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Abstract
State variables in lake ecosystems are subject to processes that act on different time scales. The relative importance

of each of these processes changes over time, e.g., due to varying constraints of physical, biological, and biogeo-
chemical processes. Correspondingly, continuous automatic measurements at high temporal resolution often reveal
intriguing patterns that can rarely be directly ascribed to single processes. In light of the rather complex interplay of
such processes, disentangling them requires more powerful methods than researchers have applied up to this point.
For this reason, we tested the potential of wavelet coherence, based on the assumption that different processes result
in correlations between different variables, on different time scales and during different time windows across the sea-
sons. The approach was tested on a set of multivariate hourly data measured between the onset of an ice cover and
a cyanobacterial summer bloom in the year 2009 in the Müggelsee, a polymictic eutrophic lake. We found that pro-
cesses such as photosynthesis and respiration, the growth and decay of phytoplankton biomass, dynamics in the
CO2-carbonate system, wind-induced resuspension of particles, and vertical mixing all occasionally served as domi-
nant drivers of the variability in our data. We therefore conclude that high-resolution data and a method capable of
analyzing time series in both the time and the frequency domain can help to enhance our understanding of the
time scales and processes responsible for the high variability in driver variables and response variables, which in turn
can lay the ground for mechanistic analyses.

For a long time, limnologists have sought to understand
temporal variability in physical, chemical, or biological state
variables and the processes behind such variability. Dynamics
in these variables can be caused by changes in the prevailing
constraints of dominant limnological processes. For example,
the potentially exponential growth of phytoplankton popula-
tions may be constrained simultaneously or successively by
light availability, the supply of nutrients, and grazing pressure
from zooplankton (Sommer et al. 1986, 2012). Calcite precipi-
tation often occurs during spring and summer in productive,
carbonate-rich water bodies (when the photosynthetic uptake
of carbon dioxide increases pH levels [Heine et al. 2017]),
while a decrease in pH can lead to calcite dissolution (Lampert
and Sommer 2007). Calcite precipitation can, through copreci-
pitation of phosphate, limit nutrient availability and therefore
also phytoplankton growth (Hamilton et al. 2009). Finally,
the replenishment of oxygen in oxygen-depleted lake bottoms
is constrained to periods of vertical mixing at high wind

speeds (Lampert and Sommer 2007; Read et al. 2011). In this
regard, research is now increasingly focusing on episodic
events and how, for instance, storms affect a lake ecosystem
or certain processes in it (Jennings et al. 2012; Klug
et al. 2012; Kasprzak et al. 2017). These examples illustrate
that the type of prevailing constraint of a limnological process
may change over time, and can happen on different time
scales ranging from fractions of seconds ([bio-]chemical reac-
tion rates), from seconds to days (photosynthesis), from
minutes to days or weeks (mixing processes), from hours to
weeks (population dynamics), and even up to several months
(seasonal dynamics) (Reynolds 1990; Behrendt et al. 1993;
Hanson et al. 2006). Nevertheless, understanding and identify-
ing the huge intra-annual variability of various state variables,
their interactions, and their time scales remains challenging.

Analyzing limnological processes, their time scales, and their
constraints requires a high amount of multivariate data, which
are increasingly being collected in lakes worldwide (Marcé
et al. 2016; Meinson et al. 2016). With automated high-
frequency measurements, the temporal resolution has become
almost unlimitedly high. Patterns of temporal variability in the
measured variables may indicate processes, such as photosynthe-
sis and respiration, as indicated by oxygen concentration and
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pH (Hanson et al. 2006). However, the way the variation of a
variable, or the covariation of two variables, can pinpoint a pro-
cess and indicate the state of a lake ecosystem is not always
straightforward: Many processes may affect more than one single
variable; moreover, a given process may affect each of these vari-
ables in a different way, on a different time scale, and during a
different time window of the year. The inherent complexity of
internal and external forces structuring lake ecosystems adds to
that variability. There are now a number of studies that have
considered the time scales of temporal variability and have sepa-
rated, e.g., hourly variability from daily, monthly, seasonal, or
yearly variability (Benincà et al. 2011; Adrian et al. 2012; Blauw
et al. 2012; Kara et al. 2012; Guadayol et al. 2014; Schmidt
et al. 2018). Nevertheless, the benefit of using high-frequency
measurements over lower-frequency measurements and the role
of different time scales of variability still lack sufficient consider-
ation (Adrian et al. 2012; Coble et al. 2016). This means that
methods are required that are able to differentiate among pro-
cesses, time scales, and particular time windows. Once we have
identified the temporal patterns and time scales of covariation,
subsequent analytical or modeling steps may allow us to further
our understanding of the mechanisms that drive overall tempo-
ral variability in lakes.

Wavelet coherence (Torrence and Compo 1998; Grinsted
et al. 2004; Cazelles et al. 2008) is a method by which the
direction and strength of coherence of two time series across
different time scales can be analyzed. While wavelet coher-
ence does not necessarily indicate causality between two time
series, robust coherence between two variables over particular
time scales and during particular time windows can be indica-
tive of processes that typically affect these two variables syn-
chronously. In contrast to correlation analyses, wavelet
coherence differentiates among time scales, as the variability
of the coherence between two variables is partitioned into fre-
quencies. These range from twice the measurement resolution
up to the entire length of the time span under investigation.
Importantly, wavelet coherence can track periods of synchro-
nicity even when they are limited to rather short time spans.

As such, analysis of the synchronicity of temporal patterns of
different variables on different time scales is a necessary first
step in disentangling different processes that occur in parallel.

