarchid abundance to contamination, but no sig-
nificant responses among centrarchid richness, percid richness, or 
cyprinid abundance. Species belonging to the family Centrarchidae 

F IGURE  2 Results from comparisons 
of predicted species assemblages at 
Pb-mining contaminated sites based 
on environment-assemblage models 
and observed species assemblages at 
contaminated sites. Asterisk represents 
significant difference between groups. 
Error bars represent standard error 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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often feed on a broader array of prey and at a higher trophic level 
when mature compared to cyprinids and percids (all cyprinids and 
percids in this study are insectivorous). Most centrarchid species 
consume other fishes when mature, potentially impacting prey pop-
ulation sizes (Knouft, 2002). Results did not suggest a reduction in 
the abundance of cyprinids at contaminated sites; thus, the decrease 
in abundance of centrarchids does not appear to be due to a lack 
in abundance of cyprinid prey or a lack in diversity of percid prey 
(Scalet, 1977). The decrease in centrarchid abundance is also not 
due to a reduction in centrarchid species richness. Furthermore, 
increased effects of heavy metal exposure on higher trophic level 
fishes may not be due to biomagnification as the heavy metals inves-
tigated are not known to biomagnify in the BRC (Cardwell, DeForest, 
Brix, & Adams, 2013).

Research on the effects of heavy metals on fishes of varying 
trophic levels has largely been limited to studies of differences in 
bioaccumulation rates and have demonstrated mixed results. Some 
studies from other regions with different species assemblages have 
demonstrated that various heavy metals are consistently present 
at higher concentrations within the tissues of piscivorous fishes 
(including fishes of the families Characidae and Ictaluridae) in com-
parison to fishes occupying lower trophic levels (Has-Schön et al., 
2015; Jia, Wang, Qu, Wang, & Yang, 2017; Terra, Araujo, Calza, 
Lopes, & Teixeira, 2008). In contrast, studies that have investigated 
bioaccumulation rates among fishes within the BRC have found that 
some heavy metals, such as Pb, are typically higher in lower trophic 
level fishes in the family Catostomidae compared to centrarchids. 
However, this pattern is not apparent for other heavy metals with 
similar concentrations in fish tissues among trophic groups in the 
BRC (Gale et al., 2002, 2004; Schmitt & McKee, 2016). Therefore, it 
is difficult to determine whether these previous findings support or 
are in contrast to our findings of reduced abundance among higher 
trophic level fishes. This lack of consensus demonstrates a necessity 
for further studies of bioaccumulation rates among trophic levels 
and heavy metals. Furthermore, as bioaccumulation rates appear 
to vary among different metals, future research should investigate 
which metals are driving the deleterious effects on fish when they 
occur in mixtures, as is often the case in contaminated areas.

The relationships between heavy metal uptake, fitness, and per-
formance among taxa can complicate the characterisation of vari-
ability in observed responses among groups and therefore, further 
research is required to dissect these relationships. For example, a 
potential route of further study could test whether poor swimming 
performance resulting from heavy metal exposure leads to reduced 
predation efficiency or feeding rates among piscivorous centrarchids 
(Atchison et al., 1987). Additionally, centrarchids are typically longer 
lived than cyprinids, which could lead to reduced abundances via in-
creased lengths of exposure or altered age class distributions. There 
is also an apparent lack of published literature comparing heavy 
metal toxicity endpoints (e.g. LC50) among species belonging to the 
families investigated in this study. Expanding this area of research is 
also essential in order to determine how toxicity is correlated with 
trophic level or other differences among the species.

Our findings regarding differential responses of fish assem-
blages to Pb-mining contamination suggest potential alterations to 
the stream community across these sites due to decreases in cen-
trarchid abundance. Decreases in predatory centrarchids have been 
suggested to influence the relationship between fish body size and 
population density as well as increased abundance among prey 
(Knouft, 2002; Mitchell & Knouft, 2009). Furthermore, the presence 
of centrarchids has been shown to have cascading ecosystem ef-
fects on algal abundances within streams (Power & Matthews, 1983; 
Power, Matthews, & Stewart, 1985).

Due to an incomplete understanding of the effects that con-
taminants exert on natural assemblages of species, there is a need 
to develop methodologies that can resolve these responses while 
maintaining ecological relevance. We demonstrate a potentially 
useful approach for examining assemblage level responses to con-
tamination in natural systems by employing GIS-based analyses of 
assemblage–environment relationships driven by catchment scale 
environmental data. While this approach does not offer a mecha-
nistic understanding of how contamination influences assemblage 
composition, it does provide ecologically relevant insights into the 
consequences of such contamination. By expanding our under-
standing of how effects of heavy metals and other contaminants 
of ecotoxicological concern scale from individual laboratory-based 
assessments to impacts on natural communities, we can improve our 
ability to determine levels at which these contaminants have ecolog-
ical consequences.
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