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Abstract
Many of the world’s fisheries are unassessed, with little information about population 
status or risk of overfishing. Unassessed fisheries are particularly predominant in develop-
ing countries and in small-scale fisheries, where they are important for food security. 
Several catch-only methods based on time series of fishery catch and commonly available 
life-history traits have been developed to estimate stock status (defined as biomass rela-
tive to biomass at maximum sustainable yield: B/BMSY). While their stock status perfor-
mance has been extensively studied, performance of catch-only models as a management 
tool is unknown. We evaluated the extent to which a superensemble of three prominent 
catch-only models can provide a reliable basis for fisheries management and how 
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1  | INTRODUC TION

Determining population status is a key step in managing fish 
stocks effectively. Approximately 53% of global reported catch 
is accounted for in the RAM Legacy Stock Assessment Database 
(Costello et al., 2016; RAM Legacy Stock Assessment Database 
2017; Ricard, Minto, Jensen, & Baum, 2012). A quarter of the 
remaining global reported catch has undergone some form of 
data-limited stock assessment (FAO 2016), while 22% remains 
unassessed, with little information about population status or 
risk of overfishing. This is a conservative estimate, not account-
ing for unreported stocks. These data-limited stocks make up 
an increasing proportion of global reported catch over time, 
from 20% to 47% in the last 60 years (Vasconcellos & Cochrane, 
2005), contributing to a significant proportion of food produc-
tion, particularly in developing countries. However, manage-
ment of data-limited stocks also poses a problem in developed 
regions of the world. In the United States, 70% of stocks are 
managed using “data-limited methods” (Newman, Berkson, & 
Suatoni, 2015), and in the European context, 165 of 262 stocks 
for which the International Council for the Exploration of the Sea 
(ICES) provides advice are considered data-limited, precluding 
absolute estimates of stock status in their existing MSY frame-
work (ICES Advisory Committee 2017). Furthermore, legislative 
requirements in the United States, Australia and the European 
Union require catch limits or other harvest strategies to be set 
for many of these data-limited stocks, which has spurred the 
development of assessment methods and harvest control rules 
(HCRs) to meet this mandate (Chrysafi & Kuparinen, 2015; ICES 
Advisory Committee 2012; Newman et al., 2015). While a typi-
cal “data-rich” stock assessment includes life-history information, 
catch time series, abundance indices, and age or size composition, 

performance compares across management strategies that control catch or fishing effort. 
We used a management strategy evaluation framework to determine whether a super-
ensemble of catch-only models can reliably inform harvest control rules (HCRs). Across 
five simulated fish life histories and two harvest-dynamic types, catch-only models and 
HCR combinations reduced the risk of overfishing and increased the proportion of stocks 
above BMSY compared to business as usual, though often resulted in poor yields. 
Precautionary HCRs based on fishing effort were robust and insensitive to error in catch-
only models, while catch-based HCRs caused high probabilities of overfishing and more 
overfished populations. Catch-only methods tended to overestimate B/BMSY for our simu-
lated data sets. The catch-only superensemble combined with precautionary effort-based 
HCRs could be part of a stepping stone approach for managing some data-limited stocks 
while working towards more data-moderate assessment methods.

K E Y W O R D S

catch-only model, data-limited, data-poor, harvest control rule, management strategy 
evaluation, superensemble
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data-limited assessment and HCR approaches vary in their data 
requirements and are typically based on only one or two of 
these data streams (e.g., see Carruthers et al., 2014; Geromont & 
Butterworth, 2015). Here we focus on the application of catch-
based approaches. Data-limited, catch-based methods for assess-
ment and management differ in terms of their data requirements, 
assumptions, and outputs (Table 1). 

Many data-limited stocks are managed with “empirical” harvest 
strategies, which use indicators to inform managers of whether and 
how they should adjust catch or effort, without ever directly estimat-
ing stock status. Static versions of empirical HCRs do not consider 
population processes estimated from stock assessment models or 
auxiliary data types but scale the catch (or effort) limit based on em-
pirical observations and prespecified scalar adjustments (Carruthers 
et al., 2014).