This study aims to disentangle processes characterized by
temporal synchronicities among physical, chemical, and bio-
logical variables in the Müggelsee, a eutrophic polymictic lake,
using wavelet coherence. We intend to identify the most
prominent time scales, ranging from hours to months, that
these synchronicities operate on across different seasons and
water depths. We then discuss the implications of identified
patterns for the state of this lake ecosystem. We base our study
on a dataset of automated hourly measurements of water tem-
perature; chlorophyll a (Chl a), as an indicator for algal bio-
mass; phycocyanin, as a proxy for cyanobacterial biomass;
oxygen concentration; pH; turbidity; electrical conductivity,
quantifying ionic substances; wind speed, as an important
meteorological driver of turbulence in the water column; and
manually measured ice development. We selected five exam-
ples out of a set of many possible combinations of variables
where we expected to find a plausible causal relationship that
could indicate ecological processes such as photosynthesis,
the growth of phytoplankton biomass, particle resuspension,
calcite precipitation, and lake mixing. Robust proof of causal-
ity would require more elaborate examinations of each single
case, and was beyond the scope of this study. We show how
coherence between variables in time-frequency space, as well
as coherence of a single variable at different measurement
depths, can help to identify processes that occur during dis-
tinct time windows and at certain frequencies.

Methods
Study site

The Müggelsee is a shallow (mean depth 4.9 m, maximum
depth 7.9 m), polymictic, eutrophic lake in northeastern
Germany with a surface area of 7.3 km2 and a mean retention
time of 6–8 weeks (Fig. 1; Köhler et al. 2005). The Spree River
flows through the Müggelsee and rapidly mixes with the lake

Fig. 1. Bathymetric map of the study site at the Müggelsee in Berlin, Germany.
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water (Barthelmes 1962). The Müggelsee is a highly wind-
exposed lake. This, together with its shallowness, leads to fre-
quent events of complete mixing that interrupt time windows
of thermal stratification (Driescher et al. 1993). Most events of
stable thermal stratification during summer are shorter than
1 day, but can occasionally last up to several weeks (Wilhelm
and Adrian 2008). The catchment area is 7000 km2 and is
dominated by agriculture and forestry (Driescher et al. 1993).
The Müggelsee is a calcium-rich, hard-water lake with high
levels of alkalinity (Driescher et al. 1993). The Spree River has
a large influence on its water quality (Köhler and Nixdorf
1994), while groundwater withdrawal from wells around the
lake reduces any influence of adjacent groundwater on the
water quality of the Müggelsee itself. Due to high nutrient
levels, the Müggelsee is eutrophic and experiences substantial
algal blooms during spring and summer. Summer blooms are
often dominated by cyanobacteria (Wagner and Adrian 2009).

Automated sensor measurements
Limnological data were collected by automated measure-

ments with a multiparameter probe (YSI 6600 V2-4) on a
platform 300 m from the northern shore of the Müggelsee
(52�26046.100N; 13�39000.200E). The probe measured water
temperature, Chl a, phycocyanin, turbidity, oxygen, pH,
and electrical conductivity at 1.5 m depth below the surface.
Water temperature and electrical conductivity were mea-
sured with a combined physical sensor. A pH electrode
determined hydrogen ion concentrations. Chl a, phycocya-
nin, turbidity, and oxygen were measured with optical
sensors, equipped with integrated antifouling wipers for
self-cleaning. Once per hour, depth profiles were measured
between 0.5 and 5 m depth at increments of 0.5 m. The
multiparameter probe has a sampling frequency of twice per
second. The hourly time series used for this study are based
on the mean of 20 single measurements recorded over a
time period of 10 s every hour. The measurements at differ-
ent depths were performed with an offset of a few minutes.
For this reason, we only interpreted time scales exceeding
3 h. During the winter, measurements with the same probe
were performed hourly below the ice cover at a fixed depth
of 1.5 m at the same location. Therefore, measurements at
depths other than 1.5 m were only available after the ice
melted in March (the “thaw date”). We used measurements
at a depth of 1.5 m to analyze the coherence between differ-
ent variables, and measurements at depths of 1.5 and 5 m to
analyze the coherence of a single variable between these
depths. The thickness of the ice cover was measured approx-
imately daily at several locations. Wind speed was measured
after the thaw date at the same location of 4 m above the
water surface with a cup anemometer (Thies GmbH).

Data preprocessing
We selected a time span between December 2008 and

August 2009 that was almost free of data gaps. As the focus

of the study was to capture patterns of natural short-term
to long-term variability, any kind of gap filling would
result in major artifacts. However, even within the selected
time span, there were a few short gaps in the dataset. Due
to fouling of the optical turbidity sensor, 31 h of turbidity
measurements in April were excluded from the analyses.
Fouling was indicated by a steep increase of turbidity
values before the sensor was cleaned manually. One
extreme outlier in Chl a measurements in April was
excluded as well. Furthermore, there was a gap of 24 h in
all variables in March, when the measurement protocol
changed from winter measurements to regular measure-
ments that included depth profiles. A 19-h gap in July, a
5-h gap in February, a 2-h gap in August, and four 1-h gaps
in June and July occurred due to probe malfunction. All
gaps were filled by linear interpolation and are marked in
red in all figures. Wavelet coherence, especially at subdaily
frequencies, should be interpreted with caution at these
instances, as the low variability of the linearly interpolated
gaps can lead to spurious results. However, other than the
one turbidity measurement gap of 31 h, no gaps were lon-
ger than 24 h, and the coherence over longer time scales
can therefore be interpreted with sufficient confidence. All
variables were normalized to zero mean and unit variance
prior to analysis.

Since non-normally distributed time series may lead to
unreliable and less statistically significant results of wavelet
transforms (Grinsted et al. 2004), and because some of the
variables used in our study were not normally distributed,
we repeated all analyses on log-transformed data. Most vari-
ables exhibited reduced skewness after log-transformation,
but only some of them exhibited a normal distribution. We
therefore additionally repeated all analyses on the rate of
change of the log-transformed data, calculated as the differ-
ence between the data values of adjacent time steps. This
resulted in normal distributions of all variables. The ana-
lyses of original data, log-transformed data, and the rate of
change of log-transformed data all resulted in very similar
patterns. We therefore only show the results of the original,
untransformed data.

