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Eutrophication is one of the main causes of the degradation of lake ecosystems. Its intensification during the last
decades has led the stakeholders to seek for watermanagement and restoration solutions, including those based
onmodelling approaches. This paper presents a review of lake eutrophication modelling, on the basis of a scien-
tific appraisal performed by researchers for the French ministries of Environment and Agriculture. After a brief
introduction presenting the scientific context, a bibliography analysis is presented. Then the main results ob-
tainedwith process-basedmodels are summarized. A synthesis of the scientist recommendations in order to im-
prove the lake eutrophication modelling is finally given before the conclusion.
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1. Introduction

Eutrophication of aquatic ecosystems refers to an ecological state,
where biological processes driven by increased nutrient loading from
their watershed conduct to proliferation of primary producers (phyto-
plankton, aquatic plants, cyanobacteria), hypoxia or even anoxia and
loss of biodiversity.Worldwide, eutrophication is one of themain causes
e).
of the degradation of the ecological state in inland and coastal waters.
Eutrophication has been observed since the beginning of the twentieth
century in industrialized countries (e.g. LeMoal et al., 2018;Moss, 2012;
Takolander et al., 2017; Yao et al., 2018). However, during the last de-
cade, eutrophication has become a more pregnant societal issue,
encompassing many different stakes, from ecological to economic and
political, whichmust be tackled at the scale of the concerned territories
by the involved stakeholders.

Lakes and reservoirs are part of the hydrological cycle of their water-
shed. Fluxes are permanently exchanged between the lake and the
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atmosphere, the ground and surface waters. Lakes play an essential role
in the biogeochemical cycles of continental watersheds. Two processes
drive these biogeochemical cycles, particularly carbon, nitrogen and
phosphorus cycles: the primary production and the settling of particu-
late matter.

In lakes, the current velocities are generally low and the water resi-
dence time high. Therefore, lakes provide us with a time-integrated re-
sponse to the external forcing. The analysis of their time trajectory can
allow us to better understand the biological and physical, local and
global pressures that they face (Perga et al., 2016; Schindler, 2009).

Lake ecosystems are particularly sensitive to nutrient loading from
their catchment because of the thermal stratification of the water col-
umn during the period when the primary production is maximal
(spring and summer). The thermal stratification divides the water col-
umn into two layers: the upper layer, the warmer and lighted epilim-
nion, where primary production occurs, and a colder deeper layer, the
hypolimnion. Thermal stratification occurs in all lakes but extending
on different time scales. In shallow lakes, thermal stratification hardly
lasts more than a few hours or days. The main morphometric (depth,
volume) and hydrological (discharge of the tributaries, surface and
land-use in the catchment) characteristics will determine the lake vul-
nerability to eutrophication.

In the early 1960s, lakes were the first water bodies where eutrophi-
cation effects were observed, mainly on the water resources used for
drinking water supply (e.g. Dillon and Rigler, 1974a; Vollenweider and
Kerekes, 1982). Actually, lake eutrophication started in industrialized
countries since the 1930s as it is indicated by recent outcomes based
on paleo-limnological studies. This is the case in Europe, for example
for Lake Bourget (France) where eutrophication appeared around
1933 (Giguet-Covex et al., 2010; Jenny et al., 2013).

In the 1960–1980s, lake eutrophication was widely described, in
particular in symposia devoted to this topic like the Madison Sympo-
sium (National Academy of Sciences, 1969) or the Symposium of the
American Society of Limnology and Oceanography (ASLO) in 1971. His-
torically, the description of lake eutrophication was more directed to
deep lakes, located in the Northern hemisphere (United States,
Canada, and Western Europe) and Australia. The general acceptation
of lake trophic state classification, “oligotrophic”, “mesotrophic” and
“eutrophic” follows the studies of the Organisation for Economic Co-
operation and Development (OECD) in the late 1970s (Vollenweider,
1975; Vollenweider and Kerekes, 1982).

The main effects of lake eutrophication are an increase of phyto-
plankton biomass, where cyanobacteria frequently dominate, a de-
crease of water transparency and a clear difference between surface
layers, rich in oxygen, and the deoxygenated hypolimnion (Dodds,
2006; Wetzel, 2001). Hypoxia in the hypolimnion leads to an internal
phosphorus load released by the sediment, which in turn amplifies the
eutrophication of the system (Dodds, 2006).

Eutrophication has been one of themain threats for water quality in
lakes and reservoirs since the 1960s. In spite of number of research
works conducted during the last five decades, eutrophication remains
a major concern worldwide (Smith et al., 2006). More than 40% of
lakes are eutrophic and affected by algal blooms (Bartram et al., 1999).
The issues to be addressed still regard interactions between nutrients,
principally phosphorus which is generally themain cause of lake eutro-
phication, and the ecological functioning. Newmanifestations of eutro-
phication have emerged during the last two decades (Anderson et al.,
2012; Le Moal et al., 2018; Pomati et al., 2017). Among the phytoplank-
ton species, cyanobacteria have gained an increased interest, due to the
worldwide occurrence of their blooms. The increasing frequency of
cyanobacteria blooms might be linked to climate change.

The management and restoration solutions to control eutrophica-
tion must be supported by scientific outcomes, including modelling ap-
proaches. Since the 1970s and the awareness of the negative impact of
eutrophication on lake ecosystems, numerical modelling was consid-
ered as an interesting tool (Imboden, 1974; Vollenweider, 1975;
Vollenweider and Kerekes, 1982). Many models were developed,
often to obtain predictive tools used as support for lake management
and to define targets of nutrient loading reduction by the catchment.
The model key state variables are those that link primary production
to nutrients, principally phosphorus, nitrogen and sometimes silica
(De Senerpont Domis et al., 2014; Reynolds et al., 2001). Cyanobacteria
growth also raises newmodelling issues to represent processes such as
nitrogen fixation, uptake of nutrient organic forms and mobility of the
cells.

In order to support public decision-making, issues raised by public
entities, for example a ministry, can be addressed in the form of a mul-
tidisciplinary critical assessment of available scientific knowledge,
called collective scientific expertise. In 2016, two French ministries re-
spectively in charge of Environment and Agriculture, initiated a collec-
tive scientific expertise (Expertise Scientifique Collective, ESCo in
French), bringing together scientific knowledge available on the eutro-
phication issue (Pinay et al., 2017). The objective was to improve the
consistency and effectiveness of public action on eutrophication control.
One chapter of the scientific expertise report was devoted to eutrophi-
cationmodelling (Crave et al., 2017). This chapter included five sections
respectively entitled “Modelling of non-point nutrient loading in the
catchment”, “Modelling in-stream processes”, “A focus on sediment
transport modelling”, “Modelling eutrophication in coastal ecosystems”
and “Modelling eutrophication in lake ecosystems”. A review of marine
eutrophication models derived from this scientific expertise study can
be found in (Ménesguen and Lacroix, 2018). The paper presented here-
after is based on the chapter focusing on lake eutrophication modelling
and including a large review of modelling studies.

The bibliographic corpus that we considered is composed of 438 ref-
erences obtained by using the bibliographic search tool proposed by
Web of Science (see Appendix A.1 for details). The paper is organized
as follows. In Section 2, the bibliographic corpus is analysed according
to the following items: study sites, objectives, model typology and
main research topics. Additional statistics about the number of publica-
tions and citations; the general categories, research areas and journal ti-
tles; and the keywords of the references included in the bibliographic
corpus are given in Appendix A. Section 3 is dedicated to the modelling
results obtained with process-based models. Finally we summarize the
scientist recommendations in order to improve the lake eutrophication
modelling in Section 4, andwe raise some key issues for future achieve-
ments in this research field in the conclusion section.

2. Bibliography analysis

2.1. Study sites

Several lakes have been considered as case studies for the applica-
tion of eutrophication models. An automatic search routine was imple-
mented to search for the names of lakes in the title, abstract and
keywords of the references of the bibliographic corpus. It led to a list
of 118 lake names and 230 references. The repartition of the references
according to the continent, the country and the name of the lakes is
given in Table 1. The evolution over the time of the number of publica-
tions according to the continent of the studied lake is given in Fig. 1.

The most studied lakes are located in North America (mostly in the
USA and Canada) and Asia (in China, Japan, Turkey and Russia). Lakes
of Western Europe (in The Netherlands, Estonia, Switzerland and
Germany) and Northern Europe (in Finland and the United Kingdom)
also received special attention. The Great lakes or Laurentian lakes
(Lakes Erie, Ontario, Michigan, Superior and Huron) located between
the USA and Canada are the subject of numerous publications. Apart
from them, we can mention the particular case of Lake Taihu (China)
that is intensively studied (26 papers), as much as for Lake Erie but at
a different pace. Publications on Lake Erie started in 1984 and on Lake
Taihu in 2004. Among the other lakes, there are many large lakes with
a surface area over 100 km2, as it is the case of Lake Dianchi (China),



Table 1
Number of publications depending on the continent, the country and the name of the studied lake. Only the countries and the lakes that have been found in three ormore than three pub-
lications are listed.

Continent Number of publications Country Number of publications Lake name Area (km2) Number of publications

North America 94 USA-Canada 62 Great lakes 244,000 47
Asia 75 China 51 Lake Erie 25,700 27
Western Europe 20 USA 39 Lake Taihu 2250 26
Northern Europe 19 Netherlands 10 Lake Ontario 19,000 13
Eastern Europe 7 Japan 8 Lake Michigan 58,000 11
Southern Europe 6 Finland 7 Lake Superior 82,000 9
Oceania 6 Canada 7 Lake Dianchi 298 9
Southern Europe 5 Israel 6 Lake Washington 88 8
Africa 5 United Kingdom 5 Lake Huron 60,000 6

Hungary 5 Lake Kinneret 166 6
New-Zealand 4 Lake Balaton 592 5
Estonia-Russia 3 Lake Veluwe 30 5
Greece 3 Lake Chaohu 760 5
Switzerland 3 Lake Okeechobee 1891 4
Germany 3 Lake Peipsi 3555 3
Turkey 3 Lake Bassenthwaite 5 3
Russia 3 Lake Columbia 3 3

Lake Spokane 19 3
Lake Kasumigaura 220 3
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Kinneret (Israel), Balaton (Hungary), Chaohu (China), Okeechobee
(USA), Peipsi (Finland) and Kasumigaura (Japan).

Regarding the time evolution, the lakes that were studied during the
1970s and the 1980s are mainly located in North America (Ditoro et al.,
1987; Snodgrass, 1987, 1985). In the 1990s, modellingworkswere then
carried out on lakes from Western Europe (Asaeda and Van Bon, 1997;
Hollander et al., 1993). And since 2000, there has been a significant in-
crease in modelling studies conducted on Chinese lakes, particularly
since 2010 (Hou et al., 2004; Huang et al., 2012; W. Li et al., 2014). In
parallel, lake ecosystems from South America (Fragoso et al., 2008),
Southern Europe (Alonso Fernandez et al., 2014), Middle East such as
Karaoun reservoir in Lebanon (Fadel et al., 2017) but mainly Lake
Kinneret in Israel (Bruce et al., 2006; Gal et al., 2009) and Africa
(Asaeda et al., 2001) were also modelled.

Finally, models have also been applied to high-altitude or high-
latitude lakes in recent years (Patynen et al., 2014; Romshoo and
Muslim, 2011). Similarly, the preservation of ecological continuity in
the urban and peri-urban environment and the promotion of Nature-
based solutions for the urban water management led to recent model-
ling works of small urban lakes (e.g.Gong et al., 2016; Soulignac et al.,
2017).

2.2. Modelling objectives

Several purposes have led to the development of lake eutrophication
models. Although eutrophicationmodels are not only used for manage-
ment purposes but also for research (Simonsen and Dahl-Madsen,
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Fig. 1. Time evolution of the number of publications according to the continent of the
studied lake.
1978; Vanhuet, 1992), we will focus in this paper mainly on the man-
agement objectives. In the keyword analysis, thewords “management”,
“simulation”, “prediction” and “restoration” appear respectively in 54,
49, 31 and 22 references of the bibliographic corpus, which represents
12%, 11%, 7% and 5% of the references. This shows how lake eutrophica-
tion is a concerning problem for which practical solutions are needed.

In the 1970s, the OECD model (Vollenweider, 1975), that has been
calibrated on a data set coming frommore than 200 lakes of several con-
tinents, was used to predict the eutrophication response to phosphorus
loading. The nutrient load limits in the USA and Canada have been
established from this model.

Some models have been used to assess the conditions for achieving
regulatory or management objectives. For example, the 1D vertical
model DYRESM-CAEDYMwas used to compute the level of phosphorus
input reduction necessary to make the ecological status of Lake Ravn
(Denmark) comply with the requirements of the European Water
Framework Directive (Trolle et al., 2008).

Models are also developed to perform numerical experiments. Re-
cently, the sharp increase in the number of reservoirs worldwide
(World Commission on Dams, 2000), for irrigation, drinkingwater pro-
duction and hydroelectricity, has led researchers to investigate the ef-
fects of eutrophication on the carbon and greenhouse gas cycle in
these water bodies (Chanudet et al., 2012; Stepanenko et al., 2016).
Models are also used to predict the functioning and the impact of a res-
ervoir that is expected to be built (Inkala et al., 1998). Conversely, some
papers focus on the simulation of the impact of climate changes on lake
eutrophication (Elliott and Defew, 2012; Hassan et al., 1998; Schwefel
et al., 2016). It includes the increase of temperature (Markensten
et al., 2010) and the intensification of extreme climatic events such as
floods (Brito et al., 2017) or storms (Schwalb et al., 2015).

Model of lake eutrophication are also often used to predict the evo-
lution of variables of interest. In the short term (one or two weeks), the
objective can be to predict algal blooms, particularly cyanobacteria
blooms. It makes it possible to anticipate the measures to be taken de-
pending on the water body use: recreational activities such as bathing,
production of drinking water, etc. (Huang et al., 2015, 2012; W. Li
et al., 2014; Recknagel et al., 2016). Over longer time-scales, models
are used to predict the response of lake ecosystems to climate change
scenarios or local changes in nutrient input (Chapra and Canale, 1991;
Pipp and Rott, 1995), sometimes with a special focus on cyanobacteria
dynamics (Howard and Easthope, 2002; Markensten et al., 2010;
Varis, 1993).

Finally, models are also developed to test some control strategies for
the restoration of lakes (e.g. Sagehashi et al., 2001). The reduction of
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nutrient loads is the most studied strategy (e.g. Lindim et al., 2015;
Ozkundakci et al., 2011). Some papers focus on biomanipulation
which consists in adding or removing species from the ecosystem
(Jayaweera and Asaeda, 1996; Ogilvie and Mitchell, 1995; Sagehashi
et al., 2001). Other alternative lake restoration techniques are studied,
such as sediment dredging (Sagehashi et al., 2001), water diversion
(Liu et al., 2014), addition of macrophytes (Xu et al., 2014, 1999) or
hypolimnetic oxygenation (Moore et al., 1996; Sahoo and Luketina,
2003; Singleton et al., 2010; Toffolon and Serafini, 2013).

2.3. Model typology

The scientific community early recognized the value of mathemati-
cal modelling for the study of lake ecosystems. Researchers have devel-
oped numerous models of various types. Recent reviews of lake
modelling developments can be found in (Bhagowati and Ahamad,
2018; Jørgensen, 2010). Depending on how the ecosystem is repre-
sented mathematically, we can distinguish several classes of models
(see for example Jørgensen and Fath, 2001; Mooij et al., 2010). Thus,
models are generally first separated in two classes: empirical models
and mechanistic models (Fornarelli et al., 2013).

2.3.1. Empirical models
Empirical models, also called data-oriented models (Afshar et al.,

2012) or data-driven models (Elshorbagy and Ormsbee, 2006) are de-
rived from the available data sets. Theymainly consist in statistical rela-
tionships (called transfer functions) between predictor variables and
response variables of interest. The first empirical models that were de-
veloped were regression models that assume linear relationships be-
tween the variables as it is the case for the nutrient-chlorophyll
relationships given in (Dillon and Rigler, 1974a; Reckhow, 1993). Em-
pirical models present several advantages: they require little a priori
knowledge about the ecosystem processes and the data themselves;
few data and “simple mathematics are needed” and these models are
generic and “give good predictions for a group of lakes” (Vanhuet,
1992). However, when applied to an individual lake, empirical models
often lead to large uncertainties. According to Vanhuet (1992), “empir-
ical models are often applied if only mean annually values are of inter-
est”. However, due to the rapid progress in available computational
power, and to the increasing use of high frequency measurement sys-
tems based on in situ sensors, interest in empirical models is still grow-
ing. These models are used for different purposes, for example to re-
analyse statistical relationships between nutrients and chlorophyll in
different contexts (Brown et al., 2000; Huszar et al., 2006). New statisti-
cal approaches are also proposed to improve the quality of the models.
For example, quantile regression is applied instead of ordinary least
square regression in (Xu et al., 2015a, 2015b) and a Bayesian approach
is used to link nutrient and chlorophyll concentrations in (Freeman
et al., 2009). Bayesian model averaging has also been proposed to pre-
dict the occurrence of harmful algal blooms (Hamilton et al., 2009).
However, these models provide results associated with a very large
level of uncertainty and over time scales too long to study the short-
term response to a decrease in nutrient inputs by the watershed; they
therefore lack precision to be used by managers (Reynolds and Elliott,
2010).

Statistical models of the 1970s and 1980s have evolved significantly
over the last decade towards “data-driven” models. Such models need
large data sets that were not available in the past, but that lakemonitor-
ing systems are now able to collect. Artificial neural networks (ANNs)
are now commonly used to study lake eutrophication (Chen and Liu,
2014; Ieong et al., 2015; Millie et al., 2006; Rankovic et al., 2010), be-
cause of “their recognized capability in predicting highly nonlinear
and complex relationships” (Fornarelli et al., 2013). However, if ANNs
provide interesting prediction tools, their construction is a “highly de-
manding task, particularlywhen dealingwith short and noisy ecological
data” (Chaves and Kojiri, 2007; Fornarelli et al., 2013; Kim et al., 2012).
Other data-driven models using machine learning techniques such as
tree-based models (Fornarelli et al., 2013; Jung et al., 2010; Peretyatko
et al., 2012), support vector machines (Diaz Muniz et al., 2015; Garcia-
Nieto et al., 2018; Xu et al., 2015a, 2015b) or random forests (Hallstan
et al., 2012) are also proposed. For short-term (day to weeks) forecast,
such data-driven models give good results, but for the simulation of
long-term prospective scenarios, they hardly can be used as it is neces-
sary to include knowledge about the driving processes.

2.3.2. Mechanistic models
Mechanistic models, also called process-oriented models

(Arhonditsis and Brett, 2004), process-based models (Fornarelli et al.,
2013) or theoretical models (Vanhuet, 1992), are based on the a priori
knowledge of the driving processes of the ecosystem.Most of them con-
sist in a set of differential or difference equations which describe in de-
tails the biogeochemical processes and whose solution is obtained by
numerical methods. Several review papers focusing on mechanistic
models have been published (e.g. Anagnostou et al., 2017; Arhonditsis
and Brett, 2004).

In the 1980s, mechanistic models generally computed the steady-
state concentration of variables, leading to nonlinear static relationships
between variables of interest (e.g. Imboden, 1974; Schnoor and
O'Connor, 1980; Vollenweider, 1975). These models are called “input-
output” models (Vollenweider, 1975) or black-box models (Teruggi
and Vendegna, 1986) and are sometimes considered as empirical
models whereas their structure is directly deduced from dynamic equa-
tions of biogeochemical processes. The data that generally come from a
group of lakes, are only used to identify themodel parameters with sta-
tistical methods. This approach has been widely used to estimate the
trophic state of numerous lakes (e.g. Jones and Bachmann, 1976;
Dillon and Rigler, 1974b). As they are based on a steady-state assump-
tion, input-outputmodels fail to “predict the dynamic trend of eutrophi-
cation in a large reservoirwith temporal variation in inflowand storage”
(Afshar et al., 2012). Moreover, these models “do not describe the bio-
logical variables which are of main interest” and “do not take into ac-
count the influence of biological processes on the model parameters”
and some “important interactions between several phytoplankton lim-
iting factors, light, phosphorus, nitrogen” (Simonsen and Dahl-Madsen,
1978).