Some “empirical” catch-based approaches rely directly on catch 
histories and may include auxiliary data types such as expert judg-
ment, life-history information or fishery-dependent indicators such 
as changes in effort, size composition, species composition or dis-
tribution (Dowling et al., 2015; Newman et al., 2015). In the United 
States, 52% of managed stocks used only catch data to calculate the 
legislated allowable catch limits (Berkson & Thorson, 2014), such as 
setting a catch limit based on the median catch over the past 10 years 
of fishing. However, these static catch-based HCRs can result in high 
probabilities of overfishing, and subsequent low B/BMSY or low yield 
across most simulated life-history traits (Carruthers et al., 2014).

Empirical catch-only HCRs can be extended to combine the 
catch time series with expert knowledge on categorical stock 
status to inform catch limits, including the Only Reliable Catch 
Series (ORCS; Berkson, Barbieri, Cadrin, & Trianni, 2011), the 
Restrepo method (Restrepo et al., 1998) and the depletion-
adjusted catch scalar method (DACS; Berkson et al., 2011; 
Carruthers et al., 2014) (Table 1). These methods can be con-
sidered dynamic if they scale the catch limits according to rules 
based on a categorical estimate of biomass status (overexploited, 
fully exploited or underexploited) from expert knowledge or 
survey questions, and can be updated as new information is 
collected. In past simulated management strategy evaluations 
(MSEs), DACS had an intermediate level of performance, but was 
not able to avoid overfishing (Carruthers et al., 2014), while the 
ORCS and Restrepo methods were conservative, but had high 
probabilities of overfishing if the stock was incorrectly classi-
fied due to overly optimistic status estimates (Wiedenmann, 
Wilberg, & Miller, 2013). A revised version of the ORCS method 
shows improved status estimation accuracy using boosted clas-
sification trees and the historical catch statistics and scalars that 
performed best when compared to data-rich assessments (Free, 
Jensen, Wiedenmann, & Deroba, 2017), but the method has not 
yet been evaluated through an MSE.

Other methods for assessment and setting catch limits, in-
cluding depletion-based stock reduction analysis (DB-SRA; Dick 
& MacCall, 2011) and depletion-corrected average catch (DCAC; 
MacCall, 2009), appear to provide more reliable estimates of 

sustainable catch and result in more effective management 
than the latter empirical HCRs (Carruthers et al., 2014). These 
depletion-based methods estimate sustainable catch using under-
lying population models (e.g., production models, stock reduction 
analysis) that require information on fishing mortality at maximum 
sustainable yield (FMSY) and estimates of current depletion, mak-
ing their data requirements prohibitive for many stocks. While 
estimates of current depletion may come from expert elicitation 
(Chrysafi, Cope, & Kuparinen, 2017), if this information is unavail-
able, unreliable or too uncertain to be meaningful, the ORCS and 
Restrepo methods have been recommended for use (Berkson 
et al., 2011; Wiedenmann et al., 2013). However, despite dynamic 
adjustments, these empirical catch-based HCRs can result in high 
probability of overfishing, low biomass or low yields (Carruthers 
et al., 2014). In short, it is difficult to provide robust and reliable 
management advice for data-limited stocks, despite a diverse 
array of catch-only methods to choose from (Table 1).

A group of data-limited methods, referred to here as “catch-only 
models,” are model-based dynamic methods that assess stock sta-
tus based primarily on catch data (Table 1). These catch-only models 
produce estimates of stock status, for example, total population bio-
mass relative to biomass at maximum sustainable yield, B/BMSY and 
some relevant biological and fishing reference points for manage-
ment (e.g., MSY). Catch-only models require a time series of catch 
data (i.e., landings plus discards) and basic life-history parameters 
and can be applied when estimates of current depletion, fishing ef-
fort, biological survey data or length or age composition of the catch 
are not available. Rosenberg et al. (2014) tested the performance of 
four catch-only models on a simulated stock data set including: (a) 
“Catch MSY” (CMSY) developed by Martell and Froese (2013) and 
slightly modified in Rosenberg et al. (2014), (b) a catch-only model 
using sampling importance resampling (COMSIR: Vasconcellos & 
Cochrane, 2005), (c) a modified panel regression model fit to the 
RAM Legacy stock assessment database (mPRM: Costello et al., 
2012), and (d) a state-space catch-only model (SSCOM: Thorson 
et al., 2013). The authors found that the models often provided bi-
ased and conflicting estimates of stock status, and none of the in-
dividual methods consistently performed best across all simulation 
scenarios tested (Rosenberg et al., 2014).