Wavelet coherence
We used wavelet coherence (Torrence and Compo 1998;

Grinsted et al. 2004; Maraun and Kurths 2004) to detect syn-
chronous fluctuations between two time series. For this pur-
pose, both time series were decomposed via continuous
wavelet transform, which transforms time series from the time
domain to the time-frequency domain. Wavelet transform is
defined as the convolution of a time series xt with a wavelet
ψ t, i.e., a basis function localized in both time and frequency.
We chose the Morlet wavelet as the basis function, because it
represents a good compromise between time and frequency
resolution, and is commonly used (Torrence and Compo
1998; Cazelles et al. 2008). It is defined as
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where t represents time and ω0 is the central angular fre-
quency. Continuous wavelet transform at scale f and time τ is
given by

W f ,τð Þ¼ 1ffiffiffi
f

p
ð + ∞

−∞
x tð Þψ* 1−τ

f

� �
dt ¼

ð + ∞

−∞
x tð Þψ*

f ,τdt,

where (*) indicates the complex conjugate form (Torrence and
Compo 1998, Cazelles et al. 2008). In layman’s terms, the
wavelet function can be considered a snippet of a sine func-
tion, which is subsequently compared to different sections of
the time series of observables. In the next step, the frequency
of the wavelet function is modified by compressing or extend-
ing it along the time axis. This wavelet thus exhibits specific
information regarding frequency and time localization. Wave-
let coherence is given by the square of the product of the first
time series wavelet transform, WX

f ,τ, with the complex conju-

gation of the second, WY
f ,τ, normalized by the individual

power spectra of each time series, as
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where S is a smoothing operator in both scale and time
(Torrence and Compo 1998; Grinsted et al. 2004; Maraun and
Kurths 2004). Wavelet coherence exhibits values between zero
and one, and identifies phases of local cross-correlation
between two time series as a function of frequency. High
values of wavelet coherence can indicate a strong similarity
between time series at a particular frequency and during a par-
ticular time window. The phase difference between the time
series, indicated by arrows in the figures of wavelet coherence,
provides information about a possible time lag in the relation-
ships between two variables.

All analyses were performed with R (R Core Team 2018).
Wavelet coherence and phase relationships were calculated
with the R biwavelet package (Gouhier et al. 2018), whose
code is based on the MATLAB’s WTC package (Grinsted
et al. 2004). We selected a time span long enough to be able
to disregard the beginning and end of the time series, and
therefore refrained from extending the time series with zeros
at the beginning and end (zero padding), as sometimes sug-
gested to reduce edge effects (Torrence and Compo 1998;
Vargas et al. 2010). The significance of wavelet coherence was
calculated as the significant deviation from red noise, gener-
ated by 100 Monte Carlo randomizations of a first-order auto-
regressive process (AR1) with the same autocorrelation
coefficients as the respective input time series. Significance
was tested at a significance level of 0.95. Given the massive

number of tests performed (all combinations of scale and
time; Keitt 2008; Vasseur et al. 2014), we applied a p-value cor-
rection (5% level), following Benjamini and Yekutieli (2001).
To quantify the intensity of thermal stratification, we calcu-
lated the Schmidt stability (Schmidt 1928; Idso 1973) from
hourly water temperature profiles using the R rLakeAnalyzer
package (Winslow et al. 2016). All figures were created with
the R ggplot2 package (Wickham 2009).

In the following, “period length” always refers to the
period length in question as 1/frequency. In contrast, refer-
ences to certain time intervals are termed “time span” if refer-
ring to the whole available time interval, or “time window” if
shorter periods are meant.

Analyzing patterns for processes
Here, we focus on the following patterns that we related to

specific processes. We chose five examples where we expected
to find plausible relationships between two variables or
between one variable measured at different depths. Some of
these patterns are restricted to lakes with circumneutral pH
values where hydrogencarbonate (HCO3

−) is the primary form
of dissolved inorganic carbon (Lampert and Sommer 2007),
such as in the lake studied here. While some patterns may be
identifiable from the data, i.e., cases where the relationship
occurs for all time scales, others are restricted to specific time
scales that may be masked by lower-frequency variations or
blurred by higher-frequency noise. Wavelet coherence is able
to disentangle these frequency-dependent patterns.

• Synchronous fluctuations of pH and oxygen (O2) are
ascribed to photosynthesis, where the uptake of CO2

reduces HCO3
− concentration and thus increases pH, and

the release of O2 increases oxygen saturation. The opposite
pattern holds for respiration. This is likely to occur for all
time scales. In contrast, phases of pronounced decay of
algal and cyanobacteria biomass will likely only occur at
period lengths � 1 d.

• A synchronous increase in water temperature, Chl a levels,
and phycocyanin levels points to a growth in algal and cya-
nobacteria biomass on a time scale of several hours to days.
This can be seen as a measure of the potential photosynthe-
sis of the existent phytoplankton biomass, while synchro-
nous fluctuations of pH and O2 are related to the actual
productivity of the existent phytoplankton biomass.

• Synchronous changes in turbidity and Chl a or phycocya-
nin on time scales � 1 d are indicative of a causal relation-
ship between Chl a or phycocyanin and turbidity,
respectively. In contrast, changes of turbidity that are not
reflected by changes in Chl a or phycocyanin levels point
to, e.g., the input of turbid water via streams during heavy
rain storms or sediment resuspension from the bottom layer
of the lake, e.g., during heavy wind storms.

• A decrease in electrical conductivity in parallel with an
increase in pH points to calcite precipitation, and the
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opposite pattern to calcite dissolution. This process is not
restricted to specific time scales.