Most mechanistic models are dynamic. Mooij et al. (2010)make the
distinction between “minimal dynamic models”, “complex dynamic
models” and “structurally dynamic model”. Minimal dynamic models
are simple and composed of only a few differential or differences equa-
tions; they “often generate a hypothesis about a possible cause of a phe-
nomenon that would not easily be arrived at intuitively” (Mooij et al.,
2010). On the contrary, complex dynamic models (e.g. CAEDYM,
PCLake, DELWAQ) include numerous variables and processes and are
designed to be used as a virtual reality for the simulation of the whole
ecosystem. They are therefore often coupled with a detailed hydrody-
namic model and validated on field data. A comparison between nine
complex dynamic models commonly used to study eutrophication can
be found in (Anagnostou et al., 2017). Structurally dynamic models
have then been proposed to addflexibility in the structure of themodels
(Jørgensen, 2015). The idea is to make the model parameters vary over
time, based on the expert knowledge or by optimization of a well-
chosen goal function. Kalman filter (Huang et al., 2013) is based on sim-
ilar idea: by addition of a “correction” term in the equations of the
model, it enables to adjust the model variables depending on the mea-
surements. Finally, we can mention the particular case of the BLOOM
model (Los, 1980) which also relies on optimization techniques: it is
based on the computation of the optimal species composition via linear
programming.

In the above-mentioned models, the ecosystem is described at the
population level. The need to take into account some specific features
of the populations, such as size distribution or other traits, led the re-
searchers to use the individual-based approach (DeAngelis and Mooij,
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2005). As it is “too computationally demanding tomodel all individuals
separately” (Mooij et al., 2010), derived approaches that are computa-
tionally more efficient, have been proposed, such as super-individual
models, physiologically structured population models, stage-
structured biomass models, and trait-based models. Mention should
be made of other approaches such as energy system language (e.g.
Rivera et al., 2007).

Mechanistic models have been applied to many lakes (e.g. Cui et al.,
2016; Hou et al., 2004; Takkouk and Casamitjana, 2016), and their con-
tribution to the study of the spatio-temporal dynamics of ecosystems is
widely recognized. In particular, hydrodynamic processes are repre-
sented accurately. Howeverwith regard to biological processes, because
of the complexity of the process interplay, and the lack of knowledge,
mechanistic models still need to be improved. Mechanistic models are
already complex and involve a large set of parameters (sometimes
more than 100) to be calibrated. As a consequence, the outcomes of sim-
ulated scenarios are hampered with great uncertainty (Gal et al., 2014).
The calibration itself is a difficult task because it necessitates the use of
extensive data sets (Elshorbagy and Ormsbee, 2006) and because the
simulations, particularly when coupled with 3D hydrodynamic models,
are computationally demanding. Limitations concerning their applica-
tion at the decision-making level have been emphasized (Fornarelli
et al., 2013). Nevertheless, deterministic models remain best suited to
simulate the spatio-temporal response of lake ecosystems to forcing
change scenarios. Moreover the increase of the computational power
should facilitate the use of such models in the future.

Note that mechanistic models are often deterministic but the sto-
chastic nature of the events and pathways leading to eutrophication
should encourage the use of stochastic components (Kutas and Toth,
1985; Sarkar and Chattopadhayay, 2003; Wang and Qi, 2018).

2.3.3. From box models to 3D models
To reproduce accurately the ecosystem dynamics, mechanistic

models are frequently coupled with a hydrodynamic model that can
be quite simple, simulating only the water temperature and the regime
of temperature stratification and mixing or more complex, simulating
also the current velocities and patterns.

The spatial dimension of the coupled models varies from zero (box
models): in that case “the water body of a lake or of each box within a
lake is represented as a completely mixed stirred tank reactor”
(Nyholm, 1978), to three: the spatial heterogeneity of the ecosystem
is taken into account in all three dimensions. If a box model alone can-
not account for the lake spatial heterogeneity, this can be obtained
using a set of interconnected box models (Muraoka and Fukushima,
1986; Nyholm, 1978). For example, Smiths lake has been divided into
11 boxes, each of them is represented as a well-mixed reactor, con-
nected to its neighbouring boxes through fluxes (Everett et al., 2007).
For the vertical dimension, somemodels simulate the thermal stratifica-
tion by using 2-boxmodelswith one box for the epilimnion and one box
for the hypolimnion (Frisk, 1982; Imboden, 1974; Imboden and
Gächter, 1978; Rodriguez Reartes et al., 2016).

Vertical 1D models are also frequently used to simulate the thermal
stratification and its influence on phytoplankton, nutrient and oxygen
dynamics (Bell et al., 2006; Fennel et al., 2007; Trolle et al., 2008). 2D
models, more rarely used, are developed for large but shallow systems
where thermal stratification is negligible (Fragoso et al., 2008; Huang
et al., 2012; Zhang et al., 2008). 3D models appeared in the early
2000s (Kuo and Thomann, 1983), but it was in the 2010s, due to the in-
crease of computational power and of in situ measurements, that 3D
models have been increasingly applied to lakes (Carraro et al., 2012;
Deus et al., 2013; Leon et al., 2011; Schwalb et al., 2015; Soulignac
et al., 2017).

The coupling of models can be a difficult task. The Framework for
Aquatic Biogeochemical Models (FABM) has been developed to facili-
tate the coupling between several hydrodynamicmodels and ecological
models (Trolle et al., 2011a).
2.4. Main research topics studied with lake models

As shown by the keywords analysis (see Appendix A.4), the models
can represent different components of the ecosystem. In the following
section, wewill analyse more in details how these components are rep-
resented: (1) phytoplankton; (2) nutrients; (3) sediments; (4) oxygen;
(5) cyanobacteria.

2.4.1. Phytoplankton
A significant number of references of the bibliographic corpus (115

references, 26% of the total) aremarkedwith the keyword “phytoplank-
ton” which shows the importance given to the modelling of phyto-
plankton dynamics (Elliott and Thackeray, 2004; Frisk et al., 1999;
Hillmer et al., 2008; Reynolds and Irish, 1997; Rukhovets et al., 2003;
Seip, 1991).

In manymodels, in particular empirical models but also water qual-
ity models, only the total phytoplankton biomass is represented. In re-
cent years, the study of changes in phytoplankton community
composition has received special attention, leading to the development
of phytoplankton succession models (Rigosi et al., 2010). In these
models, the phytoplankton community is divided into different groups,
either bymodelling all the species individually or by incorporating com-
munity information into the models (Hallstan et al., 2012). Generally,
the phytoplankton modelling relies on a representation of the func-
tional characteristics of species (Hallstan et al., 2012; Jones and Elliott,
2007; Kerimoglu et al., 2017; Mieleitner and Reichert, 2008, 2006). In
a few cases, models seek to represent the functioning of individuals in
a phytoplankton population during the different stages of their life
cycle through the use of “agent-based” or “individual based models”
(Hellweger et al., 2008). These models can be used to predict either
short-term changes in phytoplankton community composition (Huang
et al., 2014, 2012), or medium to long term changes (Elliott et al.,
2005; Markensten et al., 2010). 3D models allow for better consider-
ation of spatial heterogeneities in phytoplankton development
(Hillmer et al., 2008; Leon et al., 2012, 2011).

Some studies focus on themodelling of particular processes, such as:
(1) the influence of physical functioning on phytoplankton dynamics
(Bernhardt et al., 2008; Elliott et al., 2009; Elliott and Defew, 2012;
Gulliver and Stephan, 1982; Jones and Elliott, 2007; Na and Park,
2006; Patynen et al., 2014; Verhagen, 1994); (2) the relationships be-
tween external or internal nutrient inputs and phytoplankton dynamics
(Burger et al., 2008; Cui et al., 2016; Li et al., 2015); (3) the interactions
between phytoplankton and macrophytes (Asaeda et al., 2001).

2.4.2. Nutrients
Within the bibliographic corpus, numerous references, precisely 117

references (17%), 46 references (11%) and 74 references (17%), are
marked respectively with the keywords “phosphorus”, “nitrogen” and
“nutrient” (see Appendix A). These references do not necessary focus
on the modelling of nutrients only. Phosphorus is the most studied nu-
trient as it is generally considered as the main limiting nutrient of phy-
toplankton growth inmost lakes (e.g. Schindler, 2006; Sondergaard and
Jeppesen, 2007).

As for phytoplankton, somemodels –mostly the empirical and static
ones – only represent the total phosphorus (Dillon and Rigler, 1974b,
1974a; Nürnberg and LaZerte, 2004; Seo and Canale, 1996) and/or the
total nitrogen concentrations (Brown et al., 2000; Ji et al., 2014;
Milstead et al., 2013; Reckhow, 1993).

However, to describe correctly the nutrient cycle and its dynamics,
the different nutrient forms are often distinguished. The phosphorus is
generally divided into two groups: particulate and dissolved phospho-
rus (Lung et al., 1976). Other models make the distinction between or-
ganic and inorganic nutrients (Deus et al., 2013). Among the dissolved
inorganic nitrogen pool, nitrate and nitrite are often separated from
the ammonium (Lindim et al., 2015; Wu et al., 2017), the nitrification
and denitrification processes being considered as essential for the
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ecosystemdynamics. In complexmodels such as CAEDYM(Hipsey et al.,
2011), in addition to the forms previously mentioned (particulate/dis-
solved, organic/inorganic, nitrate/nitrite/ammonium), the organic com-
partments can also be divided into labile and refractory forms.

Finally the carbon, nitrogen and phosphorus contents of biological
organisms such as zooplankton, phytoplankton, bacteria or macro-
phytes can be described through the use of either constant or variable
stoichiometric ratios (see CAEDYM model (Hipsey et al., 2011)).
Fernandez et al. (1997) introduced as model variables the soluble reac-
tive, the soluble non-reactive and the particulate phosphorus cell quotas
in phytoplankton, which are defined as phosphorus amount per bio-
mass unit (Droop, 1968). The phosphorus content in shoots, secondary
shoots and roots of macrophytes can also be included (Asaeda et al.,
2000).

In order to simulate accurately the nutrient concentration dynamics
in lakes, interactions between nutrients and other components of the
ecosystem are often represented (Asaeda et al., 2001). Nutrient outputs
through evaporation, denitrification and rivers or ground outflows can
be included, as it is the case of nutrient external inputs coming from
thewatershed, the atmospheric deposition, the rainfall, and the ground.
Some papers deal specifically with nutrients external loadings that are
computed from watershed models such as SPARROW (Benoy et al.,
2016; Milstead et al., 2013; Robertson and Saad, 2011), from specific
models such as PCLoad (van Puijenbroek et al., 2004) or from satellite
images (Politi and Prairie, 2018). In Liu (2013), an empiricalmodel is in-
troduced to estimate the nutrient release from industrial manufactur-
ing, livestock breeding, crop agriculture, household consumption and
atmospheric deposition. Nutrient internal loading is increasingly con-
sidered in the models (Burger et al., 2008; Li et al., 2015) as its impact
on the lake nutrient concentrations and the phytoplankton growth lim-
itation is now recognized (Wu et al., 2017). To simulate the internal cy-
cling it can be necessary to take into account some bio-physical
processes such as nutrient upwelling fluxes (Hamblin et al., 2003), sed-
iment resuspension (Chung et al., 2009) and nutrient release from sed-
iments (Riverson et al., 2013).

2.4.3. Sediment
About 10% of the references (46 references out of 438) have “sedi-

ment” as keyword. Sediment is an important pool of nutrients that
play a key role in the nutrient cycles.Most of themodels that specifically
focus on sediment are 0D models, namely box-models (Chapra and
Canale, 1991) or 1D vertical models (Chung et al., 2009; Gudimov
et al., 2016). The main processes considered in these models are:
(1) sediment diagenesis which refers to the set of biogeochemical pro-
cesses within the sediment (Gudimov et al., 2016; Paraska et al.,
2014); (2) sediment resuspension (Chung et al., 2009); (3) and nutrient
and/or oxygen exchanges between the sediment and the water column
(Smits and van der Molen, 1993; Snodgrass, 1987; Walker and
Snodgrass, 1986).

2.4.4. Oxygen
The word “oxygen” appears in 46 of the 438 selected references,

which represents 10% of the bibliographic corpus. Most of oxygen
models are mechanistic (Antonopoulos and Gianniou, 2003; Bell et al.,
2006; Bonnet and Poulin, 2004; Chapra and Canale, 1991), but some
empirical models have also been developed (Chen and Liu, 2014;
Elshaarawi, 1984; Rankovic et al., 2010). Oxygen dynamics is generally
modelled by including one variable, the oxygen concentration, and sev-
eral related processes. Depending on the other variables of the model,
reaeration, aerobic respiration of living organisms, photosynthesis of
plants, oxidation of the organic matter and denitrification can be in-
cluded (Stansbury et al., 2008; Xu and Xu, 2016). Sometimes, sediment
oxygen demand (SOD) is also represented (Antonopoulos and
Gianniou, 2003; Deus et al., 2013; Terry et al., 2017), to account for
the quantity of oxygen uptake by sediment when it is not explicitly
represented. In general, oxygen models are coupled with sediment
models (Gudimov et al., 2016; Moore et al., 1996).

2.4.5. Cyanobacteria
The keyword “cyanobacteria” has been found in 35 references of the

bibliographic corpus, which corresponds to 8% of the selected
references.

According tomany authors (e.g. Carey et al., 2012; Gkelis et al., 2014;
Newcombe et al., 2012; O'Neil et al., 2012), eutrophication and climate
change promote algal blooms and more specifically cyanobacterial
blooms. Since the 1990s, cyanobacteria have been the subject of model-
ling works related to eutrophication (Easthope and Howard, 1999;
Patterson et al., 1994), but the number of articles devoted to this subject
has particularly increased since the mid-2000s. On the 5th of July 2018,
the databases available on theWeb of Science that we queried with the
search equation “TITLE=((lake model*) AND (cyanobacter* OR
bloom*))” gave a list of 71 references, more than 85% of which were
written after 2005. The models of cyanobacteria range from simple re-
gression models (Onderka, 2007) to 3D coupled hydrodynamic-
ecological models (Carraro et al., 2012). Models that are dedicated to
the prediction can be mechanistic but are mainly empirical (Carvalho
et al., 2011; Cha et al., 2014) and increasingly based on “data-driven”
approaches (Obenour et al., 2014; Zhang et al., 2015).

Cyanobacteria, which are prokaryotic phytoplankton, can be repre-
sented either with the same variable as phytoplankton (Shan et al.,
2014) - in that case it is assumed to be dominant throughout the year
– or as a sub-group of phytoplankton. In CAEDYM model (Hipsey
et al., 2011) for example, phytoplankton can be decomposed into five
groups: dinoflagellates, cyanobacteria, chlorophytes, cryptophytes and
diatoms. Cyanobacteria can also appear under the name of “blue-
green algae” as a sub-group of phytoplankton (e.g. Harada et al.,
2013). Some specific processes of cyanobacteria are sometimes repre-
sented, as for example its flotation capacity in the water column
(Aparicio Medrano et al., 2013; Walsby, 2005).

2.5. Model selection

The previous paragraphs give an overview of the different types of
models that are used for the modelling of lake eutrophication. We can
then wonder how to choose among these different types of models. An-
swering to this question is not simple, but general trends can neverthe-
less help our choice. The selection of the model type and structure will
depend on the available knowledge and data, and on the modelling ob-
jective. With little knowledge about the ecosystem, only empirical
models can be considered. Regression models can be obtained from
few data and are useful to estimate mean annual values. On the other
hand, data-driven models based on machine learning techniques re-
quire a large amount of data and manage to make short-term predic-
tion. On the opposite, process-based models will be considered only if
sufficient knowledge about the processes of the ecosystem is available.
Data are nevertheless also required for such models, especially for the
calibration of the model parameters. However, the results of process-
based models can also be used for qualitative studies. In that case, the
model outputs are validated by confrontationwith the already acquired
knowledge. Finally, when both knowledge and data are available, we
can considermixed approaches. For example,we can use a Kalman filter
technique that requires data to adjust theparameters of a process-based
model. Concerning the structure of themodel, the variables to be repre-
sented are the variables of interest for the study, namely the variables
that we want to simulate and the variables on which they depend. In
the same way, we will represent the processes of interest and the
ones that we assume to have an impact on the systemwe intend to rep-
resent. The time-scale of the targeted simulations will also determine
the processes to be included. For example, it may be useless to take
into account daily variations of some processes if we are interested on
the annual variations of the ecosystem. Finally, depending on the level
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of ecological description (individuals, species, populations, etc.), differ-
ent types of models can be considered: individual based-models, popu-
lation equations, meta-ecosystems.

3. Main results obtained with process-based models

In the sequel, we only review the results obtained with process-
based models because this type of models is required when models
are to be used in prospective scenarios. Indeed, for assessing ecosystem
evolution, at long or mid-term, in response to local and global changes
(e.g. climate change, urbanization, …) or restoration actions, it is man-
datory in our opinion that themain processes involved in the ecosystem
functioning are taken into account.

Many eutrophication models of lake ecosystems have been applied
to study sites for which monitoring data are available. Model descrip-
tion, including represented processes and equations, as well as calibra-
tion and validation results are presented in many articles (e.g. Bruce
et al., 2006; Elliott and Thackeray, 2004; Elliott et al., 2007; Hamilton
and Schladow, 1997; Leon et al., 2011; Lewis et al., 2002; Los and
Brinkman, 1988; Reynolds et al., 2001a, 2001b; Riley and Stefan, 1988;
Rukhovets et al., 2003). These models are mainly applied to simulate
phytoplankton biomass, nutrients, oxygen, and in some cases
cyanobacteria. The results of these models are given in the sequel.

3.1. Phytoplankton dynamics

Aimed at better understanding phytoplankton dynamics, process-
based models are run at seasonal to multiannual time scales. The main
issues addressed are as follows: biomass of the main phytoplankton
groups and/or of total phytoplankton, total chlorophyll concentration,
values at different depths or mean values in the epilimnion, phenology
of phytoplankton blooms (biomass peak dates, duration of threshold
overpass), etc.

Phytoplankton data are generally biovolumes of species identified
by microscopy. Because of the long time necessary to obtain this type
of data, the measurements are frequently performed in mean samples,
for example collected in the euphotic layer or at a specific depth
(Bruce et al., 2006; Elliott et al., 2007). Chlorophyll is frequently consid-
ered as a proxy of phytoplankton biomass. For example, the results of
multiannual simulations over 11 years in Lake Erken (Sweden) are
expressed as monthly mean total chlorophyll in the surface layer
(0–10 m) (Elliott et al., 2007).

In large lakes, 3D modelling can be required. Hillmer et al. (2008)
compare the results of 1D vertical (DYRESM-CAEDYM) and 3D
(ELCOM-CAEDYM) models on the same study site, Lake Kinneret. Tak-
ing into account the horizontal heterogeneity of the lakemakes it possi-
ble to obtain better results. In Lake Erie (Leon et al., 2011) mesoscale
physical processes such as upwelling and general circulation in the
lake have been modelled with the 3D ELCOM model. The spatio-
temporal evolution of the variables is well simulated even if the authors
underline the difficulty of comparing the simulation results of the phy-
toplankton successionwith themeasurements because of the necessary
aggregation of the species in the model.

Concentrations of chlorophyll or carbon are derived from field mea-
surements of biovolumes, by using conversion factors, which vary
widely between authors. The quality of the phytoplankton biomass re-
sults, when evaluated in relation to the total chlorophyll concentration,
is generally considered satisfactory. To judge the acceptability of the re-
sults, one criterion frequently used is that the model results remain
within a range of two standard deviations from the mean of the mea-
sured values (Elliott et al., 2007).

Functional traits have been introduced in the definition of phyto-
plankton groups in order to better model the functional characteristics
of an ecosystem and its responses to changes in nutrient inputs
(Mieleitner and Reichert, 2008). This should also make the model
more generic and allow better portability to other study sites.
Nevertheless the predictive capacity of these models remains modest.
The ability of 124models to replicate the dynamics of functional phyto-
plankton groups has been studied recently (Shimoda and Arhonditsis,
2016). The authors note a very large variability in the characterization
of the functional phytoplankton groups as well as in the mathematical
formulations that describe the main physiological processes of these
groups (growth, nutrient absorption kinetics, mobility, etc.).

3.2. Cyanobacteria dynamics

Cyanobacteria strongly impair lake ecological functioning. Moreover
they cause significant public health problems.Modelling their dynamics
and the processes that control them are therefore the subject of many
studies (Belov and Giles, 1997; Carraro et al., 2012; Elliott, 2012;
Guven and Howard, 2006; Hense and Beckmann, 2006). According to
many authors (e.g. Carey et al., 2012; Gkelis and Zaoutsos, 2014;
Newcombe, 2012; O'Neil et al., 2012; Paerl and Huisman, 2008; Paerl
and Paul, 2012), the ongoing climate change is likely to result in an in-
crease in global cyanobacterial biomass as well as in occurrences of
blooms.