Ensembles and superensembles can account for the uncertain-
ties and, in part, the biases associated with each individual model 
(Anderson et al., 2017). Ensemble models calculate the mean of in-
dividual model estimates. Superensembles, however, use the status 
estimates from individual catch-only models as data in an additional 
statistical model (e.g., a linear model or a machine-learning model) fit-
ted to an independent data set (Anderson et al., 2017; Krishnamurti, 
1999). Using a training data set of stocks with known population 
status, the superensemble “learns” when the underlying models per-
form well and incorporates this information when estimating status 
of an unassessed stock of interest. Anderson et al. (2017) combined 
the output (B/BMSY estimates) from the four catch-only methods in 
four superensemble models and found that the random forest supe-
rensemble led to the greatest increase in accuracy of stock status 
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estimates (Anderson et al., 2017). The use of multiple data-limited 
models to inform fishery management is not unusual; for exam-
ple, catch limits for black sea bass in the mid-Atlantic region of the 
United States were set based on an average of estimates obtained 
through the DLMtool (Carruthers & Hordyk, 2017; McNamee, Fay, & 
Cadrin, 2016). However, superensembles can perform better than a 
simple model average (Anderson et al., 2017), making them a poten-
tially useful new tool for managing data-limited stocks.

While the performance of this suite of catch-only models and 
their superensembles for estimating stock status has been exten-
sively evaluated (Anderson et al., 2017; Rosenberg et al., 2014, 
2017), these studies did not test whether these individual methods 
or the superensemble were suitable for guiding management. This 
study aims to advance understanding of the utility of catch-only 
models by examining the ability of a superensemble of catch-only 
methods to effectively inform HCRs and provide the basis for man-
agement advice. Specifically, we use the B/BMSY status estimates 
from a random forest superensemble of three catch-only models 
(CMSY, COMSIR and mPRM) to inform a set of HCRs (Gabriel & 
Mace, 1999) that control either (a) input (i.e., fishing effort) or (b) out-
put (i.e., catches) of the fishery. We evaluate how well these model-
based catch-only management strategies maintain or recover stocks 
towards target biomass levels (BMSY) and avoid severe population 
declines or overfishing while sustaining high yields. In doing so, we 
seek to identify whether and when they are reliable, or whether they 
should be avoided in practice.

2  | METHODS

Our analysis follows the simulation component of an MSE frame-
work (Kell et al., 2007; Punt, Butterworth, de Moor, De Oliveira, & 
Haddon, 2014) consisting of five steps (Figure 1): (a) develop a simu-
lated operating model representing the population dynamics of five 
fish stocks, (b) use a superensemble of catch-only models to assess 
population status and estimate fishery reference points of these 
simulated stocks, (c) apply catch or effort limits for management 
using four HCRs and a business as usual scenario, based on the su-
perensemble status estimates, (d) project the effect of HCRs on the 
simulated stocks for 5- and for 20-year scenarios and (e) evaluate the 
performance of the catch-only models under different HCRs, based 
on biologically sustainable fishery objectives.

2.1 | Step 1: Develop operating models to 
simulate stocks

We simulated stocks based on life-history characteristics of five 
marine fish species from two different geographical regions of the 
east Pacific Ocean (Supporting Information Table S1). We mod-
elled three species occurring on the west coast of the United States 
and Canada: bocaccio rockfish (Sebastes paucispinis, Sebastidae), 
Pacific sardine (Sardinops sagax caerulea, Clupeidae) and petrale sole 
(Eopsetta jordani, Pleuronectidae); and two species occurring in the 

Eastern Tropical Pacific Seascape (ETPS; the exclusive economic 
zones of Panama, Costa Rica, Colombia and Ecuador): corvina reina 
(Cynoscion albus, Sciaenidae) and skipjack tuna (Katsuwonus pelamis, 
Scombrinae). These species were selected because they are of eco-
nomic importance in their respective regions and represent a variety 
of life-history traits with which to test the catch-only superensemble 
methods.