• Changes of single variables at different depths that occur
with a reversed sign (indicating a phase shift of half a
period length) can be interpreted as an indicator of mixing
of shallow and deep water. This phenomenon will likely
affect multiple variables in parallel, but might not necessar-
ily be visible for all of them, because not all variables may
exhibit a clear depth gradient during that phase. Mixing is
not restricted to specific time scales.

Results
The lake was covered with ice from 31 December 2008 until

9 March 2009 (Fig. 2). A phytoplankton bloom had already
started underneath the ice and lasted until the onset of the
clear water phase around 02 May 2009. In June, the weather
was mostly stormy, as indicated by low air pressure, high wind
speeds, frequent precipitation, cool air and water temperature,
and low Schmidt stability, i.e., favoring mixing (Fig. 2). In
July, the weather was more settled, and a stable thermal strati-
fication developed in the lake, as indicated by relatively high
Schmidt stabilities (Fig. 2), followed by a cyanobacteria bloom.

Wavelet coherence between two time series is depicted in
Figs. 3–11. The time domain is shown on the x-axis with the
same scaling as for the time series given above, while the
respective period length is given on the y-axis. Colors indicate
the degree of coherence. For example, a red area in the time-

frequency space bordered by a black line would mark a range
of period lengths and a time window during which two vari-
ables fluctuate in a highly coherent way and significantly dif-
fer from red noise. The black arrows indicate the phase
relationship between two variables at the indicated period
length and time window. Arrows pointing right mean that the
two variables are in phase, i.e., they oscillate synchronously at
that period length. Arrows pointing left mean that synchro-
nicity is in antiphase, hence indicating a phase shift of half a
period length; therefore, an increase in one variable is accom-
panied by a decrease in the other variable, and vice versa.
Arrows pointing upwards mean the variables are out of phase
with the lead of the first variable, while arrows pointing
downward reflect an out-of-phase relationship with the lead
of the second variable. Both suggest a time lag between the
variables of a quarter of a period length. If significant coher-
ence and phase relationships are consistent over a certain
extent of the time-frequency space, we can assume a causal
relationship between the leading and the following variable
(Grinsted et al. 2004; Maraun et al. 2007). In the “cone of
influence,” marked in a lighter shade, edge effects due to the
limited length of the respective time series may distort the
wavelet coherence and should be interpreted with caution.
Global wavelet coherence gives an indication of the impor-
tance of scale across the entire time span, while at the same
time blurring differences between time windows.

Over the course of the time span under consideration (from
December 2008 until August 2009), patterns of coherence

Fig. 2. Upper panel: Time series of water temperature (�C) in the Müggelsee with blue color gradient according to measurement depth; ice thickness
(cm) (gray dots and line); peak of zooplankton abundance as an indicator of the clear water phase, calculated as the local maximum of the fit of a Weibull
function to weekly cladocera abundance data (Rolinski et al. 2007; vertical dashed line). Bottom panel: Time series of Schmidt stability (J m−2), calculated
from vertical water temperature profiles.
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between most variables changed frequently, resulting in rather
patchy patterns in Figs. 3–11. These were often restricted
within the time-frequency space, and especially at short
period lengths of a few hours, coherent and noncoherent
phases were usually quite short lived.

Photosynthesis and respiration
High in-phase coherence between oxygen concentration

and pH would indicate photosynthetic processes if both
increased synchronously or respiratory processes if both
decreased synchronously. We found high coherence in phase
between O2 and pH for all time scales until the end of the
time span under study, except for subdaily patterns during the
first month (Fig. 3). The consistently strong relationship
between O2 levels and pH was also reflected in global wavelet
coherence, which was high across all time scales. Time series
of oxygen concentrations and pH values showed a synchro-
nous abrupt and substantial decline in mid-January, pointing
to the dominance of respiration over photosynthesis at that

time. O2 and pH increased synchronously in early February,
and even more after the thaw date, which coincided with the
beginning of the spring phytoplankton bloom, indicating an
increase in photosynthesis. This was followed by a substantial
decrease just before the clear water phase, signaling that respi-
ration had exceeded photosynthesis. Another 2-month cycle
occurred in May and June, and several much shorter cycles
occurred thereafter.

The growth of algae and cyanobacteria populations
High in-phase coherence between water temperature and

levels of Chl a or phycocyanin would indicate growth of a
phytoplankton population driven by water temperature, while
high in-phase coherence between Chl a and phycocyanin
themselves would indicate similar drivers of the dynamics of
algae and cyanobacteria populations. Water temperature and
Chl a were coherently in phase for rather brief time windows
(1–3 weeks) between January and August (Fig. 4). Their stron-
gest and longest coherence was observed during the

Fig. 3. Upper panels: Time series of oxygen concentration (O2) (mg L−1) and pH measured hourly at a depth of 1.5 m in the Müggelsee; time window
with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between O2 and pH; black contours
around regions where coherence is significant against red noise, based on Monte Carlo AR1 time series (significance level 0.95) with the false discovery
rate controlled at the 5% level; black arrows indicate the relative phase relationship (in-phase pointing right; antiphase pointing left; out of phase point-
ing up/down); the lighter shade denotes the cone of influence, where edge effects may distort patterns of coherence; period length on y-axis log2-trans-
formed. Right margin panel: Global wavelet coherence, calculated as the arithmetic mean over time.
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intensified spring bloom of phytoplankton in April after the
thaw date; this coherence covered period lengths from a few
hours up to a week. This indicates that water temperature
drove the growth of phytoplankton populations during this
time window. In the summer, the coherence between Chl
a and water temperature was generally lower and more short
lived, and restricted to small ranges of period lengths. This
suggests that direct temperature effects did not play a major
role in phytoplankton population growth in the summer. The
overall global wavelet coherence was rather low, and reflected
the brief nature of this relationship. It revealed a small hump
at period lengths around 24 h, indicating that diurnal cycles
of water temperature influenced algal development. Chl a and
phycocyanin were coherently in phase during the first
4.5 months of 2009 for period lengths exceeding 12 h, indi-
cating similar drivers of algae and cyanobacteria populations
during this time window. This synchronicity was interrupted
during the clear water phase (Fig. 5). Coherence between Chl
a and phycocyanin was to a lesser degree re-established
shortly after the clear water phase at period lengths greater
than 12 h. In July, after time windows of intense and long-