Guven and Howard (2006) provide a review and critical analysis of
12 main models of cyanobacteria development in lake ecosystems.
Two modelling approaches are discussed: deterministic models and
neural network models. These models generally focus on describing ei-
ther the biological processes involved in the growth of biomass or the
processes involved in themotion of cells. Fewpeople combine all the as-
pects that affect the dynamics of cyanobacteria.

Migration in the water column is a characteristic process of
cyanobacteria: the rate of settling or flotation in the water column
varies according to their density, which itself varies according to the
amount of carbohydrates and volume of vacuoles in the cells. This is a
very complex, non-linear process, with many feedbacks. It involves
the intensity of photosynthesis, which is itself a function of the intensity
of light in the water column, and therefore of the location of
cyanobacteria in the water column. In addition, the different species of
cyanobacteria form colonies whose morphometric characteristics affect
the mobility. The models depict the migration process with different
levels of complexity.

In Kromkamp and Walsby (1990), the density change depends on
two simultaneous processes: an increase controlled by the light inten-
sity received by the cells and a decrease as a function of time. The pa-
rameter values of the equations were obtained from experimental
data of density change of a cyanobacterium species (Planktothrix
aghardii) as a function of time and light intensity. The results show
that the size of the colonies influences the migration rate but not the
depth reached in the water column. The biomass vertical location fluc-
tuates according to the rise of the floating colonies and the settling of
others towards the bottom. Phosphorus deficient cells migrate to
greater depths than light-limited cells.

Howard et al. (1996) propose a cyanobacterial growth and transport
model that accounts for, on the one hand, the photosynthesis produc-
tion, the cell density variation and the vertical migration of cells and
on the other hand, the turbulent mixing in the water column that also
affects cyanobacteria motion.

Belov and Giles (1997) present a dynamic model of cyanobacteria
motion based on the properties of regulation of cell buoyancy under
simplified conditions: an isothermal water column where nutrients
are not limiting factors. The main factor controlling cell mobility is the
nycthemeral cycle of light. The article focuses on analysing under
these conditions the mathematical behaviour of the equations involved
in the model.

One of the specificities of cyanobacteria is the ability of certain spe-
cies, the diazotrophic species, to fix atmospheric nitrogen. Accounting
for this process allows the models to better represent the control of
the succession of species by the available nutrients. Hense and
Beckmann (2010) propose several versions of a model of the life cycle
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of diazotrophic cyanobacteria, considering the active phase of nitrogen
fixation and the vegetative phase of cells. The ecological characteristics,
life cycle of cyanobacteria and interactionswith hydrodynamics are par-
ticularly complex (Fig. 2). The simplified approach satisfactorily de-
scribes the dynamics of cyanobacteria, in particular the time patterns
of blooms and the intensity of nitrogen fixation. The proposed set of
equations can be inserted into different types of lake models of
cyanobacterial dynamics.

In Lake Pusiano, Carraro et al. (2012) validated the 3Dmodel ELCOM
coupled to the CAEDYMbiological model with high frequencymeasure-
ments to identify the factors, including hydrodynamic factors, which
drive the spatial distribution of the cyanobacterium P. rubescens.

Regarding the impact of climate change on cyanobacteria, Elliott
(2012) reviewed different predictive models. Most of the analysed re-
sults show an increase in the relative biomass of cyanobacteria due to
an increase in water temperature, an increase in residence time and
an increase in nutrient loading from the watershed. The main effect of
climate change is to alter the phenology of cyanobacterial blooms and
the abundance of their biomass. The lake food web is also changing
due to the low nutritional value of cyanobacteria for zooplankton.

3.3. Integration of models in early warning system

For management applications, models are often integrated into
warning systems to predict short-term phytoplankton blooms, particu-
larly to improve operational control of cyanobacterial blooms (Shimoda
and Arhonditsis, 2016). Most articles describe the models used and the
architecture of the system. But few a posteriori comparisons of the fore-
casts with measurements made afterwards, are performed.

In order to predict algal blooms in Lake Taihu, the EcoTaihu model
has been integrated into a Windows software platform (Zhang et al.,
2013). The results of the simulations generally show a good agreement
with themeasurements. But the authors also point out that nomodel is
able to integrate all ecological processes. The forecast discrepancies are
not only due to the model but also to data uncertainties and because
modelling results and field measurements are not directly comparable.

3.4. Ecosystem response to local management strategies

Eutrophication models can be used to study prospective scenarios
and compare the impact of local management alternatives. Several
management scenarios of Los Molinos reservoir (Argentina) were
tested with a model describing the dynamics of nutrients and phyto-
plankton (Rodriguez Reartes et al., 2016). After calibration and valida-
tion of the model, scenario simulation results highlighted the impact
on water quality of livestock husbandry practices and of insufficient
wastewater treatment, especially septic tanks. According to the model
simulations, the combination of wastewater treatment in the reservoir
direct watershed and measures to reduce nutrient loading (N and
Fig. 2. General sketch of main steps of cyanobacteria life cycle (Hense, 2010).
P) from livestock would be the most beneficial to preserve the quality
of the lake.

The effects of different actions to reduce eutrophication of a lake in
Sweden (reduction of nutrient inputs, biomanipulation, herbicide appli-
cation) were analysed with a vertical 1D biogeochemical model (Pers,
2005). According to the simulation results, the best effects are obtained
with a nutrient reduction and biomanipulation of the fish species.

The comparison of different prospective scenarios should include a
reference scenario. This is not the case in most of the performedmodel-
ling studies. This is due to the lack of sufficiently long-term historical
data sets. Moreover, it is particularly complex to achieve a reliable as-
sessment of the environmental conditions prior to the onset of eutro-
phication. For total phosphorus, reference values of the watershed
loading can be estimated by different approaches (export coefficients,
morpho-edaphic indices, paleolimnological estimates). But the results
of these different methods have rarely been compared. A study per-
formed on 35 sub-alpine lakes in northern Italy (Salerno et al., 2014)
highlighted the need of deterministic watershed models to estimate
the total reference phosphorus inputs.

An expected outcome of the prospective simulations regards the
level of nutrient loading by the watershed that must not be overpassed
to avoid eutrophication of a lake. But even when the targets to be
achieved are derived from modelling results, the authors remind that
these values must be considered with caution as the models are not
able to anticipate accurately the changes in the trophic web that
would occur in response to nutrient reduction (e.g. Trolle et al., 2008).

Modelling studies mainly focus on the advantages of the modelling
approach developed and its transferability to other systems. The
model is generally implemented on a particular study site for which a
sufficient data set exists. Despite the transferability of process-based
models, they must be implemented in a configuration adapted to the
characteristics of each lake in order to estimate the required threshold
of nutrient loading (Trolle et al., 2008). Moreover, due to the complexity
of the ecological functioning of lake ecosystems, many processes are not
taken into account or are very simplified in the models (role of sedi-
ment, change of phytoplankton assemblages,mobility of certain species,
etc.). When recommendations are made, the authors are very cautious
and they immediately nuanced the recommendations. Thus, the total
phosphorus loading which would allow Lake Ravn (Denmark) to
achieve the objectives of good ecological status required by the
European Framework Directive on Water, was estimated thanks to a
vertical 1Dmodel (Trolle et al., 2008). The authors recommend a reduc-
tion of at least 50% of the total phosphorus inputs by the watershed. In
parallel, they raise awareness on the possible cascade effects within
the food web, not simulated by the model, and which could lead to an
unpredictable evolution of the ecosystem.

3.5. Ecosystem response to global changes

A common application of models is the study of expected effect of
global changes, especially climate change. Climate change will impact
precipitation patterns, wind speeds, solar radiation, and air temperature
(e.g. Arnell and Gosling, 2013; Beniston et al., 2007; European Environ-
ment Agency, 2012). Most models simulate the effect of climate change
on different aspects of lake functioning related to eutrophication:
mainly oxygen concentrations (Fang and Stefan, 1997, 2009), phyto-
plankton growth (Hassan et al., 1998) and the dominance of
cyanobacteria (e.g. Elliott, 2012). The consideration of climate change
ismainly based on two approaches: (1) the use of outputs from regional
climate models treated by downscaling techniques to obtain meteoro-
logical forcing at the studied lake level; or (2) a meteorological forcing
sensitivity analysis where actual measured meteorological data are
modified by a range of factors.

Very often the analysis of the influence of climate change, in partic-
ular of global warming, focuses on cyanobacteria. Global warming is
supposed to have a positive effect on the increase of cyanobacteria
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biomass (e.g. Carey et al., 2012; Newcombe, 2012; Paerl and Paul, 2012;
Posch et al., 2012;Wagner andAdrian, 2009). Nevertheless, very few re-
liable predictive simulations of the dominance of cyanobacteria have
still been performed (Elliott, 2012).

In Lake Windermere (Great Britain), the effect of an increase in
water temperature and phosphorus loading on phytoplankton has
been studied with the PROTECH model (Elliott, 2011). The results
showanearlier spring peak of diatoms (2–3 days/°C). The biomass of di-
atoms, which is controlledmainly by light is little changed. On the other
hand, the biomass of cyanobacteria increases with the increase of the
two factors studied. These two factors act in synergy, the predominant
influence being due to phosphorus inputs. The dominance of
cyanobacteria is enhanced in late summer. Temperature impactsmainly
succession and seasonal phytoplankton community whereas nutrient
inputs affect the amount of produced biomass.

Howard and Easthope (2002) used the predictions of the HADCM2
climate model over a period of 90 years, until the end of the 21st cen-
tury, to simulate the evolution of the growth of the cyanobacterium
Microcystis in Farmoor Lake (Great Britain). The main meteorological
variables used are the monthly averages of wind speed, cloud cover
and solar radiation. The results do not show an overall increase in the
annual biomass of cyanobacteria. On the other hand, the growth period
of cyanobacteria would be longerwith higher biomass than currently in
spring (May) and autumn (September). These results only quantify the
direct effect of climate change because the long-term change in rainfall
on loading from the watershed is not taken into account.

The effect of global warming predicted until the end of the 21st cen-
tury has been studied in three lakes in New Zealand (Trolle et al.,
2011b). A regional climatemodel based on the IPCCA2 scenario predicts
an average annual increase in air temperature of about 2.5 °C in the
2100s in the studied lake region. The future climate conditions are de-
scribed in a very simplified way; only the change of air temperature is
taken into account. The average annual increase in air temperature fore-
cast for the year 2100 has been added to the average daily temperatures
over the period 2002–2007. Themorphometric and trophic characteris-
tics of the three modelled lakes are different. The first is quite deep
(33.5 m) and oligo-mesotrophic, the second shallow (13.5 m) and eu-
trophic and the third very shallow (2.5 m) and very eutrophic.
Cyanobacteria are present only in the second lake. Modelling results
show an increase in phytoplankton biomass in summer and an increase
in the dominance of cyanobacteria in the second lake. The average an-
nual biomass increases in the oligo-mesotrophic and eutrophic lakes
but decreases in the highly eutrophic lake. The phytoplankton biomass
decreases in winter and spring, especially diatoms.

A recent analysis of ten modelling studies (Elliott, 2012) on the im-
pact of climate change on cyanobacteria has shown an increase in the
relative abundance of cyanobacteria with an increase in water temper-
ature, an increase in the residence time of the water and an increase in
nutrient loading by the catchment.

The direct effects of climate change mainly relate to phenology of
phytoplankton dynamics but little to the annual amount of total bio-
mass. These changes in phytoplankton succession may result in nitro-
gen limitation in some lakes, and thus favour the dominance of
nitrogen-fixing cyanobacteria. In addition, warmer water in spring can
increase nutrient uptake by the phytoplankton community, which in
some lakes causes nitrogen limitation later in the year, potentially
favourable for some nitrogen-fixing cyanobacteria. The increase in the
relative abundance of cyanobacteria may also impact the higher levels
of the ecosystem food web due to the low grazing of cyanobacteria by
zooplankton.

3.6. Coupled models of lake and watershed

Coupling watershed modelling and lake response modelling is a key
issue for an efficient use of models in eutrophication control. But to our
knowledge, few research results are still available.
Most often, the coupling between watershed model and lake model
is not effective. A hydrological model of Lake Cayuga watershed (USA)
has provided estimates of nutrient loading by lake tributaries (Haith
et al., 2012). But this watershed model is not coupled with a model of
the lake itself. This is also the case for Lake Gucheng watershed in
China (Huang et al., 2009) or for Lake Tahoe watershed (USA)
(Riverson et al., 2013).

Since the 2000s, integrated modelling of the watershed and the lake
has been undertaken. Lake watershed modelling is conducted with the
objective of providing the lake model with input data to then simulate
the lake response to watershed loadings. But the limits of these coupled
models come from the cumulative uncertainties of the hydrological
model and the lake model. If the inflows are fairly well simulated, the
main uncertainties are due to errors in computing nutrient concentra-
tions in the lake tributaries (Liu et al., 2006; Silva et al., 2016; van
Puijenbroek et al., 2004).

Carraro et al. (2012) propose for Lake Pusiano (Northern Italy) a
coupled model of loading by thewatershed (SWATmodel) and a deter-
ministic model of the lake response (DYRESM-CAEDYMmodel). The re-
sults obtained for different scenarios are discussed and compared, but
noquantified recommendation for a percentage of reduction in loadings
or concentrations to be achieved is given.

Very few studies have focused on coupling climate, watershed and
lake models. To study phytoplankton biomass in a large shallow lake,
Lake Malaren (Sweden), a regional climate model, a hydrological
model, and a lake model were used in sequence (Markensten et al.,
2010). In this lake, warming increases the duration of phytoplankton
production, slightly increases total biomass, and modifies the phyto-
plankton composition to the advantage of nitrogen-fixing
cyanobacteria. According to the authors, the change in the hydrological
regime and therefore the nutrient loading to the lake drives the domi-
nance of cyanobacteria.

The aquatic continuum, fromheadwaters to the ocean, is at the heart
of current research on biogeochemical processes in inland waters. This
is reflected in the topic of the special issue of Limnology andOceanogra-
phy, a reference journal in the field, entitled “Headwaters to oceans:
ecological and biogeochemical contrasts across the aquatic continuum”
(Xenopoulos et al., 2017). In this area, progress on knowledge integra-
tion is rapid and modelling of the continuum, still in its infancy, should
make significant progress in the coming years.

4. Discussion and perspectives

The development of lake eutrophication models is still a growing
field in limnology. However several authors complain that the perfor-
mances of the biological models remain relatively low (Mooij et al.,
2010; Shimoda and Arhonditsis, 2016). According to Trolle et al.
(2011a), the problem is not the “lack of knowledge about ecosystem
functioning, but rather the limited extent of open communication, inad-
equate collaboration and lack of suitable structure to support the
aquatic scientific modelling community”. In their paper, these authors
argue for the adoption of good practices for developing, using and shar-
ing models effectively and correctly, which should help improving the
models. Mooij et al. (2010) identified two challenges for making further
progress in lake ecosystem modelling: to avoid developing more
models largely following the concept of others (‘reinventing the
wheel’) and to avoid focusing on only one type of model, while ignoring
newand diverse approaches that have become available (‘having tunnel
vision’) (Mooij et al., 2010). This suggests to merge different modelling
approaches, such as 1D hydrodynamic-ecological model and super
individual-based model (Makler-Pick et al., 2011), or machine learning
models and physical dynamical models (Crisci et al., 2017).

To improve the models, the complexity of the predictive ecosystem
models should also be increased, because “there is a lot of knowledge
that we are not using” (Hellweger, 2017). The most striking example
is the almost systematic use of the Monod function for representing
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the growth of a phytoplankton population whereas the use of internal
(vs. external) nutrient quota (Droop, 1968) could be represented
(Hellweger, 2017). Another example is the use of Michaelis-Menten ki-
netics for nutrient uptake by phytoplankton, which does not enable to
represent the variable stoichiometry of biomass and of nutrient uptake
(Flynn, 2010, 2005; Smith et al., 2014) whereas size- and trait-based ki-
netics give promising results (Fiksen et al., 2013; Smith et al., 2014). In
the same way, the process of mineralization of the organic matter by
bacteria, which has been proved to be important for the cyanobacteria
dynamics, is often represented as a simple chemical reaction with a
rate either constant or dependent on the bacteria concentration at
best (Y. Li et al., 2014). Xu et al. (2015a, 2015b) also claim that the use
of more advanced statistical methods, such a quantile regression, can
improve the models of lake eutrophication.

Even if the relationship between complexity and uncertainty of
models is not so clear (Håkanson, 1995; Hellweger, 2017; Jørgensen,
1990), it is obvious that the outcomes of simulated scenarios are limited
by great uncertainty (Arhonditsis and Brett, 2004). Some authors have
attempted to quantify model errors due to uncertainty (Bennett et al.,
2013; Hongping and Yong, 2003; Reckhow, 1994; Scavia et al., 1981;
Snodgrass, 1985; Stow et al., 1997; Van Straten and Keesman, 1991),
but few models include thorough uncertainty analyses (Hongping and
Yong, 2003).

This uncertainty partly comes from the large set of parameters (some-
timesmore than 100) to be calibrated. To quantify the effect of parameter
uncertainties on themodel outputs, sensitivity analysis can be conducted
(Arhonditsis et al., 2007; Brett et al., 2016; Janse et al., 2010; Yi et al.,
2016). However, as for general uncertainty analysis, sensitivity analysis
is not always performed. Two articles (Arhonditsis and Brett, 2004;
Shimoda and Arhonditsis, 2016) have investigated whether the conven-
tional methodological procedures for sensitivity analysis, calibration and
validation, are reported in the papers or not. They show that only half of
the papers present sensitivity analysis results and that “manual” or “trial
and error” calibration is the most applied calibration procedure. Very
few papers use automatic calibration procedures that are either based
on optimization or on Monte Carlo and Bayesian inference. Moreover
these papers only deal with 0D or 1D models.

Another part of output uncertainty comes from the model structure
itself. To reduce it, several “ensemble approaches” have been proposed,
similar to those used for weather forecasts. In (Gal et al., 2014; Nielsen
et al., 2014) an ensemble of model runs obtained with several “equiva-
lent” set of parameters are used to improve themodel predictive power.
In (Trolle et al., 2014), the same scenario is simulated using an ensemble
of models. Bayesian model averaging (BMA) can also be used to im-
prove the predictive performance of themodels (Hamilton et al., 2009).

Another effective way is to conduct cross-comparisons of similar
models on the same study sites. This type of comparative studies has
been performed recently for 1D models (Bruce et al., 2018; Perroud
et al., 2009; Stepanenko et al., 2012, 2010). To our knowledge very
few attempts have been made for hydrodynamic-ecological models
(Trolle et al., 2014) and none for 3D models.

Nevertheless, to perform such studies, portability of the model soft-
ware is required. This type of concern is just starting to be addressed by
the modeller community. A Fortran-based Framework for Aquatic Bio-
geochemical Models (FABM - Bruggeman and Bolding, 2014; Trolle
et al., 2011a, 2011b) enables to easily couple hydrodynamic models
with ecological models, whereas the project “Framework for Interopera-
ble Freshwater Models” (FIFM) has investigated flexible computer-
based frameworks for integrating freshwater models (Elliott et al.,
2014). The Database Approach To Modelling (DATM -Mooij et al., 2014)
enables to automatically implement the same model under different
frameworks. In order to facilitate the comparison of models or the appli-
cation of onemodel on several lakes, it is also necessary to share the codes
and the data sets (Mooij et al., 2010). Just as importantly, the data sets
must be of good quality and enriched with meta-information (such as
the type of sensor used and their accuracy). This is mandatory for the
good interpretation and use of the data (Mooij et al., 2010). The use of
high-frequency sensors (Brentrup et al., 2016; Carraro et al., 2012;
Soulignac et al., 2017), as well as satellite images (Curtarelli et al., 2015;
Dash et al., 2011; Tyler et al., 2006; Yacobi, 2006), will also enrich signif-
icantly the data sets. Using such enriched and good-quality data sets can
improve the model performances. Indeed, the more data we use for cali-
bration, comparison with model outputs or to feed machine learning
models, the greater the accuracy of the model will be.