Fishing mortality was simulated using two scenarios of effort 
dynamics in the operating model (Figure 1), for example, the “one-
way trip” and “bioeconomic coupling.” In the one-way trip (OW) 
scenario, the harvest rate continually increased over time, so that 
it would reach 80% of Fcrash (i.e., the lowest fishing mortality rate 
that drives spawning stock biomass to 0 in an equilibrium model) at 
the end of the 80-year simulation period (i.e., 60 years preassess-
ment and 20 years of postassessment management). The effort 
dynamics with bioeconomic coupling (ED03) scenario represented 
an open-access single-species fishery, where the fishing mortality 
was determined by the biomass and effort in the previous year 
(Rosenberg et al., 2014; Thorson et al., 2013). We used the fol-
lowing equation for effort: Et+1=Et

(

Bt

aBMSY

)x

, where Et is the fishing 
mortality (harvest rate) at time t, B is total stock biomass, a is the 
proportion of BMSY at which bioeconomic equilibrium occurs (set 
at a = 0.5), and x is an exponent that determines the strength of 
coupling between effort and changes in biomass (set at x = 0.3). 
We use both OW and ED03 scenarios because effort dynamics 
have been documented in only 41% of assessed stocks in the RAM 
Legacy database (Szuwalski & Thorson, 2017), yet can strongly 
influence the performance of the catch-only models (Rosenberg 
et al., 2014: Mosqueira I. et al. unpublished data). Here, we as-
sumed harvest rate is proportional to fishing effort, given fixed 
catchability and instantaneous fishing.

Each of the 10 simulated scenarios (across five species and two 
effort dynamics) had a fishing history of 60 years and was replicated 
600 times (Figure 1). Variation across iterations within a scenario 
was generated by simulating annual recruitment variability, as well 
as variation in fishing mortality and implementation error. Additional 
description of these methods is included in the Supporting 
Information.

We extracted the catch data required for the catch-only models 
(described in the following step) by adding observation error to the 
simulated time series of catch. We assumed only the last 20 years 
of fishing had been recorded, even though fishing had occurred for 
40 years prior to data collection. This was to mimic a realistic catch 
time series and length of fishing history currently available for sev-
eral unassessed stocks (although this may be optimistic for many 
fisheries in developing countries). Different levels of observation 
error were added to the catch data to reflect possible differences in 
resources and capacity available for recording landings and estimat-
ing discards in each geographic region: US/Canadian fisheries had 
log-normal errors where σC = 0.2, and ETPS fisheries had log-normal 
errors where σC = 0.5 (Agnew et al., 2009). We also tested a scenario 
that included bias in the catch data to account for illegal, unreported 
and unregulated fishing (IUU). In the underreporting scenario (UR), 
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US/Canadian stocks had 20% negative bias in the catch data consis-
tent across all years (i.e., 80% of true catch), and ETPS stocks had 
50% negative bias, constantly applied across all years.

2.2 | Step 2: Stock assessment using a catch-only 
superensemble

We estimated the status (B/BMSY) for each simulation replicate 
(600 iterations for each of 10 scenarios) using a superensemble 
model of three catch-only methods, previously selected and tested 
in Rosenberg et al. (2014)—Catch MSY (CMSY; Martell & Froese, 
2013), the catch-only model using sampling importance resampling 
(COMSIR; Vasconcellos & Cochrane, 2005) and a modified panel re-
gression model (mPRM; Costello et al., 2012). Descriptions of each 
model are provided in Rosenberg et al. (2014, 2017) and Anderson 
et al. (2017). A state-space catch-only model (SSCOM: Thorson 
et al., 2013) is another candidate catch-only method that estimates 
B/BMSY that was included in Rosenberg et al. (2014), but its relatively 
long computational run-time prohibited its inclusion in this analysis. 
The inputs into the individual catch-only models were the 20-year 
catch time series (extracted from the operating model with observa-
tion error, with or without bias) and basic life-history traits, such as 
resilience of the species (Musick, 1999) and broad species catego-
ries (e.g., tuna, sardine). The priors used for CMSY and COMSIR are 

described in the Supporting Information. The CMSY and COMSIR 
catch-only models produce posterior distributions, and we used the 
medians of these posterior distributions as “estimates of status” in 
the ensemble model. The default model settings were used for all 
priors, parameters and sample sizes, described in Rosenberg et al. 
(2014) and implemented using the “datalimited” package (https://
github.com/datalimited/datalimited) in R (R Development Core 
Team 2005).