lasting thermal stratification as indicated by high Schmidt sta-
bilities (Fig. 2), cyanobacteria developed a bloom that was not
captured by Chl a fluorescence, and their coherence was low.
Accordingly, global wavelet coherence between phycocyanin
and Chl a was rather high at period lengths larger than 12 h.

Turbidity
High in-phase coherence between turbidity and either phy-

toplankton levels, electrical conductivity, or wind speed would
indicate that either biological, chemical, or physical processes
were responsible for dynamics in turbidity. The coherence
between phycocyanin and turbidity was rather low and short
lived most of the time (Fig. 6). Only in July, during the several
weeks of the cyanobacteria bloom, was coherence high and in
phase at period lengths from hours to weeks, indicating that
cyanobacteria was the biological driver of turbidity during this
time window. On long time scales, coherence was high during
the entire time span, which was also reflected in a peak of
global wavelet coherence for long time scales. Coherence
between Chl a and turbidity exhibited largely similar patterns,
due to the high coherence between Chl a and phycocyanin

Fig. 4. Upper panels: Time series of water temperature (wtemp) (�C) and Chl a (μg L−1) measured hourly at a depth of 1.5 m in the Müggelsee; time
window with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between wtemp and Chl a;
black lines, arrows and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coherence, calculated as the arithmetic
mean over time.
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(Fig. 5), but coherence was low and short lived during the
cyanobacteria bloom (not shown). One time window
(in January, below the ice cover) exhibited coherent in-phase
variations between electrical conductivity and turbidity at
period lengths between 1 d and 1 week, indicating a chemical
driver of turbidity in January (Fig. 7). Fluctuations of wind
speed and turbidity were coherently in phase in May and June
at scales of several days up to 2 weeks (while the weather was
stormy), which was again reflected in a peak of global wavelet
coherence for these time scales (Fig. 8). This indicated a physi-
cal driver of turbidity in May and June, possibly indicating the
settling and resuspension of particles from the lake bottom
following fluctuations in wind events.

Calcite precipitation and dissolution
High antiphase coherence between pH and electrical con-

ductivity would indicate either calcite precipitation (if pH
increased while electrical conductivity decreased) or calcite
dissolution (if pH decreased while electrical conductivity
increased). Coherence between pH and electrical conductivity

was in an antiphase relationship during several time windows
in the winter (under ice) between daily and weekly scales, dur-
ing the spring bloom of phytoplankton in April on similar
scales, and to a lesser extent in summer on subdaily scales
(Fig. 9). The overall increase in electrical conductivity in
January, accompanied by a synchronous decrease in pH, sug-
gests calcite dissolution. In contrast, calcite precipitation was
probably confined to short time windows under the ice, as the
small diametrical spikes in the time series of pH and electrical
conductivity indicate. Increases in pH accompanied by
decreases in electrical conductivity during the spring phyto-
plankton bloom and during short time windows in the sum-
mer also indicated calcite precipitation. The low degree of
global wavelet coherence was in agreement with the transient
synchronicity between pH and electrical conductivity.

Vertical mixing
High antiphase coherence of a single variable between dif-

ferent measurement depths would indicate mixing of shallow
and deep waters. The coherence of pH between measurements

Fig. 5. Upper panels: Time series of Chl a (μg L−1) and phycocyanin (phyco) (relative fluorescence units [RFU]) measured hourly at a depth of 1.5 m in
the Müggelsee; time window with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence
between Chl a and phyco; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coherence, cal-
culated as the arithmetic mean over time.
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at 1.5 and 5 m depths was high and antiphase for period
lengths between 4 d and 1 week in May, and between 1 and
over 2 weeks in June and July, indicating mixing between the
two layers (Fig. 10). At shorter period lengths, coherence was
sometimes in phase for short time windows, e.g., at period
lengths around 24 h. The importance of daily and weekly time
scales was also reflected in the peaks of global wavelet coher-
ence for these time scales. Patterns of coherence for O2 levels
between the two depths in the study were very similar to
those for pH (Fig. 11). Fluctuations in O2 and pH were very
large and often occurred abruptly. In particular, a steady
decline toward oxygen depletion and minimum pH values in
the hypolimnion during the second week of July was inter-
rupted almost instantly, with increases of about 1.5 pH units
and 10 mg L−1 O2 within a few hours. Mixing events, as indi-
cated by a Schmidt stability near zero (Fig. 2), coincided with
high wind speed (Fig. 8), decreases in near-surface O2 and pH,
and increases in bottom O2 and pH, balancing the levels of
these two indicators throughout the whole water column.
High coherence also was observed for other variables (water
temperature, Chl a, phycocyanin, turbidity, and electrical

conductivity), comparing measurements at depths of 1.5 and
5 m, during limited time windows and for certain period
lengths (not shown). However, these results were in phase and
thus could not be related to vertical mixing events.