5. Conclusion

Early lake eutrophication models in the 1970s were empirical models
linking in-lake phosphorus and chlorophyll concentrations, as well as
models of watershed nutrient loading and in-lake chlorophyll concentra-
tion. Thesemodels, very easy to implement,were useful for providing tar-
gets of nutrient and chlorophyll concentrations, required for reducing or
controlling lake eutrophication. Dynamic deterministic models have
been then developed, whose characteristics are very diverse as regards
the spatial dimension (well-mixed system, 1D vertical to 3D models),
the sediment exchangewith thewater column, the complexity of ecolog-
ical functioning and the hydrodynamics. Most of these models represent
the pelagic zone of the lake. The most represented state variables include
phytoplankton, considered as a single group or divided intomain groups,
nutrients (phosphorus and nitrogen) and oxygen. Among the phyto-
plankton groups, cyanobacteria have been increasingly represented
since the mid-2000s. The dynamics of macrophytes and their possible
competition with phytoplankton are accounted for in some rather recent
models. One notable development over the past decade has been the
modelling of phytoplankton dynamics based on the functional traits of
dominant species. The objectives of the modelling studies are frequently
related to the assessment of the expected mid-and long-term evolution
of lake eutrophication under the influence of global changes (nutrients,
urbanization, climate…). Among these changes, the effects of global
warming are the most frequently addressed. At these time scales, a
main barrier thatmodels have to face, regards the evolution of the phyto-
plankton succession and its cascading effects on lake ecological function-
ing. Recent evolutions show a strong coupling between modelling and
acquisition of new types of experimental data (remote sensing, high fre-
quency field sensors, biology molecular data…). A strong trend seen in
papers published in the last decade is the increasing number of applica-
tion of 3Dmodels coupledwith satellite images of phytoplanktonbiomass
spatial distribution.
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Appendix A

In this appendix,wefirst give somedetails about themethod applied
for obtaining the bibliographic corpus considered in this review. We
then present some simple statistics about: (1) the number of publica-
tions and citations; (2) the general categories, research areas and jour-
nal titles; (3) the keywords of the references included in the
bibliographic corpus.
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A.1. Selection of the bibliographic corpus

The present review was performed, using the bibliographic search
tool proposed by Web of Science. The first database search of February
2017 (Crave et al., 2017) was updated on 1st June 2018with the follow-
ing search equation:

TITLE=((eutrophic* OR oxygen* OR hypox* OR anox* OR phyto-
plankton* OR “harmful alga”* OR nutrient* OR cyanobact* OR
proliferat*) AND (model* OR numerical* OR simulat*) AND (lake*
OR reservoir*))

All citation databases were consulted for all available years (from
1956 to 2018). Among the references obtained, we kept only the journal
articles written in English. This query provided us with a list of 487 ref-
erences from which we removed 49 references that were not relevant.
We finally get a bibliographic corpus of 438 references among which
431 references are indexed in the Web of Science core collection, 62 in
the MEDLINE database, 1 in the KCI Korean Journal Database and 1 in
the Scientific Electronic Library Online (SCIELO) database. Each refer-
ence may be indexed in several databases.

A.2. Number of publications and citations

The first referenced paper (Droop, 1968)was published in 1968. Since
then, the number of publications per year has obviously increased (Fig. 3),
following the global tendency observed for the total number of scientific
publications. In average, 8.6 articleswere published per year, and each ar-
ticle was cited 17 times. The total number of citations is 7447, which cor-
responds, since 1968, to a mean value of 146 citations per year.

A.3. General categories, research areas and journal titles

The repartition of the references is given in terms of general catego-
ries, research areas and journal titles (Table 2). We note that most of
the references of the bibliographic corpus come from the “science tech-
nology” and “life sciences biomedicine” categories. This shows that the
studies aremotivated both by academic objectives to improve knowledge
and by more applied objectives to develop management strategies (see
Section 2.2). One third of the references (respectively one quarter) also
belongs to the category of “physical sciences” (respectively “technolo-
gies”), knowing that one reference may belong to several categories.

The repartition according to the research areas shows that lake eu-
trophication modelling is a multi-disciplinary field of research. Most of
the references (two thirds) are in the field of “environmental sciences
and ecology”, but the research areas of “marine and freshwater biology”,
“water resources” and “engineering” also contain a significant number
of references (from 20 to 30%). Note that some publications in “mathe-
matics” and “computer science” are also included in the bibliographic
corpus, which is not surprising as we focus on modelling studies.
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Fig. 3. Number of publications and citations per year
The journal in which most papers (16%) have been published is
“Ecological modelling”, perhaps because it is one of the few journals in
environmental sciences that only focus on modelling. The scope of the
other most represented journals cover the research area of water sci-
ences in general, without restriction to modelling approaches.

Table 2
Repartition of the publications according to their general categories, their research areas
and the journal title (provided by Web of Science). Only the research areas (respectively
the journal titles) that representmore than 2% (respectively 1.5%) of the bibliographic cor-
pus are listed.
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A.4. Keywords

An automatic search routine was implemented to sort the keywords
according to the number of publications in which they appear. The rou-
tine does not search for an exactmatch but for an inclusion. For example
a publication with “lake models” as keyword will be counted for the
keywords “lake model”, “models”, “model” and “lake”. Only the key-
words that appear inmore than20publications of the bibliographic cor-
pus have been considered. The obtained sorted list has then been
divided in sub-groups as presented in Table 3. Not surprisingly the
most common keywords are “lake”, “water” and “eutrophic”.

This classification of the keywords give an interesting overview of
the research works presented in the analysed bibliographic corpus.



Table 3
Classification of keywords according to the number of publications in which they appear.

Study sites Objectives What is represented in the model

226 Lake 54 Management 117 Phosphorus 33 Load

213 Water 49 Simulation 115 Phytoplankton 32 Environment

147 Eutrophic 31 Prediction 74 Nutrient 31 Climate

55 Reservoir 22 Restoration 56 Sediment 26 Temperature

46 River 46 Nitrogen 22 Light

39 Shallow Methods 46 Oxygen on …

27 Erie 229 Model 44 Chlorophyll 97 Water quality

25 Fresh water 21 Regression 35 Cyanobacteria 64 Dynamics

24 Bay 21 Sensitivity analysis 34 Iron 47 Ecosystem

21 Great lakes 27 Algae 37 Growth

23 Zooplankton 29 Blooms

Study of the impact of … 

2996 B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
References

Afshar, A., Saadatpour, M., Marino, M.A., 2012. Development of a complex system dy-
namic eutrophication model: application to Karkheh Reservoir. Environ. Eng. Sci.
29, 373–385. https://doi.org/10.1089/ees.2010.0203.

Alonso Fernandez, J.R., Garcia Nieto, P.J., Diaz Muniz, C., Alvarez Anton, J.C., 2014. Model-
ing eutrophication and risk prevention in a reservoir in the Northwest of Spain by
using multivariate adaptive regression splines analysis. Ecol. Eng. 68, 80–89.
https://doi.org/10.1016/j.ecoleng.2014.03.094.

Anagnostou, E., Gianni, A., Zacharias, I., 2017. Ecological modeling and eutrophication-a
review. Nat. Resour. Model. 30, e12130. https://doi.org/10.1111/nrm.12130.

Anderson, D.M., Cembella, A.D., Hallegraeff, G.M., 2012. Progress in understanding harm-
ful algal blooms: paradigm shifts and new technologies for research, monitoring, and
management. Annu. Rev. Mar. Sci. 4, 143–176. https://doi.org/10.1146/annurev-ma-
rine-120308-081121.

Antonopoulos, V.Z., Gianniou, S.K., 2003. Simulation of water temperature and dissolved
oxygen distribution in Lake Vegoritis, Greece. Ecol. Model. 160, 39–53. https://doi.
org/10.1016/S0304-3800(02)00286-7.

Aparicio Medrano, E., Uittenbogaard, R.E., Dionisio Pires, L.M., van de Wiel, B.J.H., Clercx,
H.J.H., 2013. Coupling hydrodynamics and buoyancy regulation in Microcystis
aeruginosa for its vertical distribution in lakes. Ecol. Model. 248, 41–56. https://doi.
org/10.1016/j.ecolmodel.2012.08.029.

Arhonditsis, G., Brett, M., 2004. Evaluation of the current state of mechanistic aquatic bio-
geochemical modeling. Mar. Ecol. Prog. Ser. 271, 13–26. https://doi.org/10.3354/
meps271013.

Arhonditsis, G.B., Qian, S.S., Stow, C.A., Lamon, E.C., Reckhow, K.H., 2007. Eutrophication
risk assessment using Bayesian calibration of process-based models: application to
a mesotrophic lake. Ecol. Model. 208, 215–229. https://doi.org/10.1016/j.
ecolmodel.2007.05.020.

Arnell, N.W., Gosling, S.N., 2013. The impacts of climate change on river flow regimes at
the global scale. J. Hydrol. 486, 351–364. https://doi.org/10.1016/j.
jhydrol.2013.02.010.

Asaeda, T., Van Bon, T., 1997. Modelling the effects of macrophytes on algal blooming in
eutrophic shallow lakes. Ecol. Model. 104, 261–287. https://doi.org/10.1016/S0304-
3800(97)00129-4.

Asaeda, T., Trung, V.K., Manatunge, J., 2000. Modeling the effects of macrophyte growth
and decomposition on the nutrient budget in Shallow Lakes. Aquat. Bot. 68,
217–237. https://doi.org/10.1016/S0304-3770(00)00123-6.

Asaeda, T., Trung, V.K., Manatunge, J., Van Bon, T., 2001. Modelling macrophyte-nutrient-
phytoplankton interactions in shallow eutrophic lakes and the evaluation of environ-
mental impacts. Ecol. Eng. 16, 341–357. https://doi.org/10.1016/S0925-8574(00)
00120-8.

Bartram, J., Carmichael, W., Chorus, I., Jones, G., Skulberg, O., 1999. Introduction. In:
Chorus, I., Bartram, J. (Eds.), Toxic Cyanobacteria in Water. World Health Organiza-
tion, London and New York.

Bell, V.A., George, D.G., Moore, R.J., Parker, J., 2006. Using a 1-D mixing model to simulate
the vertical flux of heat and oxygen in a lake subject to episodic mixing. Ecol. Model.
190, 41–54. https://doi.org/10.1016/j.ecolmodel.2005.02.025.

Belov, A.P., Giles, J.D., 1997. Dynamical Model of Buoyant Cyanobacteria. p. 11.
Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S.,

Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., Woth, K.,
2007. Future extreme events in European climate: an exploration of regional climate
model projections. Clim. Chang. 81, 71–95. https://doi.org/10.1007/s10584-006-
9226-z.

Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J.,
Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B.,
Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. Characterising performance
of environmental models. Environ. Model. Softw. 40, 1–20. https://doi.org/10.1016/j.
envsoft.2012.09.011.

Benoy, G.A., Jenkinson, R.W., Robertson, D.M., Saad, D.A., 2016. Nutrient delivery to Lake
Winnipeg from the RedAssiniboine River Basin - a binational application of the
SPARROW model. Can. Water Res. J. 41, 429–447. https://doi.org/10.1080/
07011784.2016.1178601.

Bernhardt, J., Elliott, J.A., Jones, I.D., 2008.Modelling the effects on phytoplankton commu-
nities of changing mixed depth and background extinction coefficient on three con-
trasting lakes in the English Lake District. Freshw. Biol. 53, 2573–2586. https://doi.
org/10.1111/j.1365-2427.2008.02083.x.

Bhagowati, B., Ahamad, K.U., 2018. A review on lake eutrophication dynamics and recent
developments in lake modeling. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.
ecohyd.2018.03.002.

Bonnet, M., Poulin, M., 2004. DyLEM-1D: a 1D physical and biochemical model for plank-
tonic succession, nutrients and dissolved oxygen cycling application to a hyper-
eutrophic reservoir. Ecol. Model. 180, 317–344. https://doi.org/10.1016/j.
ecolmodel.2004.04.037.

Brentrup, J.A., Williamson, C.E., Colom-Montero, W., Eckert, W., de Eyto, E., Grossart, H.-P.,
Huot, Y., Isles, P.D.F., Knoll, L.B., Leach, T.H., McBride, C.G., Pierson, D., Pomati, F., Read,
J.S., Rose, K.C., Samal, N.R., Staehr, P.A., Winslow, L.A., 2016. The potential of high-
frequency profiling to assess vertical and seasonal patterns of phytoplankton dynam-
ics in lakes: an extension of the Plankton Ecology Group (PEG) model. InlandWaters
6, 565–580. https://doi.org/10.5268/IW-6.4.890.

Brett, M.T., Ahopelto, S.K., Brown, H.K., Brynestad, B.E., Butcher, T.W., Coba, E.E., Curtis,
C.A., Dara, J.T., Doeden, K.B., Evans, K.R., Fan, L., Finley, J.D., Garguilo, N.J.,
Gebreeyesus, S.M., Goodman, M.K., Gray, K.W., Grinnell, C., Gross, K.L., Hite, B.R.E.,
Jones, A.J., Kenyon, P.T., Klock, A.M., Koshy, R.E., Lawler, A.M., Lu, M., Martinkosky,
L., Miller-Schulze, J.R., Nguyen, Q.T.N., Runde, E.R., Stultz, J.M., Wang, S., White, F.P.,
Wilson, C.H., Wong, A.S., Wu, S.Y., Wurden, P.G., Young, T.R., Arhonditsis, G.B., 2016.
The modeled and observed response of Lake Spokane hypolimnetic dissolved oxygen
concentrations to phosphorus inputs. Lake Reservoir Manage. 32, 246–258. https://
doi.org/10.1080/10402381.2016.1170079.

Brito, D., Neves, R., Branco, M.A., Goncalves, M.C., Ramos, T.B., 2017. Modeling flood dy-
namics in a temporary river draining to an eutrophic reservoir in southeast
Portugal. Environ. Earth Sci. 76. https://doi.org/10.1007/s12665-017-6713-7.

Brown, C., Hoyer, M., Bachmann, R., Canfield, D., 2000. Nutrient-chlorophyll relationships: an
evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate
lake data. Can. J. Fish. Aquat. Sci. 57, 1574–1583. https://doi.org/10.1139/f00-090.

Bruce, L.C., Hamilton, D., Imberger, J., Gal, G., Gophen, M., Zohary, T., Hambright, K.D.,
2006. A numerical simulation of the role of zooplankton in C, N and P cycling in
Lake Kinneret, Israel. Ecol. Model. 193, 412–436. https://doi.org/10.1016/j.
ecolmodel.2005.09.008.

Bruce, L.C., Frassl, M.A., Arhonditsis, G.B., Gal, G., Hamilton, D.P., Hanson, P.C.,
Hetherington, A.L., Melack, J.M., Read, J.S., Rinke, K., Rigosi, A., Trolle, D., Winslow,
L., Adrian, R., Ayala, A.I., Bocaniov, S.A., Boehrer, B., Boon, C., Brookes, J.D., Bueche,
T., Busch, B.D., Copetti, D., Cortés, A., de Eyto, E., Elliott, J.A., Gallina, N., Gilboa, Y.,
Guyennon, N., Huang, L., Kerimoglu, O., Lenters, J.D., MacIntyre, S., Makler-Pick, V.,
McBride, C.G., Moreira, S., Özkundakci, D., Pilotti, M., Rueda, F.J., Rusak, J.A., Samal,
N.R., Schmid, M., Shatwell, T., Snorthheim, C., Soulignac, F., Valerio, G., van der
Linden, L., Vetter, M., Vinçon-Leite, B., Wang, J., Weber, M., Wickramaratne, C.,
Woolway, R.I., Yao, H., Hipsey, M.R., 2018. A multi-lake comparative analysis of the
General Lake Model (GLM): stress-testing across a global observatory network. Envi-
ron. Model. Softw. 102, 274–291. https://doi.org/10.1016/j.envsoft.2017.11.016.

Bruggeman, J., Bolding, K., 2014. A general framework for aquatic biogeochemical models.
Environ. Model. Softw. 61, 249–265.

https://doi.org/10.1089/ees.2010.0203
https://doi.org/10.1016/j.ecoleng.2014.03.094
https://doi.org/10.1111/nrm.12130
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1016/S0304-3800(02)00286-7
https://doi.org/10.1016/S0304-3800(02)00286-7
https://doi.org/10.1016/j.ecolmodel.2012.08.029
https://doi.org/10.1016/j.ecolmodel.2012.08.029
https://doi.org/10.3354/meps271013
https://doi.org/10.3354/meps271013
https://doi.org/10.1016/j.ecolmodel.2007.05.020
https://doi.org/10.1016/j.ecolmodel.2007.05.020
https://doi.org/10.1016/j.jhydrol.2013.02.010
https://doi.org/10.1016/j.jhydrol.2013.02.010
https://doi.org/10.1016/S0304-3800(97)00129-4
https://doi.org/10.1016/S0304-3800(97)00129-4
https://doi.org/10.1016/S0304-3770(00)00123-6
https://doi.org/10.1016/S0925-8574(00)00120-8
https://doi.org/10.1016/S0925-8574(00)00120-8
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0065
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0065
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0065
https://doi.org/10.1016/j.ecolmodel.2005.02.025
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0075
https://doi.org/10.1007/s10584-006-9226-z
https://doi.org/10.1007/s10584-006-9226-z
https://doi.org/10.1016/j.envsoft.2012.09.011
https://doi.org/10.1016/j.envsoft.2012.09.011
https://doi.org/10.1080/07011784.2016.1178601
https://doi.org/10.1080/07011784.2016.1178601
https://doi.org/10.1111/j.1365-2427.2008.02083.x
https://doi.org/10.1111/j.1365-2427.2008.02083.x
https://doi.org/10.1016/j.ecohyd.2018.03.002
https://doi.org/10.1016/j.ecohyd.2018.03.002
https://doi.org/10.1016/j.ecolmodel.2004.04.037
https://doi.org/10.1016/j.ecolmodel.2004.04.037
https://doi.org/10.5268/IW-6.4.890
https://doi.org/10.1080/10402381.2016.1170079
https://doi.org/10.1080/10402381.2016.1170079
https://doi.org/10.1007/s12665-017-6713-7
https://doi.org/10.1139/f00-090
https://doi.org/10.1016/j.ecolmodel.2005.09.008
https://doi.org/10.1016/j.ecolmodel.2005.09.008
https://doi.org/10.1016/j.envsoft.2017.11.016
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0140
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0140


2997B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
Burger, D.F., Hamilton, D.P., Pilditch, C.A., 2008. Modelling the relative importance of in-
ternal and external nutrient loads onwater column nutrient concentrations and phy-
toplankton biomass in a shallow polymictic lake. Ecol. Model. 211, 411–423. https://
doi.org/10.1016/j.ecolmodel.2007.09.028.

Carey, C.C., Ibelings, B.W., Hoffmann, E.P., Hamilton, D.P., Brookes, J.D., 2012. Eco-
physiological adaptations that favour freshwater cyanobacteria in a changing climate.
Water Res. 46, 1394–1407. https://doi.org/10.1016/j.watres.2011.12.016.

Carraro, E., Guyennon, N., Hamilton, D., Valsecchi, L., Manfredi, E.C., Viviano, G., Salerno, F.,
Tartari, G., Copetti, D., 2012. Coupling high-resolution measurements to a three-
dimensional lake model to assess the spatial and temporal dynamics of the cyanobac-
terium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698, 77–95.
https://doi.org/10.1007/s10750-012-1096-y.

Carvalho, L., Miller nee (Ferguson), C.A., Scott, E.M., Codd, G.A., Davies, P.S., Tyler, A.N.,
2011. Cyanobacterial blooms: statistical models describing risk factors for national-
scale lake assessment and lake management. Sci. Total Environ. 409, 5353–5358.
https://doi.org/10.1016/j.scitotenv.2011.09.030.

Cha, Y., Park, S.S., Kim, K., Byeon, M., Stow, C.A., 2014. Probabilistic prediction of
cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model.
Water Resour. Res. 50, 2518–2532. https://doi.org/10.1002/2013WR014372.

Chanudet, V., Fabre, V., van der Kaaij, T., 2012. Application of a three-dimensional hydro-
dynamic model to the Nam Theun 2 Reservoir (Lao PDR). J. Great Lakes Res. 38,
260–269. https://doi.org/10.1016/j.jglr.2012.01.008.

Chapra, S.C., Canale, R.P., 1991. Long-term phenomenological model of phosphorus and
oxygen for stratified lakes. Water Res. 25, 707–715. https://doi.org/10.1016/0043-
1354(91)90046-S.

Chaves, P., Kojiri, T., 2007. Conceptual fuzzy neural network model for water quality sim-
ulation. Hydrol. Process. 21, 634–646. https://doi.org/10.1002/hyp.6279.

Chen, W.-B., Liu, W.-C., 2014. Artificial neural network modeling of dissolved oxygen in
reservoir. Environ. Monit. Assess. 186, 1203–1217. https://doi.org/10.1007/s10661-
013-3450-6.

Chung, E.G., Bombardelli, F.A., Schladow, S.G., 2009. Modeling linkages between sediment
resuspension and water quality in a shallow, eutrophic, wind-exposed lake. Ecol.
Model. 220, 1251–1265. https://doi.org/10.1016/j.ecolmodel.2009.01.038.

Crave, A., Lacroix, G., Durand, P., Vinçon-Leite, B., Ménesguen, A., Sánchez-Pérez, J.-M.,
Sauvage, S., Sauvage, S., 2017. Modélisation de l'eutrophisation. L'eutrophisation:
Manifestations, Causes, Conséquences et Prédictibilité. Rapport d'Expertise
Scientifique Collective, pp. 648–789.