The estimates of B/BMSY status from each catch-only model 
were then used as inputs to a random forest superensemble model. 
Although there are a variety of methods that can be used to develop 
a superensemble, we chose the random forest machine-learning 
model because it was one of the top performing superensembles 
(lowest bias and highest accuracy) among the options tested against 
a simulated data set and a global compilation of stock assessments 
in the RAM Legacy database (Anderson et al., 2017). The superen-
semble model contained five covariates: the average stock status of 
the last 5 years 

(

t∈
{

56,… ,60
})

 estimated from each of the three 
individual catch-only models and two variables that characterized 
the spectral densities of the catch time series at 5- and 20-year cy-
cles (i.e., frequencies of 0.20 and 0.05). Superensembles require a 
training data set with known (or true) values of status. In this case, 
we trained the superensemble with the full factorial data set (i.e., 
with all combinations of different life-history, data-quality and 

F IGURE  1 Flow diagram of the 
management strategy evaluation 
framework used to evaluate the 
performance of catch-only harvest 
strategies and description of simulated 
and management scenarios tested

https://github.com/datalimited/datalimited
https://github.com/datalimited/datalimited
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harvest-dynamic characteristics considered in the simulation set-up) 
that was simulated independently (Anderson et al., 2017; Rosenberg 
et al., 2014) and is not otherwise used in this study. We applied the 
random forest models using the “randomForest” R package, with 
1000 trees per run (Breiman, 2001).

2.3 | Step 3: Fine-tune and apply harvest 
control rules

We used status estimates from the catch-only superensemble and 
five HCR scenarios (Figure 2) to set future catch or effort limits. 
These catch or effort limits were determined using the estimated 
stock status (B/BMSY) averaged over the last five years before the 
assessment from the superensemble. The first two HCRs were de-
signed to achieve a target fishing mortality (FMSY) by controlling fish-
ing effort, using either (a) a modified 40-10 rule or (b) a step rule 
(description below, Figure 2, Supporting Information Tables S2 and 
S3). Two other HCRs were designed to achieve a target catch (MSY) 
by controlling for catches, using either (a) a modified 40-10 rule or 
(b) a step rule. We compared these four HCRs with a “business as 
usual” (BAU) scenario, which simulated a situation where no new 
management would take place after the assessment, following the 
underlying effort dynamics of the operating model (either a one-way 
trip or a system with bioeconomic coupling). In practice, catch-based 
HCRs are often implemented through quotas, for example, while 
controls on fishing effort can be implemented through approaches 
such as limiting the number of boats or days-at-sea (often referred 
to as managed access or input control) or required changes in fish-
ing mortality can be converted to advised catches. We added a pre-
cautionary buffer to all HCR maximum target values, determined by 
scenarios using perfect (true) information from the operating model, 
described in the sections below.

2.3.1 | Effort-based 40-10 HCR

The effort-based 40-10 rule specifies that (a) when  B/BMSY is at or 
above a threshold point (40% unfished biomass (B0) or carrying ca-
pacity (K)), the target is set to the instantaneous fishing mortality 
rate at maximum sustainable yield with an appropriate buffer (FMSY 
× buffer), and (b) when stock biomass is below 10% carrying capac-
ity, fishing stops. For stocks with biomass between 10 and 40% of 
unfished biomass, their target fishing mortality (F) is set based on 
the linear trajectory drawn between 10% B0, 0 and 40% B0, FMSY 
× buffer (Figure 2, Supporting Information Table S2, Appendix S1). 
The target fishing mortality rate was then made relative to the cur-
rent fishing harvest ratio (discrete fishing mortality) (Supporting 
Information Appendix S1, Table S3). This relative effort-based HCR 
was designed to reflect a data-limited situation, where stocks are 
managed by changing the effort fishing (F) relative to current effort, 
as it is more difficult to control and monitor for a specific fishing 
mortality. The 40-10 HCRs were inspired by similar management 
strategies and buffer zones currently used to set catch and fishing 
limits in several US regions (Punt & Ralston, 2007).