Discussion
We have investigated in what way an analysis of automated

high-frequency measurements in the time-frequency domain
may help to identify and disentangle processes in a polymictic
lake—the Müggelsee. Coherent dynamics among limnological
and meteorological variables were detected during distinct
time windows and for specific time scales. These suggested
reversible processes such as photosynthesis and respiration,
the growth of phytoplankton biomass, calcite precipitation
and dissolution, wind-induced resuspension of sedimented
particles, and vertical mixing of water masses. The following
discussion examines the plausibility of attributing any syn-
chronicity between state variables to particular processes and
the characteristics of the time scales of the synchronicities
identified here; this discussion is followed by an evaluation of

Fig. 6. Upper panels: Time series of phycocyanin (phyco) (RFU) and turbidity (turbid) (nephelometric turbidity units [NTU]) measured hourly at a depth
of 1.5 m in the Müggelsee; time window with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coher-
ence between phyco and turbid; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coher-
ence, calculated as the arithmetic mean over time.
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the methodological approach of analyzing lakes in the time-
frequency domain more generally.

The plausibility of the attribution of synchronicity
between variables to a given process

Under the ice cover of the Müggelsee in mid-January, we
observed a synchronous decrease in O2 and pH, which we
attributed to the dominance of respiration over photosynthe-
sis. This was substantiated by low levels of algal biomass,
quantified as Chl a and phycocyanin, until February. Similar
patterns of O2 and pH decreases have been observed under
the ice cover of several lakes and were also attributed to respi-
ration processes (Kratz et al. 1987; Wetzel 2001; Baehr and
Degrandpre 2002; Hanson et al. 2006). According to Bertilsson
et al. (2013), rates of oxygen depletion and concurrent
increases in the partial pressure of CO2 are fastest after the
onset of ice cover, when the ratio of photosynthesis to respira-
tion changes in favor of respiration. The observed decrease of
pH under ice can therefore be assumed to be caused by
increases in pCO2, which can lead to major undersaturation of
calcite and consequential calcite dissolution (Ohlendorf and

Sturm 2001). This may have led to the observed high anti-
phase coherence between pH and electrical conductivity on
daily to weekly scales in January, indicating calcite dissolu-
tion. It might furthermore have driven the dynamics of tur-
bidity, as indicated by the high in-phase coherence between
electrical conductivity and turbidity during the same time
window and on the same time scales. Nevertheless, photosyn-
thesis can be substantial under ice if light availability is suffi-
cient (Wetzel 2001; Sommer et al. 2012; Hampton et al. 2017).
This may account for the observed increase in O2 and pH in
February. The increase of these two indicators coincided with
rising levels of Chl a and phycocyanin, implying that this was
most likely caused by underice photosynthesis. The lack of
consistent coherence between water temperature and Chl a
below the ice indicates that the initiation of the spring phyto-
plankton bloom was not caused by increasing water tempera-
tures, but probably by enhanced light conditions (Adrian
et al. 1999). Oxygen concentrations and pH were coherently
in phase on time scales of hours to months throughout the
time window of ice cover and thereafter. The only exception
was a period during the first 4 weeks of the study (in late

Fig. 7. Upper panels: Time series of electrical conductivity (EC) (μS cm−1) and turbidity (turbid) (NTU) measured hourly at a depth of 1.5 m in the Müg-
gelsee; time window with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between EC
and turbid; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coherence, calculated as the
arithmetic mean over time.
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December and early January), when only small and non-
coherent fluctuations of O2 and pH were observed, which
have to be ascribed to minor random disturbances. The high
in-phase coherence of pH and O2 between near-surface and
near-bottom measurements around a period length of 24 h,
revealed by global wavelet coherence, corresponds to diurnal
variations in CO2 due to metabolic day–night cycles (Morales-
Pineda et al. 2014).

After ice breakup and thaw, the time window in April exhi-
biting the steepest increase in water temperature was the only
time window showing high in-phase coherence between water
temperature and Chl a over a broad range of time scales. In
light-saturated conditions, water temperature is assumed to
drive photosynthesis (Lampert and Sommer 2007). Positive
results indicating the effects of spring water temperature on
phytoplankton development has been shown for the Müggel-
see (Gerten and Adrian 2000) and for other lakes for certain
phytoplankton species (Reynolds 1990; Adrian et al. 1995;
Feuchtmayr et al. 2012; Talling 2012). Li et al. (2015) found
high synchronicity, estimated by wavelet coherence, between

Chl a and water temperature in certain regions in the time-
frequency space, though this was only based on monthly data.
The high in-phase coherence between Chl a and water tem-
perature detected during the spring bloom of phytoplankton
in the Müggelsee indicated that it was only during this time
window of a few weeks that water temperature and phyto-
plankton growth were characterized by a causal relationship.
Water temperature may have driven phytoplankton growth
directly by affecting replication rates, or indirectly,
e.g., through control of stratification intensity, which in turn
improved light availability, as deep mixing of algal cells is pre-
vented. The high antiphase coherence between electrical con-
ductivity and pH on daily to weekly time scales during the
spring bloom of phytoplankton indicates that phytoplankton
growth was accompanied by biogenic calcite precipitation dur-
ing this time window. In the Müggelsee, sediment dredging
has indicated the precipitation of calcite due to high photo-
synthetic activity (Kozerski and Kleeberg 1998). This is com-
monly observed in productive hard-water lakes such as the
Müggelsee, where calcium is the main cation (Dudel and Kohl