Crisci, C., Terra, R., Pacheco, J.P., Ghattas, B., Bidegain, M., Goyenola, G., Lagomarsino, J.J.,
Méndez, G., Mazzeo, N., 2017. Multi-model approach to predict phytoplankton bio-
mass and composition dynamics in a eutrophic shallow lake governed by extreme
meteorological events. Ecol. Model. 360, 80–93. https://doi.org/10.1016/j.
ecolmodel.2017.06.017.

Cui, Y., Zhu, G., Li, H., Luo, L., Cheng, X., Jin, Y., Trolle, D., 2016. Modeling the response of
phytoplankton to reduced external nutrient load in a subtropical Chinese reservoir
using DYRESM-CAEDYM. Lake Reservoir Manage. 32, 146–157. https://doi.org/
10.1080/10402381.2015.1136365.

Curtarelli, M.P., Ogashawara, I., Alcântara, E.H., Stech, J.L., 2015. Coupling remote sensing
bio-optical and three-dimensional hydrodynamic modeling to study the phytoplank-
ton dynamics in a tropical hydroelectric reservoir. Remote Sens. Environ. 157,
185–198. https://doi.org/10.1016/j.rse.2014.06.013.

Dash, P., Walker, N.D., Mishra, D.R., Hu, C., Pinckney, J.L., D'Sa, E.J., 2011. Estimation of
cyanobacterial pigments in a freshwater lake using OCM satellite data. Remote
Sens. Environ. 115, 3409–3423. https://doi.org/10.1016/j.rse.2011.08.004.

De Senerpont Domis, L.N., Van de Waal, D.B., Helmsing, N.R., Van Donk, E., Mooij, W.M.,
2014. Community stoichiometry in a changing world: combined effects of warming
and eutrophication on phytoplankton dynamics. Ecology 95, 1485–1495. https://
doi.org/10.1890/13-1251.1.

DeAngelis, D.L., Mooij, W.M., 2005. Individual-based modeling of ecological and evolu-
tionary processes. Annu. Rev. Ecol. Evol. Syst. 36, 147–168. https://doi.org/10.1146/
annurev.ecolsys.36.102003.152644.

Deus, R., Brito, D., Kenov, I.A., Lima, M., Costa, V., Medeiros, A., Neves, R., Alves, C.N., 2013.
Three-dimensional model for analysis of spatial and temporal patterns of phyto-
plankton in Tucuruí reservoir, Pará, Brazil. Ecol. Model. 253, 28–43. https://doi.org/
10.1016/j.ecolmodel.2012.10.013.

Diaz Muniz, C., Alonso Fernandez, J.R., Garcia Nieto, P.J., Alvarez Anton, J.C., 2015. Model-
ling algal abnormal proliferation in a reservoir using support vector regression: a case
study. Ecohydrology 8, 1109–1118. https://doi.org/10.1002/eco.1568.

Dillon, P.J., Rigler, F.H., 1974a. The phosphorus-chlorophyll relationship in lakes:
phosphorus-chlorophyll relationship. Limnol. Oceanogr. 19, 767–773. https://doi.
org/10.4319/lo.1974.19.5.0767.

Dillon, P.J., Rigler, F.H., 1974b. A test of a simple nutrient budget model predicting the
phosphorus concentration in lake water. J. Fish. Res. Board Can. 31, 1771–1778.
https://doi.org/10.1139/f74-225.

Ditoro, D., Thomas, N., Herdendorf, C., Winfield, R., Connolly, J.P., 1987. A post audit of a
Lake Erie eutrophication model. J. Great Lakes Res. 13, 801–825. https://doi.org/
10.1016/S0380-1330(87)71692-X.

Dodds, W.K., 2006. Eutrophication and trophic state in rivers and streams. Limnol.
Oceanogr. 51, 671–680. https://doi.org/10.4319/lo.2006.51.1_part_2.0671.

Droop, M.R., 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth
and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. U. K. 48, 689. https://doi.
org/10.1017/S0025315400019238.

Easthope, M.P., Howard, A., 1999. Simulating cyanobacterial growth in a lowland res-
ervoir. Sci. Total Environ. 241, 17–25. https://doi.org/10.1016/S0048-9697(99)
00278-8.

Elliott, 2011. Predicting the impact of changing nutrient load and temperature on the
phytoplankton of England's largest lake, Windermere. Freshw. Biol. 57 (2), 400–413.
Elliott, J.A., 2012. Is the future blue-green? A review of the current model predictions of
how climate change could affect pelagic freshwater cyanobacteria. Water Res. 46,
1364–1371. https://doi.org/10.1016/j.watres.2011.12.018.

Elliott, J.A., Defew, L., 2012. Modelling the response of phytoplankton in a shallow lake
(Loch Leven, UK) to changes in lake retention time and water temperature.
Hydrobiologia 681, 105–116. https://doi.org/10.1007/s10750-011-0930-y.

Elliott, J., Thackeray, S., 2004. The simulation of phytoplankton in shallow and deep lakes
using PROTECH. Ecol. Model. 178, 357–369. https://doi.org/10.1016/j.
ecolmodel.2004.02.012.

Elliott, J., Thackeray, S., Huntingford, C., Jones, R., 2005. Combining a regional climate
model with a phytoplankton community model to predict future changes in phyto-
plankton in lakes. Freshw. Biol. 50, 1404–1411. https://doi.org/10.1111/j.1365-
2427.2005.01409.x.

Elliott, J.A., Persson, I., Thackeray, S.J., Blenckner, T., 2007. Phytoplankton modelling of
Lake Erken, Sweden by linking the models PROBE and PROTECH. Ecol. Model. 202,
421–426. https://doi.org/10.1016/j.ecolmodel.2006.11.004.

Elliott, Jones, I.D., Page, T., 2009. The importance of nutrient source in determining the in-
fluence of retention time on phytoplankton: an explorative modelling study of a nat-
urally well-flushed lake. Hydrobiologia 627, 129–142. https://doi.org/10.1007/
s10750-009-9720-1.

Elliott, A., Turek, G., Snow, V., Rutledge, D., Ritchie, A., Herzig, A., 2014. Testing tales: selec-
tion and evaluation of a framework for interoperable freshwater modelling. Proceed-
ings of the 7th International Congress on Environmental Modelling and Software.
Presented at the 7th International Congress on Environmental Modelling and Soft-
ware, International Environmental Modelling and Software Society (iEMSs), San
Diego, California, USA, p. 9.

Elshaarawi, A., 1984. Dissolved-oxygen concentrations in Lake Erie (USA-Canada). 2. A
statistical-model for dissolved-oxygen in the central basin of Lake Erie. J. Hydrol.
72, 231–243. https://doi.org/10.1016/0022-1694(84)90082-9.

Elshorbagy, A., Ormsbee, L., 2006. Object-oriented modeling approach to surface water
quality management. Environ. Model. Softw. 21, 689–698. https://doi.org/10.1016/j.
envsoft.2005.02.001.

European Environment Agency, 2012. Climate Change, Impacts and Vulnerability in
Europe 2012 (Publication).

Everett, J.D., Baird, M.E., Suthers, I.M., 2007. Nutrient and plankton dynamics in an intermit-
tently closed/open lagoon, Smiths Lake, south-eastern Australia: an ecological model.
Estuar. Coast. Shelf Sci. 72, 690–702. https://doi.org/10.1016/j.ecss.2006.12.001.

Fadel, A., Lemaire, B.J., Vincon-Leite, B., Atoui, A., Slim, K., Tassin, B., 2017. On the success-
ful use of a simplified model to simulate the succession of toxic cyanobacteria in a
hypereutrophic reservoir with a highly fluctuating water level. Environ. Sci. Pollut.
Res. 24, 20934–20948. https://doi.org/10.1007/s11356-017-9723-9.

Fang, X., Stefan, H., 1997. Simulated climate change effects on dissolved oxygen character-
istics in ice-covered lakes. Ecol. Model. 103, 209–229. https://doi.org/10.1016/S0304-
3800(97)00086-0.

Fang, X., Stefan, H.G., 2009. Simulations of climate effects on water temperature, dissolved
oxygen, and ice and snow covers in lakes of the contiguous United States under past
and future climate scenarios. Limnol. Oceanogr. 54, 2359–2370. https://doi.org/
10.4319/lo.2009.54.6_part_2.2359.

Fennel, K., Collier, R., Larson, G., Crawford, G., Boss, E., 2007. Seasonal nutrient and plank-
ton dynamics in a physical-biological model of Crater Lake. Hydrobiologia 574,
265–280. https://doi.org/10.1007/s10750-006-2615-5.

Fernandez, J.A., Clavero, V., Villalobos, J.A., Niell, F.X., 1997. A non-linear model of phos-
phorus flux in the phytoplankton of a temperate eutrophic reservoir. Hydrobiologia
344, 205–214. https://doi.org/10.1023/A:1002910529075.

Fiksen, Ø., Follows, M.J., Aksnes, D.L., 2013. Trait-based models of nutrient uptake in mi-
crobes extend the Michaelis-Menten framework. Limnol. Oceanogr. 58, 193–202.
https://doi.org/10.4319/lo.2013.58.1.0193.

Flynn, K.J., 2005. Castles built on sand: dysfunctionality in plankton models and the inad-
equacy of dialogue between biologists and modellers. J. Plankton Res. 27, 1205–1210.
https://doi.org/10.1093/plankt/fbi099.

Flynn, K.J., 2010. Ecological modelling in a sea of variable stoichiometry: dysfunctionality
and the legacy of Redfield and Monod. Prog. Oceanogr. 84, 52–65. https://doi.org/
10.1016/j.pocean.2009.09.006.

Fornarelli, R., Galelli, S., Castelletti, A., Antenucci, J.P., Marti, C.L., 2013. An empirical
modeling approach to predict and understand phytoplankton dynamics in a reservoir
affected by interbasin water transfers. Water Resour. Res. 49, 3626–3641. https://doi.
org/10.1002/wrcr.20268.

Fragoso, C.R., Motta Marques, D.M.L., Collischonn, W., Tucci, C.E.M., van Nes, E.H., 2008.
Modelling spatial heterogeneity of phytoplankton in Lake Mangueira, a large shallow
subtropical lake in South Brazil. Ecol. Model. 219, 125–137. https://doi.org/10.1016/j.
ecolmodel.2008.08.004.

Freeman, A.M., Lamon, E.C., Stow, C.A., 2009. Nutrient criteria for lakes, ponds, and reser-
voirs: a bayesian TREED model approach. Ecol. Model. 220, 630–639. https://doi.org/
10.1016/j.ecolmodel.2008.12.009.

Frisk, T., 1982. An oxygen model for Lake Haukivesi. Hydrobiologia 86, 7. https://doi.org/
10.1007/BF00005800.

Frisk, T., Bilaletdin, A., Kaipainen, H., Malve, O., Mols, M., 1999. Modelling phytoplankton
dynamics of the eutrophic Lake Vortsjarv, Estonia. Hydrobiologia 414, 59–69. https://
doi.org/10.1023/A:1003802912687.

Gal, G., Hipsey, M.R., Parparov, A., Wagner, U., Makler, V., Zohary, T., 2009. Implementa-
tion of ecological modeling as an effective management and investigation tool:
Lake Kinneret as a case study. Ecol. Model. 220, 1697–1718. https://doi.org/
10.1016/j.ecolmodel.2009.04.010.

Gal, G., Makler-Pick, V., Shachar, N., 2014. Dealing with uncertainty in ecosystem model
scenarios: application of the single-model ensemble approach. Environ. Model.
Softw. 61, 360–370. https://doi.org/10.1016/j.envsoft.2014.05.015.

https://doi.org/10.1016/j.ecolmodel.2007.09.028
https://doi.org/10.1016/j.ecolmodel.2007.09.028
https://doi.org/10.1016/j.watres.2011.12.016
https://doi.org/10.1007/s10750-012-1096-y
https://doi.org/10.1016/j.scitotenv.2011.09.030
https://doi.org/10.1002/2013WR014372
https://doi.org/10.1016/j.jglr.2012.01.008
https://doi.org/10.1016/0043-1354(91)90046-S
https://doi.org/10.1016/0043-1354(91)90046-S
https://doi.org/10.1002/hyp.6279
https://doi.org/10.1007/s10661-013-3450-6
https://doi.org/10.1007/s10661-013-3450-6
https://doi.org/10.1016/j.ecolmodel.2009.01.038
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0195
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0195
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0195
https://doi.org/10.1016/j.ecolmodel.2017.06.017
https://doi.org/10.1016/j.ecolmodel.2017.06.017
https://doi.org/10.1080/10402381.2015.1136365
https://doi.org/10.1080/10402381.2015.1136365
https://doi.org/10.1016/j.rse.2014.06.013
https://doi.org/10.1016/j.rse.2011.08.004
https://doi.org/10.1890/13-1251.1
https://doi.org/10.1890/13-1251.1
https://doi.org/10.1146/annurev.ecolsys.36.102003.152644
https://doi.org/10.1146/annurev.ecolsys.36.102003.152644
https://doi.org/10.1016/j.ecolmodel.2012.10.013
https://doi.org/10.1016/j.ecolmodel.2012.10.013
https://doi.org/10.1002/eco.1568
https://doi.org/10.4319/lo.1974.19.5.0767
https://doi.org/10.4319/lo.1974.19.5.0767
https://doi.org/10.1139/f74-225
https://doi.org/10.1016/S0380-1330(87)71692-X
https://doi.org/10.1016/S0380-1330(87)71692-X
https://doi.org/10.4319/lo.2006.51.1_part_2.0671
https://doi.org/10.1017/S0025315400019238
https://doi.org/10.1017/S0025315400019238
https://doi.org/10.1016/S0048-9697(99)00278-8
https://doi.org/10.1016/S0048-9697(99)00278-8
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0270
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0270
https://doi.org/10.1016/j.watres.2011.12.018
https://doi.org/10.1007/s10750-011-0930-y
https://doi.org/10.1016/j.ecolmodel.2004.02.012
https://doi.org/10.1016/j.ecolmodel.2004.02.012
https://doi.org/10.1111/j.1365-2427.2005.01409.x
https://doi.org/10.1111/j.1365-2427.2005.01409.x
https://doi.org/10.1016/j.ecolmodel.2006.11.004
https://doi.org/10.1007/s10750-009-9720-1
https://doi.org/10.1007/s10750-009-9720-1
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0305
https://doi.org/10.1016/0022-1694(84)90082-9
https://doi.org/10.1016/j.envsoft.2005.02.001
https://doi.org/10.1016/j.envsoft.2005.02.001
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0320
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0320
https://doi.org/10.1016/j.ecss.2006.12.001
https://doi.org/10.1007/s11356-017-9723-9
https://doi.org/10.1016/S0304-3800(97)00086-0
https://doi.org/10.1016/S0304-3800(97)00086-0
https://doi.org/10.4319/lo.2009.54.6_part_2.2359
https://doi.org/10.4319/lo.2009.54.6_part_2.2359
https://doi.org/10.1007/s10750-006-2615-5
https://doi.org/10.1023/A:1002910529075
https://doi.org/10.4319/lo.2013.58.1.0193
https://doi.org/10.1093/plankt/fbi099
https://doi.org/10.1016/j.pocean.2009.09.006
https://doi.org/10.1016/j.pocean.2009.09.006
https://doi.org/10.1002/wrcr.20268
https://doi.org/10.1002/wrcr.20268
https://doi.org/10.1016/j.ecolmodel.2008.08.004
https://doi.org/10.1016/j.ecolmodel.2008.08.004
https://doi.org/10.1016/j.ecolmodel.2008.12.009
https://doi.org/10.1016/j.ecolmodel.2008.12.009
https://doi.org/10.1007/BF00005800
https://doi.org/10.1007/BF00005800
https://doi.org/10.1023/A:1003802912687
https://doi.org/10.1023/A:1003802912687
https://doi.org/10.1016/j.ecolmodel.2009.04.010
https://doi.org/10.1016/j.ecolmodel.2009.04.010
https://doi.org/10.1016/j.envsoft.2014.05.015


2998 B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
Garcia-Nieto, P.J., Garcia-Gonzalo, E., Alonso Fernandez, J.R., Diaz Muniz, C., 2018. Predic-
tive modelling of eutrophication in the Pozn de la Dolores lake (Northern Spain) by
using an evolutionary support vector machines approach. J. Math. Biol. 76,
817–840. https://doi.org/10.1007/s00285-017-1161-2.

Giguet-Covex, C., Arnaud, F., Poulenard, J., Enters, D., Reyss, J.-L., Millet, L., Lazzaroto, J.,
Vidal, O., 2010. Sedimentological and geochemical records of past trophic state and
hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. J. Paleolimnol.
43, 171–190.

Gkelis, S., Zaoutsos, N., 2014. Cyanotoxin occurrence and potentially toxin producing
cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Toxicon 78,
1–9. https://doi.org/10.1016/j.toxicon.2013.11.010.

Gkelis, S., Papadimitriou, T., Zaoutsos, N., Leonardos, I., 2014. Anthropogenic and climate-
induced change favors toxic cyanobacteria blooms: evidence from monitoring a
highly eutrophic, urban Mediterranean lake. Harmful Algae 39, 322–333. https://
doi.org/10.1016/j.hal.2014.09.002.

Gong, R., Xu, L., Wang, D., Li, H., Xu, J., 2016. Water quality modeling for a typical urban
lake based on the EFDC model. Environ. Model. Assess. 21, 643–655. https://doi.
org/10.1007/s10666-016-9519-1.

Gudimov, A., McCulloch, J., Chen, J., Doan, P., Arhonditsis, G., Dittrich, M., 2016. Modeling
the interplay between deepwater oxygen dynamics and sediment diagenesis in a
hard-water mesotrophic lake. Eco. Inform. 31, 59–69. https://doi.org/10.1016/j.
ecoinf.2015.11.005.

Gulliver, J., Stephan, H., 1982. Lake phytoplankton model with destratification. J. Environ.
Eng. Div. ASCE 108, 864–882.

Guven, B., Howard, A., 2006. A review and classification of the existing models
of cyanobacteria. Prog. Phys. Geogr. 30, 1–24. https://doi.org/10.1191/
0309133306pp464ra.

Haith, D.A., Hollingshead, N., Bell, M.L., Kreszewski, S.W., Morey, S.J., 2012. Nutrient loads
to Cayuga Lake, New York: watershed modeling on a budget. J. Water Resour. Plan.
Manag. ASCE 138, 571–580. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000198.

Håkanson, L., 1995. Optimal size of predictive models. Ecol. Model. 78, 195–204. https://
doi.org/10.1016/0304-3800(93)E0103-A.

Hallstan, S., Johnson, R.K., Willén, E., Grandin, U., 2012. Comparison of classification-then-
modelling and species-by-species modelling for predicting lake phytoplankton assem-
blages. Ecol. Model. 231, 11–19. https://doi.org/10.1016/j.ecolmodel.2012.01.018.

Hamblin, P.F., Bootsma, H.A., Hecky, R.E., 2003. Modeling nutrient upwelling in LakeMalawi/
Nyasa. J. Great Lakes Res. 29, 34–47. https://doi.org/10.1016/S0380-1330(03)70537-1.

Hamilton, D.P., Schladow, S.G., 1997. Prediction of water quality in lakes and reservoirs.
Part I — model description. Ecol. Model. 96, 91–110. https://doi.org/10.1016/S0304-
3800(96)00062-2.

Hamilton, G., McVinish, R., Mengersen, K., 2009. Bayesian model averaging for harmful
algal bloomprediction. Ecol. Appl. 19, 1805–1814. https://doi.org/10.1890/08-1843.1.

Harada, M., Douma, A., Hiramatsu, K., Nguyen, D.T., Marui, A., 2013. Analysis of seasonal
changes in water qualities in eutrophic reservoirs in a flat low-lying agricultural
area using an algae-based ecosystem model: water quality analysis using an algae-
based ecosystem model. Irrig. Drain. 62, 24–35. https://doi.org/10.1002/ird.1770.

Hassan, H., Hanaki, K., Matsuo, T., 1998. A modeling approach to simulate impact of cli-
mate change in lake water quality: phytoplankton growth rate assessment. Water
Sci. Technol. 37, 177–185. https://doi.org/10.1016/S0273-1223(98)00022-5.

Hellweger, F.L., 2017. 75 years since Monod: it is time to increase the complexity of our
predictive ecosystem models (opinion). Ecol. Model. 346, 77–87. https://doi.org/
10.1016/j.ecolmodel.2016.12.001.