2.3.2 | Effort-based step HCR

The effort-based step HCR followed a step function that reduced 
the fishing mortality rates as biomass declined. The biomass thresh-
old (trigger) and limit points were set at 110% and 60% BMSY, re-
spectively (Figure 2, Supporting Information Table S2). Above 110% 
BMSY, fishing was set at FMSY × an appropriate buffer. Between 60% 
and 110% BMSY, the target fishing mortality was ½ FMSY × buffer, 
and below 60%, BMSY no fishing was allowed. This target fishing 
mortality rate was then made relative to the current fishing harvest 
ratio, as in the effort 40-10 rule. This rule was designed to be more 

F IGURE  2 Schematics of the 40-10 
and step harvest control rules (HCRs) 
controlling for fishing effort (top panels) 
or catch (bottom panels). The vertical 
dashed lines show the trigger and limit 
points for the 40-10 HCRs (40% and 10% 
of unfished biomass or carrying capacity, 
K), and for the step HCRs (110% and 
60% of BMSY). The vertical dotted line 
shows the buffers used for each HCR; for 
example, for the effort-based 40-10 rule, 
the buffer was 50% FMSY
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precautionary than the 40-10 rule to account for the uncertainty and 
possible inaccuracy in the catch-only superensemble assessments. 
The threshold and limit points are arbitrary, and future studies or 
management could be set based on known bias of the assessment 
model or sensitivity analyses to maximize objectives, as we do here.

2.3.3 | Catch-based 40-10 and step HCRs

The catch-based 40-10 rule and catch-based step rule follow the 
same threshold and limit points as the effort-based rules, but set a 
target yield based on MSY, rather than fishing mortality (i.e., MSY 
× buffer rather than FMSY × buffer, Figure 2). Many jurisdictions, in-
cluding the European Union and the United States, set catch-based 
total allowable catches (TACs) with F-based HCRs and a short-term 
forecast. While using MSY on the y-axis of the HCR is not typical, 
this approach is potentially suited to data-limited methods that pro-
duce catch advice, and its performance is therefore worth testing.

2.3.4 | Setting precautionary buffers for HCRs

To determine the buffer size required for each HCR, we projected 
the simulated stocks based on the HCRs set using perfect knowl-
edge of B/BMSY, MSY and FMSY, with eight buffers ranging from 30% 
to 100% in 10% increments. These “true” values were taken directly 
from the operating model, rather than using the estimates from the 
catch-only superensemble (skipping Step 2: the stock status assess-
ment; Figure 1). We selected the appropriate buffer for each HCR 
that maximized total catch over the management period, while en-
suring the lower 10th percentile of B/BMSY estimates over the final 
three years of a 20-year management period was above 0.25 (aver-
aged across iterations and harvest dynamics per species). The buff-
ers that satisfied these criteria for all species were as follows: 50% 
of FMSY for the effort-based 40-10 and step rules, 50% of MSY for 
catch-based 40-10 rule and 70% of MSY for catch-based step rule. 
These HCR–buffer combinations will be referred to throughout this 
study as the calibrated HCRs. Standardizing the relative risk and 
yield for the HCRs using these fine-tuned buffers based on perfect 
information allowed us to articulate the effect that estimates of sta-
tus and reference points from the catch-only models had on the per-
formance of the HCRs.