Fig. 8. Upper panels: Time series of wind speed (ws) (m s−1) measured hourly at a height of 4 m above the Müggelsee and turbidity (turbid) (NTU)
measured hourly at a depth of 1.5 m in the Müggelsee; time window with an ice cover (gray line); onset of the clear water phase (vertical dashed line).
Bottom panel: Wavelet coherence between ws and turbid; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel:
Global wavelet coherence, calculated as the arithmetic mean over time.
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1992; Driescher et al. 1993), when photosynthetic uptake of
CO2 increases the pH, leading to oversaturation of calcite
(Lampert and Sommer 2007; Heine et al. 2017). The clear
water phase was characterized by the collapse of most syn-
chronicities, most strikingly the coherence between Chl a and
water temperature and between Chl a and phycocyanin, and
was accompanied by substantial decreases in Chl a, phycocya-
nin, O2 and pH. Coherences between water temperature and
Chl a and between Chl a and phycocyanin were high before
the clear water phase, completely absent during it, and low
and briefer after it. Only the coherence between O2 and pH
remained high for all time scales, while their synchronous
decrease signaled that respiration had exceeded photosynthe-
sis. This indicates that zooplankton grazing broke the formerly
synchronous relationships (Sommer et al. 2012). This has
been shown to be one important explanation of the decline in
spring phytoplankton blooms in the Müggelsee during the
past two decades (Huber et al. 2008). The clear water phase
therefore represented a crucial phenological event in the
plankton development that clearly indicated a time window
of altered interactions between variables and processes, and

thus a change in the prevailing constraints. While a change in
the prevailing constraints leading to a clear water phase is
quite well known, detailed time and frequency information
concerning the forces that drive it and interact within it are
not. High-frequency data allows us to identify the length and
time scale of those distinct time windows of interaction and
the alternation of major driving forces.

After the clear water phase, the rather low and short lived
coherence between water temperature and Chl a indicated
drivers of the dynamics of the summer phytoplankton popula-
tion other than water temperature, indicating a change in the
prevailing constraints to phytoplankton growth. Indeed, nitro-
gen limitation, in contrast to water temperature, has been shown
to contribute to summer phytoplankton development in the
Müggelsee (Köhler et al. 2005). Cyanobacteria, on the other
hand, thrive in higher water temperatures and the concomitant
intense and long-lasting stratification stability (Huber et al. 2012;
Merel et al. 2013), with the length of thermal stratification
events rather than direct temperature effects driving cyanobac-
teria dominance in the Müggelsee (Wagner and Adrian 2009). As
Chl a concentrations are inaccurate estimators of cyanobacteria

Fig. 9. Upper panels: Time series of pH and EC (μS cm−1) measured hourly at a depth of 1.5 m in the Müggelsee; time window with an ice cover (gray
line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between pH and EC; black lines, arrows, and lighter shade
as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coherence, calculated as the arithmetic mean over time.

Schmidt et al. Disentangling limnological processes

434



blooms (Lee et al. 1994; Brient et al. 2008), we found low coher-
ence between Chl a and phycocyanin in the summer. Further-
more, cyanobacteria blooms increase the turbidity of water
bodies (Paerl and Huisman 2008). This seems to be responsible
for the high in-phase coherence between phycocyanin and tur-
bidity observed during the summer bloom of cyanobacteria in
the Müggelsee in July on time scales of hours to weeks. In con-
trast, the high in-phase coherence between turbidity and wind
speed on time scales of several days to 2 weeks in June indicated
wind-induced resuspension of particles. Rising wind speeds were
accompanied by an increase in turbidity, indicating a resuspen-
sion of particles from the lake bottom, while calm time windows
enabled these particles to settle, coinciding with low turbidity.
Wind-induced resuspension is common in shallow, polymictic
lakes (Kristensen et al. 1992; Kozerski and Kleeberg 1998; Eleveld
2012). Correspondingly, we found high antiphase coherence of
pH and O2 levels between near-surface and near-bottom mea-
surements from May to July for similar time scales. This was
accompanied by large synchronous diametric fluctuations of pH
and O2 in surface and bottom waters, with substantial drops in

surface water oxygen concentration, while bottom waters were
reoxygenated (Fig. 11). Similar patterns have been observed in
other lakes and were correlated with wind events, suggesting ver-
tical mixing (Robertson and Imberger 1994; Hanson et al. 2006;
Langman et al. 2010), and in the Müggelsee from May onward
in all years analyzed by Behrendt et al. (1993). The latter were
related to a decoupling of production and consumption pro-
cesses in surface and bottom waters, which were interrupted by
irregular wind-induced changes of mixed and stratified condi-
tions on time scales of hours to weeks (Behrendt et al. 1993).
The period lengths of 4 d to 1 week in May as well as of 1 to
2 weeks in June and July, which revealed a robust antiphase
coherence between near-surface and near-bottom water layers in
our study, lay within the range of durations of general
weather situations over Germany. These lasted 3–5 days in May,
up to 8 days in June, and up to 10 days in July (Deutscher Wet-
terdienst, http://www.dwd.de/DE/leistungen/grosswetterlage/200
9/gwl_zusammenfassung.pdf?__blob=publicationFile&v=2, last
accessed 12 July 2018). As such, the attribution of high anti-
phase coherence between single variables measured in different

Fig. 10. Upper panels: Time series of pH measured hourly at a depth of 1.5 m and at a depth of 5 m in the Müggelsee; time window with an ice cover
(gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between pH measured at a depth of 1.5 m and pH
measured at a depth of 5 m; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin panel: Global wavelet coherence,
calculated as the arithmetic mean over time.
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depths to vertical mixing can be substantiated, and the charac-
teristic time scale at which vertical mixing is observed might
reflect the periodicity of the general weather situation. All in all,
our hypothesized relationships between patterns of coherence of
various state variables and certain limnological processes proved
plausible.