Hellweger, F.L., Kravchuk, E.S., Novotny, V., Gladyshev, M.I., 2008. Agent-based modeling
of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir.
Limnol. Oceanogr. 53, 1227–1241. https://doi.org/10.4319/lo.2008.53.4.1227.

Hense, I., 2010. Approaches to model the life cycle of harmful algae. J. Mar. Syst. 83,
108–114. https://doi.org/10.1016/j.jmarsys.2010.02.014.

Hense, I., Beckmann, A., 2006. Towards a model of cyanobacteria life cycle—effects of
growing and resting stages on bloom formation of N2-fixing species. Ecol. Model.
195, 205–218. https://doi.org/10.1016/j.ecolmodel.2005.11.018.

Hense, I., Beckmann, A., 2010. The representation of cyanobacteria life cycle processes in
aquatic ecosystem models. Ecol. Model. 221, 2330–2338. https://doi.org/10.1016/j.
ecolmodel.2010.06.014.

Hillmer, I., van Reenen, P., Imberger, J., Zohary, T., 2008. Phytoplankton patchiness and
their role in the modelled productivity of a large, seasonally stratified lake. Ecol.
Model. 218, 49–59. https://doi.org/10.1016/j.ecolmodel.2008.06.017.

Hipsey, M., Antenucci, J., Hamilton, D., 2011. Computational Aquatic Ecosystem Dynamics
Model: CAEDYM v3.2, Science Manual. Univ. West. Aust.

Hollander, D.J., McKenzie, J.A., Hsu, K.J., Huc, A.Y., 1993. Application of an eutrophic lake
model to the origin of ancient organic-carbon-rich sediments. Glob. Biogeochem. Cy-
cles 7, 157–179. https://doi.org/10.1029/92GB02831.

Hongping, P., Yong, W., 2003. Eutrophication research of West Lake, Hangzhou, China:
modeling under uncertainty. Water Res. 37, 416–428. https://doi.org/10.1016/
s0043-1354(02)00287-7.

Hou, G., Song, L., Liu, J., Xiao, B., Liu, Y., 2004. Modeling of cyanobacterial blooms in
hypereutrophic Lake Dianchi, China. J. Freshw. Ecol. 19, 623–629. https://doi.org/
10.1080/02705060.2004.9664743.

Howard, A., Easthope, M., 2002. Application of a model to predict cyanobacterial growth
patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK. Sci.
Total Environ. 282, 459–469. https://doi.org/10.1016/S0048-9697(01)00929-9.

Howard, A., Irish, A.E., Reynolds, C.S., 1996. A new simulation of cyanobacterial underwa-
ter movement (SCUM'96). J. Plankton Res. 18, 1375–1385. https://doi.org/10.1093/
plankt/18.8.1375.

Huang, Z., Xue, B., Pang, Y., 2009. Simulation on stream flow and nutrient loadings in
Gucheng Lake, Low Yangtze River Basin, based on SWAT model. Quat. Int. 208,
109–115. https://doi.org/10.1016/j.quaint.2008.12.018.
Huang, J., Gao, J., Hoermann, G., 2012. Hydrodynamic-phytoplankton model for short-
term forecasts of phytoplankton in Lake Taihu, China. Limnologica 42, 7–18.
https://doi.org/10.1016/j.limno.2011.06.003.

Huang, J., Gao, J., Liu, J., Zhang, Y., 2013. State and parameter update of a hydrodynamic-
phytoplankton model using ensemble Kalman filter. Ecol. Model. 263, 81–91. https://
doi.org/10.1016/j.ecolmodel.2013.04.022.

Huang, J., Gao, J., Hoermann, G., Fohrer, N., 2014. Modeling the effects of environmental
variables on short-term spatial changes in phytoplankton biomass in a large shallow
lake, Lake Taihu. Environ. Earth Sci. 72, 3609–3621. https://doi.org/10.1007/s12665-
014-3272-z.

Huang, J., Xu, Q., Wang, X., Xi, B., Jia, K., Huo, S., Liu, H., Li, C., Xu, B., 2015. Evaluation of a
modified Monod model for predicting algal dynamics in Lake Tai. Water 7,
3626–3642. https://doi.org/10.3390/w7073626.

Huszar, V.L.M., Caraco, N.F., Roland, F., Cole, J., 2006. Nutrient-chlorophyll relationships in
tropical subtropical lakes: do temperate models fit? Biogeochemistry 79, 239–250.
https://doi.org/10.1007/s10533-006-9007-9.

Ieong, I.I., Lou, I., Ung, W.K., Mok, K.M., 2015. Using principle component regression, arti-
ficial neural network, and hybrid models for predicting phytoplankton abundance in
Macau storage reservoir. Environ. Model. Assess. 20, 355–365. https://doi.org/
10.1007/s10666-014-9433-3.

Imboden, D.M., 1974. Phosphorus model of lake eutrophication: P model of lake
eutrophication. Limnol. Oceanogr. 19, 297–304. https://doi.org/10.4319/
lo.1974.19.2.0297.

Imboden, D.M., Gächter, R., 1978. A dynamic lake model for trophic state prediction. Ecol.
Model. 4, 77–98. https://doi.org/10.1016/0304-3800(78)90001-7.

Inkala, A., Hellsten, S., Heikkinen, M., 1998. Integrated 3D modelling of water circulation
and the dynamics of phytoplankton; the effects of a planned reservoir. Int. Rev.
Hydrobiol. 83, 681–688.

Janse, J.H., Scheffer, M., Lijklema, L., Van Liere, L., Sloot, J.S., Mooij, W.M., 2010. Estimating
the critical phosphorus loading of shallow lakes with the ecosystem model PCLake:
sensitivity, calibration and uncertainty. Ecol. Model. 221, 654–665. https://doi.org/
10.1016/j.ecolmodel.2009.07.023.

Jayaweera, M., Asaeda, T., 1996. Modeling of biomanipulation in shallow, eutrophic lakes:
an application to Lake Bleiswijkse Zoom, the Netherlands. Ecol. Model. 85, 113–127.
https://doi.org/10.1016/0304-3800(94)00153-7.

Jenny, J.P., Arnaud, F., Dorioz, J.M., Covex, C.G., Frossard, V., Sabatier, P., Millet, L., Reyss, J.L.,
Tachikawa, K., Bard, E., Pignol, C., Soufi, F., Romeyer, O., Perga, M.E., 2013. A spatio-
temporal investigation of varved sediments highlights the dynamics of hypolimnetic
hypoxia in a large hard-water lake over the last 150 years. Limnol. Oceanogr. 58,
1395–1408. https://doi.org/10.4319/lo.2013.58.4.1395.

Ji, D., Xi, B., Su, J., Huo, S., Wang, J., Gong, F., Li, M., Jia, X., Wei, D., 2014. Structure equation
model-based approach for determining lake nutrient standards in Yungui Plateau
ecoregion and Eastern Plain ecoregion lakes, China. Environ. Earth Sci. 72,
3067–3077. https://doi.org/10.1007/s12665-014-3212-y.

Jones, J.R., Bachmann, R.W., 1976. Prediction of phosphorus and chlorophyll levels in
lakes. J. Water Pollut. Control Fed. 48, 2176–2182.

Jones, I.D., Elliott, J.A., 2007. Modelling the effects of changing retention time on abun-
dance and composition of phytoplankton species in a small lake. Freshw. Biol. 52,
988–997. https://doi.org/10.1111/j.1365-2427.2007.01746.x.

Jørgensen, S.E., 1990. Ecosystem theory, ecological buffer capacity, uncertainty and
complexity. Ecol. Model. 52, 125–133. https://doi.org/10.1016/0304-3800(90)
90013-7.

Jørgensen, S.E., 2010. A review of recent developments in lake modelling. Ecol. Model.
221, 689–692. https://doi.org/10.1016/j.ecolmodel.2009.10.022.

Jørgensen, S.E., 2015. Structurally dynamicmodels: a new promising model type. Environ.
Earth Sci. 74, 7041–7048. https://doi.org/10.1007/s12665-015-4735-6.

Jørgensen, S.E., Fath, B.D., 2001. Fundamentals of Ecological Modelling. Elsevier.
Jung, N.-C., Popescu, I., Kelderman, P., Solomatine, D.P., Price, R.K., 2010. Application of

model trees and other machine learning techniques for algal growth prediction in
Yongdam reservoir, Republic of Korea. J. Hydroinf. 12, 262–274. https://doi.org/
10.2166/hydro.2009.004.

Kerimoglu, O., Hofmeister, R., Maerz, J., Riethmüller, R., Wirtz, K.W., 2017. The acclimative
biogeochemical model of the southern North Sea. Biogeosciences 14, 4499–4531.
https://doi.org/10.5194/bg-14-4499-2017.

Kim, D.K., Jeong, K.S., McKay, R.I.B., Chon, T.S., Joo, G.J., 2012. Machine learning for predic-
tive management: short and long term prediction of phytoplankton biomass using
genetic algorithm based recurrent neural networks. Int. J. Environ. Res. 6, 95–108.
https://doi.org/10.22059/ijer.2011.476.

Kromkamp, J., Walsby, A.E., 1990. A computer model of buoyancy and vertical migration in
cyanobacteria. J. Plankton Res. 12, 161–183. https://doi.org/10.1093/plankt/12.1.161.

Kuo, J., Thomann, R., 1983. Phytoplankton modeling in the embayments of lakes.
J. Environ. Eng. ASCE 109, 1311–1332.

Kutas, T., Toth, J., 1985. A stochastic-model of phytoplankton dynamics in Lake Balaton.
J. Stat. Comput. Simul. 21, 241–264. https://doi.org/10.1080/00949658508810818.

Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A.,
Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., Pinay, G., 2018. Eutrophication: a
new wine in an old bottle? Sci. Total Environ. https://doi.org/10.1016/j.
scitotenv.2018.09.139.

Leon, L.F., Smith, R.E.H., Hipsey, M.R., Bocaniov, S.A., Higgins, S.N., Hecky, R.E., Antenucci,
J.P., Imberger, J.A., Guildford, S.J., 2011. Application of a 3D hydrodynamic-biological
model for seasonal and spatial dynamics of water quality and phytoplankton in
Lake Erie. J. Great Lakes Res. 37, 41–53. https://doi.org/10.1016/j.jglr.2010.12.007.

Leon, L.F., Smith, R.E.H., Malkin, S.Y., Depew, D., Hipsey, M.R., Antenucci, J.P., Higgins, S.N.,
Hecky, R.E., Rao, R.Y., 2012. Nested 3D modeling of the spatial dynamics of nutrients
and phytoplankton in a Lake Ontario nearshore zone. J. Great Lakes Res. 38, 171–183.
https://doi.org/10.1016/j.jglr.2012.02.006.

https://doi.org/10.1007/s00285-017-1161-2
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0405
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0405
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0405
https://doi.org/10.1016/j.toxicon.2013.11.010
https://doi.org/10.1016/j.hal.2014.09.002
https://doi.org/10.1016/j.hal.2014.09.002
https://doi.org/10.1007/s10666-016-9519-1
https://doi.org/10.1007/s10666-016-9519-1
https://doi.org/10.1016/j.ecoinf.2015.11.005
https://doi.org/10.1016/j.ecoinf.2015.11.005
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0420
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0420
https://doi.org/10.1191/0309133306pp464ra
https://doi.org/10.1191/0309133306pp464ra
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000198
https://doi.org/10.1016/0304-3800(93)E0103-A
https://doi.org/10.1016/0304-3800(93)E0103-A
https://doi.org/10.1016/j.ecolmodel.2012.01.018
https://doi.org/10.1016/S0380-1330(03)70537-1
https://doi.org/10.1016/S0304-3800(96)00062-2
https://doi.org/10.1016/S0304-3800(96)00062-2
https://doi.org/10.1890/08-1843.1
https://doi.org/10.1002/ird.1770
https://doi.org/10.1016/S0273-1223(98)00022-5
https://doi.org/10.1016/j.ecolmodel.2016.12.001
https://doi.org/10.1016/j.ecolmodel.2016.12.001
https://doi.org/10.4319/lo.2008.53.4.1227
https://doi.org/10.1016/j.jmarsys.2010.02.014
https://doi.org/10.1016/j.ecolmodel.2005.11.018
https://doi.org/10.1016/j.ecolmodel.2010.06.014
https://doi.org/10.1016/j.ecolmodel.2010.06.014
https://doi.org/10.1016/j.ecolmodel.2008.06.017
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0500
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0500
https://doi.org/10.1029/92GB02831
https://doi.org/10.1016/s0043-1354(02)00287-7
https://doi.org/10.1016/s0043-1354(02)00287-7
https://doi.org/10.1080/02705060.2004.9664743
https://doi.org/10.1080/02705060.2004.9664743
https://doi.org/10.1016/S0048-9697(01)00929-9
https://doi.org/10.1093/plankt/18.8.1375
https://doi.org/10.1093/plankt/18.8.1375
https://doi.org/10.1016/j.quaint.2008.12.018
https://doi.org/10.1016/j.limno.2011.06.003
https://doi.org/10.1016/j.ecolmodel.2013.04.022
https://doi.org/10.1016/j.ecolmodel.2013.04.022
https://doi.org/10.1007/s12665-014-3272-z
https://doi.org/10.1007/s12665-014-3272-z
https://doi.org/10.3390/w7073626
https://doi.org/10.1007/s10533-006-9007-9
https://doi.org/10.1007/s10666-014-9433-3
https://doi.org/10.1007/s10666-014-9433-3
https://doi.org/10.4319/lo.1974.19.2.0297
https://doi.org/10.4319/lo.1974.19.2.0297
https://doi.org/10.1016/0304-3800(78)90001-7
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0575
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0575
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0575
https://doi.org/10.1016/j.ecolmodel.2009.07.023
https://doi.org/10.1016/j.ecolmodel.2009.07.023
https://doi.org/10.1016/0304-3800(94)00153-7
https://doi.org/10.4319/lo.2013.58.4.1395
https://doi.org/10.1007/s12665-014-3212-y
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0600
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0600
https://doi.org/10.1111/j.1365-2427.2007.01746.x
https://doi.org/10.1016/0304-3800(90)90013-7
https://doi.org/10.1016/0304-3800(90)90013-7
https://doi.org/10.1016/j.ecolmodel.2009.10.022
https://doi.org/10.1007/s12665-015-4735-6
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0625
https://doi.org/10.2166/hydro.2009.004
https://doi.org/10.2166/hydro.2009.004
https://doi.org/10.5194/bg-14-4499-2017
https://doi.org/10.22059/ijer.2011.476
https://doi.org/10.1093/plankt/12.1.161
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0650
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0650
https://doi.org/10.1080/00949658508810818
https://doi.org/10.1016/j.scitotenv.2018.09.139
https://doi.org/10.1016/j.scitotenv.2018.09.139
https://doi.org/10.1016/j.jglr.2010.12.007
https://doi.org/10.1016/j.jglr.2012.02.006


2999B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
Lewis, D.M., Elliott, J.A., Lambert, M.F., Reynolds, C.S., 2002. The simulation of an
Australian reservoir using a phytoplankton community model: protech. Ecol.
Model. 150, 107–116. https://doi.org/10.1016/S0304-3800(01)00466-5.

Li, W., Qin, B., Zhu, G., 2014a. Forecasting short-term cyanobacterial blooms in Lake Taihu,
China, using a coupled hydrodynamic–algal biomass model. Ecohydrology 7,
794–802. https://doi.org/10.1002/eco.1402.

Li, Y., Gal, G., Makler-Pick, V., Waite, A.M., Bruce, L.C., Hipsey, M.R., 2014b. Examination of
the role of the microbial loop in regulating lake nutrient stoichiometry and phyto-
plankton dynamics. Biogeosciences 11, 2939–2960. https://doi.org/10.5194/bg-11-
2939-2014.

Li, Y., Liu, Y., Zhao, L., Hastings, A., Guo, H., 2015. Exploring change of internal nutrients
cycling in a shallow lake: a dynamic nutrient driven phytoplankton model. Ecol.
Model. 313, 137–148. https://doi.org/10.1016/j.ecolmodel.2015.06.025.

Lindim, C., Becker, A., Grueneberg, B., Fischer, H., 2015. Modelling the effects of nutrient
loads reduction and testing the N and P control paradigm in a German shallow
lake. Ecol. Eng. 82, 415–427. https://doi.org/10.1016/j.ecoleng.2015.05.009.

Liu, B., 2013. Global dynamic behaviors for a delayed Nicholson's blowflies model with a
linear harvesting term. Electron. J. Qual. Theory Differ. Equ. 1–13.

Liu, W.C., Chen, H.H., Hsieh, W.H., Chang, C.H., 2006. Linking watershed and eutrophica-
tion modelling for the Shihmen Reservoir, Taiwan. Water Sci. Technol. 54, 39–46.
https://doi.org/10.2166/wst.2006.834.

Liu, Y., Wang, Y., Sheng, H., Dong, F., Zou, R., Zhao, L., Guo, H., Zhu, X., He, B., 2014. Quan-
titative evaluation of lake eutrophication responses under alternative water diversion
scenarios: a water quality modeling based statistical analysis approach. Sci. Total En-
viron. 468, 219–227. https://doi.org/10.1016/j.scitotenv.2013.08.054.

Los, F.J., 1980. An algal bloom model as a tool to simulate management measures. Hyper-
trophic Ecosystems, Developments in Hydrobiology. Springer, Dordrecht,
pp. 171–178 https://doi.org/10.1007/978-94-009-9203-0_19.

Los, F.H., Brinkman, J.J., 1988. Phytoplanktonmodelling bymeans of optimizing: a 10-year
experience with BLOOM II. Verhandlungen Int. Ver. Limnol. 23, 790–795.

Lung, W.S., Canale, R.P., Freedman, P.L., 1976. Phosphorus models for eutrophic lakes.
Water Res. 10, 1101–1114. https://doi.org/10.1016/0043-1354(76)90043-9.

Makler-Pick, V., Gal, G., Hipsey, M.R., 2011. Coupling of an individual-based model with a
complex aquatic ecosystemmodel to explore the impact of the upper trophic level on
lower trophic levels. International Congress on Modelling and Simulation. Presented
at the International Congress on Modelling and Simulation, Perth, Australia, p. 7.

Markensten, H., Moore, K., Persson, I., 2010. Simulated lake phytoplankton composition
shifts toward cyanobacteria dominance in a future warmer climate. Ecol. Appl. 20,
752–767. https://doi.org/10.1890/08-2109.1.

Ménesguen, A., Lacroix, G., 2018. Modelling themarine eutrophication: a review. Sci. Total
Environ. 636, 339–354. https://doi.org/10.1016/j.scitotenv.2018.04.183.

Mieleitner, J., Reichert, P., 2006. Analysis of the transferability of a biogeochemical lake
model to lakes of different trophic state. Ecol. Model. 194, 49–61. https://doi.org/
10.1016/j.ecolmodel.2005.10.039.

Mieleitner, J., Reichert, P., 2008. Modelling functional groups of phytoplankton in three
lakes of different trophic state. Ecol. Model. 211, 279–291. https://doi.org/10.1016/j.
ecolmodel.2007.09.010.

Millie, D.F., Weckman, G.R., Pigg, R.J., Tester, P.A., Dyble, J., Litaker, R.W., Carrick, H.J.,
Fahnenstiel, G.L., 2006. Modeling phytoplankton abundance in Saginaw Bay, Lake
Huron: using artificial neural networks to discern functional influence of environ-
mental variables and relevance to a great lakes observing system. J. Phycol. 42,
336–349. https://doi.org/10.1111/j.1529-8817.2006.00209.x.

Milstead, W.B., Hollister, J.W., Moore, R.B., Walker, H.A., 2013. Estimating summer nutri-
ent concentrations in Northeastern lakes from SPARROW load predictions and
modeled lake depth and volume. PLoS One 8, e81457. https://doi.org/10.1371/jour-
nal.pone.0081457.

Mooij, W.M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P.V., Chitamwebwa,
D.B.R., Degermendzhy, A.G., DeAngelis, D.L., De Senerpont Domis, L.N., Downing,
A.S., Elliott, J.A., Fragoso, C.R., Gaedke, U., Genova, S.N., Gulati, R.D., Håkanson, L.,
Hamilton, D.P., Hipsey, M.R., 't Hoen, J., Hülsmann, S., Los, F.H., Makler-Pick, V.,
Petzoldt, T., Prokopkin, I.G., Rinke, K., Schep, S.A., Tominaga, K., Van Dam, A.A., Van
Nes, E.H., Wells, S.A., Janse, J.H., 2010. Challenges and opportunities for integrating
lake ecosystem modelling approaches. Aquat. Ecol. 44, 633–667. https://doi.org/
10.1007/s10452-010-9339-3.