Measuring synchronicity—The advantages of high-
resolution analysis in both the time and the frequency
domain

There is a large amount of literature concerned with the
temporal coherence of various state variables: Magnuson
et al. (1990) and many studies thereafter (Wynne et al. 1996;
Kratz et al. 1998; Rusak et al. 1999; Baines et al. 2000; Pace
and Cole 2002; Chrzanowski and Grover 2005; Salmaso
et al. 2014) have defined “coherence” as the synchronous
dynamics of a time series of single variables among different
lakes. What these studies have in common is that their mea-
sure of coherence is simple correlation analysis. They therefore
lack the ability to detect transient and frequency-specific rela-
tionships, as correlations between variables may go undetected

if they occur only at a certain frequency or during limited
time windows. For example, Arhonditsis et al. (2004) found
no correlation between water temperature and Chl a mea-
sured over 25 years in Lake Washington. However, their con-
nection may have been masked by the weekly resolution of
the data and the methodological approach of correlation
analysis and linear regression, which lacked the ability to
detect transient and potentially frequency-dependent correla-
tions such as those revealed by our study. Other studies
inferred causality from detected correlations or linear regres-
sions between numerous state variables in lake ecosystems
(Gerten and Adrian 2000; Blenckner et al. 2007; Gaiser
et al. 2009; Eleveld 2012), which could have increased in
accuracy and significance if a more advanced method, such as
wavelet coherence, had been applied.

In this respect, the high resolution in the time and the fre-
quency domain applied in our study has helped us to identify
the respective prevailing constraints during specific time win-
dows. For example, phytoplankton growth was related to
water temperature only during short time windows (Fig. 4),
pointing to other constraints or drivers of its dynamics during

Fig. 11. Upper panels: Time series of oxygen concentration (O2) (mg L−1) measured hourly at a depth of 1.5 m and at a depth of 5 m in the Müggel-
see; time window with an ice cover (gray line); onset of the clear water phase (vertical dashed line). Bottom panel: Wavelet coherence between O2 mea-
sured at a depth of 1.5 m and O2 measured at a depth of 5 m; black lines, arrows, and lighter shade as in Fig. 3; y-axis log2-transformed. Right margin
panel: Global wavelet coherence, calculated as the arithmetic mean over time.
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the rest of the observation period. Furthermore, wavelet coher-
ence helped to disentangle different processes that affected
the same variable but to a different extent during different
time windows. For example, according to our analysis, the
observed dynamics of pH were related to photosynthesis and
respiration (Fig. 3) for most of the study period, but also to cal-
cite dissolution and precipitation (Fig. 9) and vertical mixing
(Fig. 10) during rather short time windows. Similarly, the
dynamics of turbidity were related to drivers that were biologi-
cal (phycocyanin, Fig. 6), chemical (electrical conductivity,
Fig. 7) as well as physical (wind speed, Fig. 8) during different
time windows. Therefore, process identification cannot neces-
sarily be derived only from the dynamics of the variables
themselves, but from their joint dynamics with other variables
and a time-resolved and frequency-resolved methodology.
Lastly, wavelet coherence has proven its potential in identify-
ing reversible processes that do not necessarily result in
observable net effects, such as calcite dissolution observed dur-
ing a rather short time window in January and reprecipitation
in early April (Fig. 9). In this study, regions of high wavelet
coherence in time-frequency space in most cases neither pre-
vailed over long time windows nor covered extended time
scales. This implies the difficulty of finding a generally valid
level of importance for a certain time scale of coherence in
abiotic and biotic interactions. This may be particularly com-
plex in polymictic lakes, which exhibit a more immediate
response to current weather conditions compared to dimictic
lakes (Gerten and Adrian 2001; Benincà et al. 2011). In deeper
monomictic or dimictic lakes, we would expect signals to be
more consistent over scale and time. Yet, even in this lake,
where we would expect processes to be briefer due to the
lake’s polymictic nature, we identified regions of high syn-
chronicity, enabling the identification and disentanglement
of transient processes operating in parallel.

Conclusion
Applying wavelet coherence to multivariate limnological

high-frequency data proved suitable for identifying and disen-
tangling reversible processes that affected the same variable,
for detecting their characteristic time scales, and for identify-
ing the prevailing constraints of processes that occurred dur-
ing limited time windows and often in parallel. This could not
have been achieved using simpler methods, such as correla-
tion or regression analysis, as the coherence between variables
was found to be frequency-specific and to depend on particu-
lar time windows. This therefore reiterates the importance of
considering process-specific time scales. While a daily resolu-
tion of the data would have sufficed to identify some of the
processes, such as wind-induced resuspension and vertical
mixing, which took place on time scales of several days to
weeks (Schmidt et al. 2018), high temporal resolution of the
data was crucial for detecting characteristic time scales of vari-
ability and time windows, especially for when biological and

chemical processes occurred, as both were often rather brief.
Our results imply that wavelet coherence has great potential
to serve as a diagnostic tool in limnology, and potentially also
in other types of ecosystems but especially nonstationary
ones. For example, Schaefli et al. (2007) applied wavelet coher-
ence to a 20-yr-long time series of precipitation, temperature,
and discharge in an Alpine catchment. They detected poten-
tial flood-triggering situations, while also identifying the most
critical hydrometeorological constraints of different flood
types.

One possible limitation of our approach is that wavelet
coherence, as a statistical method, does not reveal the true
underlying ecological mechanisms that cause periodicities or
associations between variables (Cazelles et al. 2008). Causality
can only be assumed from the phase relationship of extended
regions of local cross correlation in time-frequency space. To
reveal mechanisms behind coherent regions, it would be nec-
essary to have experimental or modeling studies and more
elaborate examinations of each case, possibly comprising fur-
ther variables. These could, for instance, include the Granger
causality (Granger 1969), or convergent cross mapping
(Sugihara et al. 2012) calculated over time windows and fre-
quency ranges where a high coherence has been identified
beforehand. This may help future researchers distinguish cau-
sality from correlation, which in turn would result in higher
confidence about causal mechanisms. For this reason, compar-
ing wavelet coherence of the same set of state variables mea-
sured in different lakes over a range of mixing types, trophic
states and chemical compositions would give us some insights
into the general applicability of the approach and may reveal
interesting connections and differences between lake types
and the characteristic time scales of major processes in them.
These might be promising next steps in diagnosing and under-
standing the processes behind temporal variability in limno-
logical state variables.
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