Mooij, W.M., Brederveld, R.J., de Klein, J.J.M., DeAngelis, D.L., Downing, A.S., Faber, M.,
Gerla, D.J., Hipsey, M.R., 't Hoen, J., Janse, J.H., Janssen, A.B.G., Jeuken, M., Kooi, B.W.,
Lischke, B., Petzoldt, T., Postma, L., Schep, S.A., Scholten, H., Teurlincx, S., Thiange, C.,
Trolle, D., van Dam, A.A., van Gerven, L.P.A., van Nes, E.H., Kuiper, J.J., 2014. Serving
many at once: how a database approach can create unity in dynamical ecosystem
modelling. Environ. Model. Softw. 61, 266–273. https://doi.org/10.1016/j.
envsoft.2014.04.004.

Moore, B.C., Chen, P.-H., Funk, W.H., Yonge, D., 1996. Amodel for predicting lake sediment
oxygen demand following hypolimnetic aeration. J. Am. Water Resour. Assoc. 32,
723–731. https://doi.org/10.1111/j.1752-1688.1996.tb03469.x.

Moss, B., 2012. Cogs in the endless machine: lakes, climate change and nutrient cycles: a
review. Sci. Total Environ. 434, 130–142. https://doi.org/10.1016/j.
scitotenv.2011.07.069 (Climate Change and Macronutrient Cycling along the Atmo-
spheric, Terrestrial, Freshwater and Estuarine Continuum - A Special Issue dedicated
to Professor Colin Neal).

Muraoka, K., Fukushima, T., 1986. On the box model for prediction of water quality in eu-
trophic lakes. Ecol. Model. 31, 221–236. https://doi.org/10.1016/0304-3800(86)
90065-7.

Na, E.H., Park, S.S., 2006. A hydrodynamic and water quality modeling study of spatial
and temporal patterns of phytoplankton growth in a stratified lake with
buoyant incoming flow. Ecol. Model. 199, 298–314. https://doi.org/10.1016/j.
ecolmodel.2006.05.008.
National Academy of Sciences, 1969. Eutrophication: causes, consequences, correctives.
Proceedings of Madison Symposium, Wisconsin, 11–15 June, 1967.

Newcombe, G., 2012. International guidance manual for the management of toxic
cyanobacteria. Water Intell. Online 11. https://doi.org/10.2166/9781780401355.

Newcombe, G., Chorus, I., Falconer, I., Lin, T.-F., 2012. Cyanobacteria: impacts of climate
change on occurrence, toxicity and water quality management. Water Res. 46,
1347–1348.

Nielsen, A., Trolle, D., Bjerring, R., Søndergaard, M., Olesen, J.E., Janse, J.H., Mooij, W.M.,
Jeppesen, E., 2014. Effects of climate and nutrient load on the water quality of shallow
lakes assessed through ensemble runs by PCLake. Ecol. Appl. 24, 1926–1944.

Nürnberg, G.K., LaZerte, B.D., 2004. Modeling the effect of development on internal phos-
phorus load in nutrient-poor lakes. Water Resour. Res. 40, W01105. https://doi.org/
10.1029/2003WR002410.

Nyholm, N., 1978. A simulation model for phytoplankton growth and nutrient cycling in
eutrophic, shallow lakes. Ecol. Model. 4, 279–310. https://doi.org/10.1016/0304-3800
(78)90011-X.

Obenour, D.R., Gronewold, A.D., Stow, C.A., Scavia, D., 2014. Using a Bayesian hierarchical
model to improve Lake Erie cyanobacteria bloom forecasts. Water Resour. Res. 50,
7847–7860. https://doi.org/10.1002/2014WR015616.

Ogilvie, S., Mitchell, S., 1995. A model of mussel filtration in a shallow New-Zealand lake,
with reference to eutrophication control. Arch. Hydrobiol. 133, 471–482.

Onderka, M., 2007. Correlations between several environmental factors affecting the
bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)—a simple re-
gression model. Ecol. Model. 209, 412–416. https://doi.org/10.1016/j.
ecolmodel.2007.07.028.

O'Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful cyanobacteria
blooms: the potential roles of eutrophication and climate change. Harmful Algae 14,
313–334. https://doi.org/10.1016/j.hal.2011.10.027.

Ozkundakci, D., Hamilton, D.P., Trolle, D., 2011. Modelling the response of a highly eutro-
phic lake to reductions in external and internal nutrient loading. N. Z. J. Mar. Freshw.
Res. 45, 165–185. https://doi.org/10.1080/00288330.2010.548072.

Paerl, H.W., Huisman, J., 2008. Blooms like it hot. Science 320, 57–58. https://doi.org/
10.1126/science.1156721.

Paerl, H.W., Paul, V.J., 2012. Climate change: links to global expansion of harmful
cyanobacteria. Water Res. 46, 1349–1363. https://doi.org/10.1016/j.
watres.2011.08.002.

Paraska, D.W., Hipsey, M.R., Salmon, S.U., 2014. Sediment diagenesis models: review of
approaches, challenges and opportunities. Environ. Model. Softw. 61, 297–325.
https://doi.org/10.1016/j.envsoft.2014.05.011.

Patterson, J., Hamilton, D., Ferris, J., 1994. Modelling of cyanobacterial blooms in the
mixed layer of lakes and reservoirs. Mar. Freshw. Res. 45, 829. https://doi.org/
10.1071/MF9940829.

Patynen, A., Elliott, J.A., Kiuru, P., Sarvala, J., Ventela, A.M., Jones, R.I., 2014. Modelling the
impact of higher temperature on the phytoplankton of a boreal lake. Boreal Environ.
Res. 19, 66–78.

Peretyatko, A., Teissier, S., Backer, S.D., Triest, L., 2012. Classification trees as a tool for
predicting cyanobacterial blooms. Hydrobiologia 689, 131–146. https://doi.org/
10.1007/s10750-011-0803-4.

Perga, M.-E., Maberly, S.C., Jenny, J.-P., Alric, B., Pignol, C., Naffrechoux, E., 2016. A century
of human-driven changes in the carbon dioxide concentration of lakes. Glob.
Biogeochem. Cycles 30, 93–104. https://doi.org/10.1002/2015GB005286.

Perroud, M., Goyette, S., Martynov, A., Beniston, M., Annevillec, O., 2009. Simulation of
multiannual thermal profiles in deep Lake Geneva: a comparison of one-
dimensional lake models. Limnol. Oceanogr. 54, 1574–1594.

Pers, B., 2005. Modeling the response of eutrophication control measures in a Swedish
lake. Ambio 34, 552–558. https://doi.org/10.1639/0044-7447(2005)034[0552:
MTROEC]2.0.CO;2.

Pinay, G., Gascuel, C., Menesguen, A., Souchon, Y., Le Moal, M., 2017. L'eutrophisation:
manifestations, causes, conséquences et prédictibilité. Synthèse de l'Expertise
scientifique collective. CNRS - Ifremer - INRA - Irstea, France.

Pipp, E., Rott, E., 1995. A phytoplankton compartment model for a small meromictic lake
with special reference to species-specific niches and long-term changes. Ecol. Model.
78, 129–148. https://doi.org/10.1016/0304-3800(94)00123-Y.

Politi, E., Prairie, Y.T., 2018. The potential of Earth Observation inmodelling nutrient load-
ing and water quality in lakes of southern Quebec, Canada. Aquat. Sci. 80, 8. https://
doi.org/10.1007/s00027-017-0559-7.

Pomati, F., Matthews, B., Seehausen, O., Ibelings, B.W., 2017. Eutrophication and cli-
mate warming alter spatial (depth) co-occurrence patterns of lake phytoplank-
ton assemblages. Hydrobiologia 787, 375–385. https://doi.org/10.1007/s10750-
016-2981-6.

Posch, T., Köster, O., Salcher, M.M., Pernthaler, J., 2012. Harmful filamentous cyanobacteria
favoured by reduced water turnover with lake warming. Nat. Clim. Chang. 2,
809–813. https://doi.org/10.1038/nclimate1581.

Rankovic, V., Radulovic, J., Radojevic, I., Ostojic, A., Comic, L., 2010. Neural networkmodel-
ing of dissolved oxygen in the Gruza reservoir, Serbia. Ecol. Model. 221, 1239–1244.
https://doi.org/10.1016/j.ecolmodel.2009.12.023.

Reckhow, K., 1993. A random coefficient model for chlorophyll nutrient relationships in
lakes. Ecol. Model. 70, 35–50. https://doi.org/10.1016/0304-3800(93)90071-Y.

Reckhow, K.H., 1994. Water quality simulation modeling and uncertainty analysis for risk
assessment and decision making. Ecol. Model. 72, 1–20. https://doi.org/10.1016/
0304-3800(94)90143-0.

Recknagel, F., Adrian, R., Koehler, J., Cao, H., 2016. Threshold quantification and short-
term forecasting of Anabaena, Aphanizomenon and Microcystis in the polymictic eu-
trophic Lake Muggelsee (Germany) by inferential modelling using the hybrid evolu-
tionary algorithm HEA. Hydrobiologia 778, 61–74. https://doi.org/10.1007/s10750-
015-2442-7.

https://doi.org/10.1016/S0304-3800(01)00466-5
https://doi.org/10.1002/eco.1402
https://doi.org/10.5194/bg-11-2939-2014
https://doi.org/10.5194/bg-11-2939-2014
https://doi.org/10.1016/j.ecolmodel.2015.06.025
https://doi.org/10.1016/j.ecoleng.2015.05.009
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0700
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0700
https://doi.org/10.2166/wst.2006.834
https://doi.org/10.1016/j.scitotenv.2013.08.054
https://doi.org/10.1007/978-94-009-9203-0_19
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0720
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0720
https://doi.org/10.1016/0043-1354(76)90043-9
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0730
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0730
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0730
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0730
https://doi.org/10.1890/08-2109.1
https://doi.org/10.1016/j.scitotenv.2018.04.183
https://doi.org/10.1016/j.ecolmodel.2005.10.039
https://doi.org/10.1016/j.ecolmodel.2005.10.039
https://doi.org/10.1016/j.ecolmodel.2007.09.010
https://doi.org/10.1016/j.ecolmodel.2007.09.010
https://doi.org/10.1111/j.1529-8817.2006.00209.x
https://doi.org/10.1371/journal.pone.0081457
https://doi.org/10.1371/journal.pone.0081457
https://doi.org/10.1007/s10452-010-9339-3
https://doi.org/10.1007/s10452-010-9339-3
https://doi.org/10.1016/j.envsoft.2014.04.004
https://doi.org/10.1016/j.envsoft.2014.04.004
https://doi.org/10.1111/j.1752-1688.1996.tb03469.x
https://doi.org/10.1016/j.scitotenv.2011.07.069
https://doi.org/10.1016/j.scitotenv.2011.07.069
https://doi.org/10.1016/0304-3800(86)90065-7
https://doi.org/10.1016/0304-3800(86)90065-7
https://doi.org/10.1016/j.ecolmodel.2006.05.008
https://doi.org/10.1016/j.ecolmodel.2006.05.008
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0795
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0795
https://doi.org/10.2166/9781780401355
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf2025
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf2025
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf2025
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0805
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0805
https://doi.org/10.1029/2003WR002410
https://doi.org/10.1029/2003WR002410
https://doi.org/10.1016/0304-3800(78)90011-X
https://doi.org/10.1016/0304-3800(78)90011-X
https://doi.org/10.1002/2014WR015616
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0825
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0825
https://doi.org/10.1016/j.ecolmodel.2007.07.028
https://doi.org/10.1016/j.ecolmodel.2007.07.028
https://doi.org/10.1016/j.hal.2011.10.027
https://doi.org/10.1080/00288330.2010.548072
https://doi.org/10.1126/science.1156721
https://doi.org/10.1126/science.1156721
https://doi.org/10.1016/j.watres.2011.08.002
https://doi.org/10.1016/j.watres.2011.08.002
https://doi.org/10.1016/j.envsoft.2014.05.011
https://doi.org/10.1071/MF9940829
https://doi.org/10.1071/MF9940829
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0865
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0865
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0865
https://doi.org/10.1007/s10750-011-0803-4
https://doi.org/10.1007/s10750-011-0803-4
https://doi.org/10.1002/2015GB005286
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0880
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0880
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0880
https://doi.org/10.1639/0044-7447(2005)034<0552:MTROEC>2.0.CO;2
https://doi.org/10.1639/0044-7447(2005)034<0552:MTROEC>2.0.CO;2
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0890
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0890
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0890
https://doi.org/10.1016/0304-3800(94)00123-Y
https://doi.org/10.1007/s00027-017-0559-7
https://doi.org/10.1007/s00027-017-0559-7
https://doi.org/10.1007/s10750-016-2981-6
https://doi.org/10.1007/s10750-016-2981-6
https://doi.org/10.1038/nclimate1581
https://doi.org/10.1016/j.ecolmodel.2009.12.023
https://doi.org/10.1016/0304-3800(93)90071-Y
https://doi.org/10.1016/0304-3800(94)90143-0
https://doi.org/10.1016/0304-3800(94)90143-0
https://doi.org/10.1007/s10750-015-2442-7
https://doi.org/10.1007/s10750-015-2442-7


3000 B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
Reynolds, C.S., Irish, A.E., 1997. Modelling phytoplankton dynamics in lakes and reser-
voirs: the problem of in-situ growth rates. Hydrobiologia 349, 5–17. https://doi.org/
10.1023/A:1003020823129.

Reynolds, C.S., Elliott, J.A., 2010. Complexity and emergent properties in aquatic ecosys-
tems: predictability of ecosystem responses. Freshw. Biol., 1365–2427 https://doi.
org/10.1111/j.1365-2427.2010.02526.x.

Reynolds, C.S., Irish, A.E., Elliott, J.A., 2001a. The ecological basis for simulating phyto-
plankton responses to environmental change (PROTECH). Ecol. Model. 140, 271–291.

Reynolds, C.S., Irish, A.E., Elliott, J.A., 2001b. The ecological basis for simulating phyto-
plankton responses to environmental change (PROTECH). Ecol. Model. 140,
271–291. https://doi.org/10.1016/S0304-3800(01)00330-1.

Rigosi, A., Fleenor,W., Rueda, F., 2010. State-of-the-art and recent progress in phytoplank-
ton succession modelling. Environ. Rev. 18, 423–440. https://doi.org/10.1139/A10-
021.

Riley, M.J., Stefan, H.G., 1988. Minlake: a dynamic lake water quality simulation model.
Ecol. Model. 43, 155–182. https://doi.org/10.1016/0304-3800(88)90002-6.

Rivera, E.C., de Queiroz, J.F., Ferraz, J.M., Ortega, E., 2007. Systems models to evaluate eu-
trophication in the Broa Reservoir, Sao Carlos, Brazil. Ecol. Model. 202, 518–526.
https://doi.org/10.1016/j.ecolmodel.2006.11.016.

Riverson, J., Coats, R., Costa-Cabral, M., Dettinger, M., Reuter, J., Sahoo, G., Schladow, G.,
2013. Modeling the transport of nutrients and sediment loads into Lake Tahoe
under projected climatic changes. Clim. Chang. 116, 35–50. https://doi.org/10.1007/
s10584-012-0629-8.

Robertson, D.M., Saad, D.A., 2011. Nutrient inputs to the Laurentian great lakes by source
and watershed estimated using SPARROW watershed models. J. Am. Water Resour.
Assoc. 47, 1011–1033. https://doi.org/10.1111/j.1752-1688.2011.00574.x.

Rodriguez Reartes, S.B., Estrada, V., Bazan, R., Larrosa, N., Cossavella, A., Lopez, A., Busso, F.,
Diaz, M.S., 2016. Evaluation of ecological effects of anthropogenic nutrient loading
scenarios in Los Molinos reservoir through a mathematical model. Ecol. Model. 320,
393–406. https://doi.org/10.1016/j.ecolmodel.2015.10.028.

Romshoo, S.A., Muslim, M., 2011. Geospatial modeling for assessing the nutrient load of a
Himalayan lake. Environ. Earth Sci. 64, 1269–1282. https://doi.org/10.1007/s12665-
011-0944-9.

Rukhovets, L., Astrakhantsev, G., Menshutkin, V., Minina, T., Petrova, N., Poloskov, V.,
2003. Development of Lake Ladoga ecosystem models: modeling of the phytoplank-
ton succession in the eutrophication process. I. Ecol. Model. 165, 49–77. https://doi.
org/10.1016/S0304-3800(03)00061-9.

Sagehashi, M., Sakoda, A., Suzuki, M., 2001. Amathematical model of a shallow and eutro-
phic lake (the Keszthely Basin, Lake Balaton) and simulation of restorative manipula-
tions. Water Res. 35, 1675–1686. https://doi.org/10.1016/S0043-1354(00)00435-8.

Sahoo, G.B., Luketina, D., 2003. Modeling of bubble plume design and oxygen transfer for
reservoir restoration. Water Res. 37, 393–401. https://doi.org/10.1016/S0043-1354
(02)00283-X.

Salerno, F., Viviano, G., Carraro, E., Manfredi, E.C., Lami, A., Musazzi, S., Marchetto, A.,
Guyennon, N., Tartari, G., Copetti, D., 2014. Total phosphorus reference condition
for subalpine lakes: a comparison among traditional methods and a new process-
based watershed approach. J. Environ. Manag. 145, 94–105. https://doi.org/
10.1016/j.jenvman.2014.06.011.

Sarkar, R.R., Chattopadhayay, J., 2003. Occurrence of planktonic blooms under environ-
mental fluctuations and its possible control mechanism—mathematical models and
experimental observations. J. Theor. Biol. 224, 501–516. https://doi.org/10.1016/
S0022-5193(03)00200-5.

Scavia, D., Powers, W.F., Canale, R.P., Moody, J.L., 1981. Comparison of first-order error
analysis and Monte Carlo Simulation in time-dependent lake eutrophication models.
Water Resour. Res. 17, 1051–1059. https://doi.org/10.1029/WR017i004p01051.

Schindler, D.W., 2006. Recent advances in the understanding and management of eutro-
phication. Limnol. Oceanogr. 51, 356–363.

Schindler, D.W., 2009. Lakes as sentinels and integrators for the effects of climate change
on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 54, 2349–2358.

Schnoor, J., O'Connor, D., 1980. A steady-state eutrophication model for lakes. Water Res.
14, 1651–1665. https://doi.org/10.1016/0043-1354(80)90071-8.

Schwalb, A.N., Bouffard, D., Boegman, L., Leon, L., Winter, J.G., Molot, L.A., Smith, R.E.H.,
2015. 3D modelling of dreissenid mussel impacts on phytoplankton in a large lake
supports the nearshore shunt hypothesis and the importance of wind-driven hydro-
dynamics. Aquat. Sci. 77, 95–114. https://doi.org/10.1007/s00027-014-0369-0.

Schwefel, R., Gaudard, A., Wuest, A., Bouffard, D., 2016. Effects of climate change on deep-
water oxygen and winter mixing in a deep lake (Lake Geneva): comparing observa-
tional findings and modeling. Water Resour. Res. 52, 8794–8809. https://doi.org/
10.1002/2016WR019194.

Seip, K.L., 1991. The ecosystem of a mesotrophic lake-I. Simulating plankton biomass and
the timing of phytoplankton blooms. Aquat. Sci. 53, 239–262. https://doi.org/
10.1007/BF00877061.

Seo, D.-I., Canale, R.P., 1996. Performance, reliability and uncertainty of total phosphorus
models for lakes—I. Deterministic analyses. Water Res. 30, 83–94. https://doi.org/
10.1016/0043-1354(95)00114-Z.

Shan, K., Li, L., Wang, X., Wu, Y., Hu, L., Yu, G., Song, L., 2014. Modelling ecosystem struc-
ture and trophic interactions in a typical cyanobacterial bloom-dominated shallow
Lake Dianchi, China. Ecol. Model. 291, 82–95. https://doi.org/10.1016/j.
ecolmodel.2014.07.015.

Shimoda, Y., Arhonditsis, G.B., 2016. Phytoplankton functional type modelling: running
before we can walk? A critical evaluation of the current state of knowledge. Ecol.
Model. 320, 29–43. https://doi.org/10.1016/j.ecolmodel.2015.08.029.

Silva, T.F. das G., Vinçon-Leite, B., Giani, A., Figueredo, C.C., Petrucci, G., Lemaire, B.,
Sperling, E.V., Tassin, B., Seidl, M., Tran Khac, V., Viana, P.S., Viana, V.F.L., Toscano,
R.A., Rodrigues, B.H.M., Nascimento, N. de O., 2016. Modelagem da Lagoa da
Pampulha: uma ferramenta para avaliar o impacto da bacia hidrográfica na dinâmica
do fitoplâncton. Eng. Sanit. E Ambient. 21, 95–108. https://doi.org/10.1590/S1413-
41520201600100125692.

Simonsen, J.F., Dahl-Madsen, K.I., 1978. Eutrophication models for lakes. Nord. Hydrol. 9, 12.
Singleton, V.L., Rueda, F.J., Little, J.C., 2010. A coupled bubble plume–reservoir model for

hypolimnetic oxygenation. Water Resour. Res. 46. https://doi.org/10.1029/
2009WR009012.

Smith, V.H., Joye, S.B., Howarth, R.W., 2006. Eutrophication of freshwater and marine eco-
systems. Limnol. Oceanogr. 51, 351–355.

Smith, S.L., Merico, A., Wirtz, K.W., Pahlow, M., 2014. Leaving misleading legacies behind
in plankton ecosystem modelling. J. Plankton Res. 36, 613–620. https://doi.org/
10.1093/plankt/fbu011.

Smits, J.G.C., van der Molen, D.T., 1993. Application of SWITCH, a model for sediment-
water exchange of nutrients, to Lake Veluwe in The Netherlands. Hydrobiologia
253, 20. https://doi.org/10.1007/BF00050749.

Snodgrass, W.J., 1985. Lake Ontario oxygen model. 2. Errors associated with estimating
transport across the thermocline. Environ. Sci. Technol. 19, 180–185. https://doi.
org/10.1021/es00132a012.

Snodgrass, W.J., 1987. Analysis of models and measurements for sediment oxygen de-
mand in Lake Erie. J. Great Lakes Res. 13, 738–756. https://doi.org/10.1016/S0380-
1330(87)71688-8.

Sondergaard, M., Jeppesen, E., 2007. Anthropogenic impacts on lake and stream ecosys-
tems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094.

Soulignac, F., Vinçon-Leite, B., Lemaire, B.J., Scarati Martins, J.R., Bonhomme, C., Dubois, P.,
Mezemate, Y., Tchiguirinskaia, I., Schertzer, D., Tassin, B., 2017. Performance assess-
ment of a 3D hydrodynamic model using high temporal resolution measurements
in a shallow urban lake. Environ. Model. Assess. 22, 309–322. https://doi.org/
10.1007/s10666-017-9548-4.

Stansbury, J., Kozimor, L., Admiraal, D., Dove, E., 2008. Water quality modeling of the ef-
fects of macrophytes on dissolved oxygen in a shallow tailwater reservoir. Lake Res-
ervoir Manage. 24, 339–348. https://doi.org/10.1080/07438140809354844.

Stepanenko, V.M., Goyette, S., Martynov, A., Perroud, M., Fang, X., Mironov, D., 2010. First
steps of a lake model intercomparison project: LakeMIP. Boreal Environ. Res. 15,
191–202.

Stepanenko, V.M., Martynov, A., Jöhnk, K.D., Subin, Z.M., Perroud, M., Fang, X., Beyrich, F.,
Mironov, D., Goyette, S., 2012. A one-dimensional model intercomparison study of
thermal regime of a shallow, turbid midlatitude lake. Geosci. Model Dev. 6,
1337–1352. https://doi.org/10.5194/gmd-6-1337-2013.

Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., Vesala, T., 2016. LAKE
2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in
lakes. Geosci. Model Dev. 9, 1977–2006. https://doi.org/10.5194/gmd-9-1977-2016.

Stow, C., Carpenter, S., Lathrop, R., 1997. A Bayesian observation error model to predict
cyanobacterial biovolume from spring total phosphorus in Lake Mendota, Wisconsin.
Can. J. Fish. Aquat. Sci. 54, 464–473. https://doi.org/10.1139/cjfas-54-2-464.

Takkouk, S., Casamitjana, X., 2016. Application of the DYRESM–CAEDYMmodel to the Sau
Reservoir situated in Catalonia, Spain. Desalin.Water Treat. 57, 12453–12466. https://
doi.org/10.1080/19443994.2015.1053530.

Takolander, A., Cabeza, M., Leskinen, E., 2017. Climate change can cause complex re-
sponses in Baltic Sea macroalgae: a systematic review. J. Sea Res. 123, 16–29.
https://doi.org/10.1016/j.seares.2017.03.007.

Terry, J.A., Sadeghian, A., Lindenschmidt, K.-E., 2017. Modelling dissolved oxygen/sedi-
ment oxygen demand under ice in a shallow eutrophic prairie reservoir. Water 9,
131. https://doi.org/10.3390/w9020131.

Teruggi, S., Vendegna, V., 1986. Ecological models as support systems to decisions in lake
management planning. Sci. Total Environ. 55, 261–273. https://doi.org/10.1016/
0048-9697(86)90185-3.

Toffolon, M., Serafini, M., 2013. Effects of artificial hypolimnetic oxygenation in a shallow
lake. Part 2: numerical modelling. J. Environ. Manag. Arct. 114, 530–539. https://doi.
org/10.1016/j.jenvman.2012.10.063.

Trolle, D., Skovgaard, H., Jeppesen, E., 2008. The Water Framework Directive: setting the
phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem
model DYRESM–CAEDYM. Ecol. Model. 219, 138–152. https://doi.org/10.1016/j.
ecolmodel.2008.08.005.

Trolle, D., Hamilton, D.P., Hipsey, M.R., Bolding, K., Bruggeman, J., Mooij, W.M., Janse, J.H.,
Nielsen, A., Jeppesen, E., Elliott, J.A., Makler-Pick, V., Petzoldt, T., Rinke, K., Flindt, M.R.,
Arhonditsis, G.B., Gal, G., Bjerring, R., Tominaga, K., Hoen, J., Downing, A.S., Marques
Jr., D.M., C.R.F., Søndergaard, M., Hanson, P.C., 2011a. A community-based framework
for aquatic ecosystem models. Hydrobiologia 683, 25–34. https://doi.org/10.1007/
s10750-011-0957-0.

Trolle, D., Hamilton, D.P., Pilditch, C.A., Duggan, I.C., Jeppesen, E., 2011b. Predicting the ef-
fects of climate change on trophic status of three morphologically varying lakes: im-
plications for lake restoration and management. Environ. Model. Softw. 26, 354–370.
https://doi.org/10.1016/j.envsoft.2010.08.009.

Trolle, D., Elliott, J.A., Mooij, W.M., Janse, J.H., Bolding, K., Hamilton, D.P., Jeppesen, E.,
2014. Advancing projections of phytoplankton responses to climate change through
ensemble modelling. Environ. Model. Softw. 61, 371–379. https://doi.org/10.1016/j.
envsoft.2014.01.032.

Tyler, A.N., Svab, E., Preston, T., Presing, M., Kovacs, W.A., 2006. Remote sensing of the
water quality of shallow lakes: a mixture modelling approach to quantifying phyto-
plankton in water characterized by high-suspended sediment. Int. J. Remote Sens.
27, 1521–1537. https://doi.org/10.1080/01431160500419311.

van Puijenbroek, P., Janse, J.H., Knoop, J.M., 2004. Integrated modelling for nutrient load-
ing and ecology of lakes in The Netherlands. Ecol. Model. 174, 127–141. https://doi.
org/10.1016/j.ecolmodel.2004.01.002.

Van Straten, G.T., Keesman, K.J., 1991. Uncertainty propagation and speculation in projec-
tive forecasts of environmental change: a lake-eutrophication example. J. Forecast.
10, 163–190. https://doi.org/10.1002/for.3980100110.

https://doi.org/10.1023/A:1003020823129
https://doi.org/10.1023/A:1003020823129
https://doi.org/10.1111/j.1365-2427.2010.02526.x
https://doi.org/10.1111/j.1365-2427.2010.02526.x
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0940
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf0940
https://doi.org/10.1016/S0304-3800(01)00330-1
https://doi.org/10.1139/A10-021
https://doi.org/10.1139/A10-021
https://doi.org/10.1016/0304-3800(88)90002-6
https://doi.org/10.1016/j.ecolmodel.2006.11.016
https://doi.org/10.1007/s10584-012-0629-8
https://doi.org/10.1007/s10584-012-0629-8
https://doi.org/10.1111/j.1752-1688.2011.00574.x
https://doi.org/10.1016/j.ecolmodel.2015.10.028
https://doi.org/10.1007/s12665-011-0944-9
https://doi.org/10.1007/s12665-011-0944-9
https://doi.org/10.1016/S0304-3800(03)00061-9
https://doi.org/10.1016/S0304-3800(03)00061-9
https://doi.org/10.1016/S0043-1354(00)00435-8
https://doi.org/10.1016/S0043-1354(02)00283-X
https://doi.org/10.1016/S0043-1354(02)00283-X
https://doi.org/10.1016/j.jenvman.2014.06.011
https://doi.org/10.1016/j.jenvman.2014.06.011
https://doi.org/10.1016/S0022-5193(03)00200-5
https://doi.org/10.1016/S0022-5193(03)00200-5
https://doi.org/10.1029/WR017i004p01051
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1015
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1015
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1020
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1020
https://doi.org/10.1016/0043-1354(80)90071-8
https://doi.org/10.1007/s00027-014-0369-0
https://doi.org/10.1002/2016WR019194
https://doi.org/10.1002/2016WR019194
https://doi.org/10.1007/BF00877061
https://doi.org/10.1007/BF00877061
https://doi.org/10.1016/0043-1354(95)00114-Z
https://doi.org/10.1016/0043-1354(95)00114-Z
https://doi.org/10.1016/j.ecolmodel.2014.07.015
https://doi.org/10.1016/j.ecolmodel.2014.07.015
https://doi.org/10.1016/j.ecolmodel.2015.08.029
https://doi.org/10.1590/S1413-41520201600100125692
https://doi.org/10.1590/S1413-41520201600100125692
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1065
https://doi.org/10.1029/2009WR009012
https://doi.org/10.1029/2009WR009012
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1075
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1075
https://doi.org/10.1093/plankt/fbu011
https://doi.org/10.1093/plankt/fbu011
https://doi.org/10.1007/BF00050749
https://doi.org/10.1021/es00132a012
https://doi.org/10.1021/es00132a012
https://doi.org/10.1016/S0380-1330(87)71688-8
https://doi.org/10.1016/S0380-1330(87)71688-8
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1100
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1100
https://doi.org/10.1007/s10666-017-9548-4
https://doi.org/10.1007/s10666-017-9548-4
https://doi.org/10.1080/07438140809354844
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1115
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1115
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1115
https://doi.org/10.5194/gmd-6-1337-2013
https://doi.org/10.5194/gmd-9-1977-2016
https://doi.org/10.1139/cjfas-54-2-464
https://doi.org/10.1080/19443994.2015.1053530
https://doi.org/10.1080/19443994.2015.1053530
https://doi.org/10.1016/j.seares.2017.03.007
https://doi.org/10.3390/w9020131
https://doi.org/10.1016/0048-9697(86)90185-3
https://doi.org/10.1016/0048-9697(86)90185-3
https://doi.org/10.1016/j.jenvman.2012.10.063
https://doi.org/10.1016/j.jenvman.2012.10.063
https://doi.org/10.1016/j.ecolmodel.2008.08.005
https://doi.org/10.1016/j.ecolmodel.2008.08.005
https://doi.org/10.1007/s10750-011-0957-0
https://doi.org/10.1007/s10750-011-0957-0
https://doi.org/10.1016/j.envsoft.2010.08.009
https://doi.org/10.1016/j.envsoft.2014.01.032
https://doi.org/10.1016/j.envsoft.2014.01.032
https://doi.org/10.1080/01431160500419311
https://doi.org/10.1016/j.ecolmodel.2004.01.002
https://doi.org/10.1016/j.ecolmodel.2004.01.002
https://doi.org/10.1002/for.3980100110


3001B. Vinçon-Leite, C. Casenave / Science of the Total Environment 651 (2019) 2985–3001
Vanhuet, H., 1992. Phosphorus eutrophication in the SW Frisian lake district. 1. Monitor-
ing and assessment of a dynamic mass balance model. Hydrobiologia 233, 259–270.
https://doi.org/10.1007/BF00016114.

Varis, O., 1993. Cyanobacteria dynamics in a restored finnish lake - a long-term simulation
study. Hydrobiologia 268, 129–145. https://doi.org/10.1007/BF00014049.

Verhagen, J., 1994. Modeling phytoplankton patchiness under the influence of wind-
driven currents in lakes. Limnol. Oceanogr. 39, 1551–1565. https://doi.org/10.4319/
lo.1994.39.7.1551.

Vollenweider, R.A., 1975. Input-output models. With special reference to the phosphorus
loading concept in limnology. Schweiz. Z. Für Hydrol. 37, 53–84. https://doi.org/
10.1007/BF02505178.

Vollenweider, R.A., Kerekes, J., 1982. Eutrophication of Waters. Monitoring, Assessment
and Control. OECD Cooperative Programme on Monitoring of Inland Waters. OECD,
Paris.

Wagner, C., Adrian, R., 2009. Cyanobacteria dominance: quantifying the effects of climate
change. Limnol. Oceanogr. 54, 2460–2468. https://doi.org/10.4319/lo.2009.54.6_
part_2.2460.

Walker, R.R., Snodgrass, W.J., 1986. Model for sediment oxygen demand in lakes.
J. Environ. Eng. 112, 25–43. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:1
(25).

Walsby, A., 2005. Stratification by cyanobacteria in lakes: a dynamic buoyancy model in-
dicates size limitations met by Planktothrix rubescens filaments. New Phytol. 168,
365–376. https://doi.org/10.1111/j.1469-8137.2005.01508.x.

Wang, B., Qi, Q., 2018. Modeling the lake eutrophication stochastic ecosystem and the re-
search of its stability. Math. Biosci. 300, 102–114. https://doi.org/10.1016/j.
mbs.2018.03.019.

Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems. Academic Press.
World Commission on Dams, 2000. Dams and Development: A New Framework for

Decision-making. The Report of the World Commission on Dams.
Wu, Z., Liu, Y., Liang, Z., Wu, S., Guo, H., 2017. Internal cycling, not external loading, de-

cides the nutrient limitation in eutrophic lake: a dynamic model with temporal
Bayesian hierarchical inference. Water Res. 116, 231–240. https://doi.org/10.1016/j.
watres.2017.03.039.

Xenopoulos, M.A., Downing, J.A., Kumar, M.D., Menden-Deuer, S., Voss, M., 2017. Headwa-
ters to oceans: ecological and biogeochemical contrasts across the aquatic contin-
uum. Limnol. Oceanogr. 62, S3–S14. https://doi.org/10.1002/lno.10721.

Xu, Z., Xu, Y.J., 2016. A deterministic model for predicting hourly dissolved oxygen
change: development and application to a shallow eutrophic lake. Water 8. https://
doi.org/10.3390/w8020041.
Xu, F.-L., Jørgensen, S.E., Tao, S., Li, B.-G., 1999. Modeling the effects of ecological engineer-
ing on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecol.
Model. 117, 239–260. https://doi.org/10.1016/S0304-3800(99)00005-8.

Xu, F.-L., Jorgensen, S.E., Kong, X.-Z., He, W., Qin, N., 2014. Development of ecological
models for the effects of macrophyte restoration on the ecosystem health of a large
eutrophic Chinese lake (Lake Chaohu). In: Jorgensen, S.E., Chang, N.B., Xu, F.L.
(Eds.), Ecological Modelling and Engineering of Lakes and Wetlands. Developments
in Environmental Modelling. Elsevier, pp. 337–373 https://doi.org/10.1016/B978-0-
444-63249-4.00014-2.

Xu, Yunfeng, Ma, C., Liu, Q., Xi, B., Qian, G., Zhang, D., Huo, S., 2015a. Method to predict key
factors affecting lake eutrophication - a new approach based on Support Vector Re-
gression model. Int. Biodeterior. Biodegrad. 102, 308–315. https://doi.org/10.1016/j.
ibiod.2015.02.013.

Xu, Y., Schroth, A.W., Isles, P.D.F., Rizzo, D.M., 2015b. Quantile regression improves models
of lake eutrophication with implications for ecosystem-specific management.
Freshw. Biol. 60, 1841–1853. https://doi.org/10.1111/fwb.12615.

Yacobi, Y.Z., 2006. Temporal and vertical variation of chlorophyll alpha concentration,
phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possi-
bilities and limitations for simulation by remote sensing. J. Plankton Res. 28, 725–736.
https://doi.org/10.1093/plamktfbl004.

Yao, X., Zhang, Y., Zhang, L., Zhou, Y., 2018. A bibliometric review of nitrogen research in
eutrophic lakes and reservoirs. J. Environ. Sci. 66, 274–285. https://doi.org/10.1016/j.
jes.2016.10.022.

Yi, X., Zou, R., Guo, H., 2016. Global sensitivity analysis of a three-dimensional nutrients-
algae dynamic model for a large shallow lake. Ecol. Model. 327, 74–84. https://doi.
org/10.1016/j.ecolmodel.2016.01.005.

Zhang, H., Culver, D.A., Boegman, L., 2008. A two-dimensional ecological model of Lake
Erie: application to estimate dreissenid impacts on large lake plankton populations.
Ecol. Model. 214, 219–241. https://doi.org/10.1016/j.ecolmodel.2008.02.005.

Zhang, H., Hu, W., Gu, K., Li, Q., Zheng, D., Zhai, S., 2013. An improved ecological model
and software for short-term algal bloom forecasting. Environ. Model. Softw. 48,
152–162. https://doi.org/10.1016/j.envsoft.2013.07.001.

Zhang, X., Recknagel, F., Chen, Q., Cao, H., Li, R., 2015. Spatially-explicit modelling and
forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation.
Ecol. Model. 306, 216–225. https://doi.org/10.1016/j.ecolmodel.2014.05.013.

https://doi.org/10.1007/BF00016114
https://doi.org/10.1007/BF00014049
https://doi.org/10.4319/lo.1994.39.7.1551
https://doi.org/10.4319/lo.1994.39.7.1551
https://doi.org/10.1007/BF02505178
https://doi.org/10.1007/BF02505178
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1215
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1215
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1215
https://doi.org/10.4319/lo.2009.54.6_part_2.2460
https://doi.org/10.4319/lo.2009.54.6_part_2.2460
https://doi.org/10.1061/(ASCE)0733-9372(1986)112:1(25)
https://doi.org/10.1061/(ASCE)0733-9372(1986)112:1(25)
https://doi.org/10.1111/j.1469-8137.2005.01508.x
https://doi.org/10.1016/j.mbs.2018.03.019
https://doi.org/10.1016/j.mbs.2018.03.019
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1240
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1245
http://refhub.elsevier.com/S0048-9697(18)33777-X/rf1245
https://doi.org/10.1016/j.watres.2017.03.039
https://doi.org/10.1016/j.watres.2017.03.039
https://doi.org/10.1002/lno.10721
https://doi.org/10.3390/w8020041
https://doi.org/10.3390/w8020041
https://doi.org/10.1016/S0304-3800(99)00005-8
https://doi.org/10.1016/B978-0-444-63249-4.00014-2
https://doi.org/10.1016/B978-0-444-63249-4.00014-2
https://doi.org/10.1016/j.ibiod.2015.02.013
https://doi.org/10.1016/j.ibiod.2015.02.013
https://doi.org/10.1111/fwb.12615
https://doi.org/10.1093/plamktfbl004
https://doi.org/10.1016/j.jes.2016.10.022
https://doi.org/10.1016/j.jes.2016.10.022
https://doi.org/10.1016/j.ecolmodel.2016.01.005
https://doi.org/10.1016/j.ecolmodel.2016.01.005
https://doi.org/10.1016/j.ecolmodel.2008.02.005
https://doi.org/10.1016/j.envsoft.2013.07.001
https://doi.org/10.1016/j.ecolmodel.2014.05.013

	Modelling eutrophication in lake ecosystems: A review
	1. Introduction
	2. Bibliography analysis
	2.1. Study sites
	2.2. Modelling objectives
	2.3. Model typology
	2.3.1. Empirical models
	2.3.2. Mechanistic models
	2.3.3. From box models to 3D models

	2.4. Main research topics studied with lake models
	2.4.1. Phytoplankton
	2.4.2. Nutrients
	2.4.3. Sediment
	2.4.4. Oxygen
	2.4.5. Cyanobacteria

	2.5. Model selection

	3. Main results obtained with process-based models
	3.1. Phytoplankton dynamics
	3.2. Cyanobacteria dynamics
	3.3. Integration of models in early warning system
	3.4. Ecosystem response to local management strategies
	3.5. Ecosystem response to global changes
	3.6. Coupled models of lake and watershed

	4. Discussion and perspectives
	5. Conclusion
	Acknowledgements
	Appendix A
	A.1. Selection of the bibliographic corpus
	A.2. Number of publications and citations
	A.3. General categories, research areas and journal titles
	A.4. Keywords

	References