2.4 | Step 4: Simulate the implementation of harvest 
control rules

We applied the HCRs to the simulated stocks and projected the 
populations forward for 5-  and 20-year management periods 
for each scenario under the effort or catch limits generated by 
each HCR (e.g., Figure 3). All projections were set to reach the 
target values of the catch or fishing mortality on the first year 
of management and then held constant across the full manage-
ment period, without further reassessment, simulating a simple 
best-case scenario for comparative purposes. We recognize that 
a more realistic approach would be to gradually build up to the 

target fishing levels. However, we leave this for consideration in 
future MSEs for specific stocks. Unlike other closed loop simula-
tions, where stock assessments are conducted every few years to 
adjust the target fishing values, we removed the feedback control 
between the management and operating models. This is because 
once catch or fisheries effort has been regulated, the catch time 
series provides little new information to these catch-only mod-
els, that tend to be used once prior to management; indeed, an 
open system (lack of management) is an assumption of some of 
these methods (Vasconcellos & Cochrane, 2005). We acknowl-
edge that the removal of reassessment feedback is problematic 
as it assumes management at constant levels of catch or effort, 
which could lead to under- or overfishing in the face of changes in 
biomass due to external factors (e.g., environmental conditions). 
In reality, if there was a source of information separate from the 
catch data (e.g., length frequencies or fishery-independent sur-
vey data), these could be used to reassess and tune the HCRs. In 
the current MSE without feedback control, the initial tuning of 
the HCRs to perfect information is a critical step that allows for 
the evaluation of the performance of the HCR over a short time 
horizon (e.g., 5 years) that is sensible. The 20-year management 
projections were a theoretical exercise to observe longer-term 
effects, and we would not recommend continuing management 
based on initial HCR targets for 20 years without frequent reas-
sessment and feedback control via other external inputs as noted 
above.

To simulate the annual variability in implementation success and 
enforcement of the HCRs, we added log-normal errors (σi = 0.1) to 
the target catch levels and fishing mortality rates with bias correc-
tion on the mean: εt = N(0−0.12/2, 0.12), corresponding to a coef-
ficient of variation (CV) of approximately 10%. Stocks under the 
“business as usual” (BAU) scenario were projected forward with the 
same harvest dynamics used in the simulations (also with implemen-
tation error of σi = 0.1), either an increasing harvest rate (OW) or a 
bioeconomic coupled model (ED03). The code for the MSE is avail-
able here: https://github.com/datalimited/DLM-MSE.

We also ran the scenarios with the catch-based superensem-
ble across the range of buffers (30%–100% in 10% increments) to 
determine the level of buffers with the less accurate stock sta-
tus estimates that would be required to satisfy the risk and yield 
targets, for example, 10% percentile of B/BMSY after 20 years of 
management >25% BMSY, while maximizing yield across the man-
agement period.

2.5 | Step 5: Evaluate performance

We tested the performance of the five HCRs across 40 different 
management scenarios: five species, two underlying harvest dynam-
ics, and two management periods, with and without bias in the catch 
data, each with 600 iterations (Figure 1). This was to determine 
whether a superensemble of catch-only models would allow manag-
ers to implement a harvest strategy reliably given the uncertainties 
in the estimates of B/BMSY status.

https://github.com/datalimited/DLM-MSE
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We used the following objectives to evaluate performance of 
different HCRs:

1.	 Maintain sustainable stock biomass at or above BMSY (proportion 
of stocks at the end of management period at or above B/
BMSY and lower 10th percentile of B/BMSY at the end of the 
management period),

2.	 Avoid heavily overfished stocks or fishery collapse (proportion of 
years during management that had B > 25% BMSY, averaged across 
stocks),

3.	 Reach and maintain sustainable fishing mortality rates at or below 
FMSY, (median F/FMSY over the final three years of the manage-
ment period),

4.	 Avoid overfishing during management (proportion of years where 
overfishing was not occurring (F < FMSY) median across stocks),

5.	 Maximize yield during management period (mean annual catch 
over the management period relative to yield if fished at FMSY), and

6.	 Reduce variability in annual catch (median standard deviation of 
catches over management period).

We identified trade-offs between management objectives across 
the different HCRs for each scenario, using radar plots. To understand 
the behaviour of the catch-only harvest strategies, we calculated the 
proportional error of the HCR target values based on the catch-only 
superensemble model compared to the HCR target values based on 
true values of B/BMSY generated from the operating model, assuming 
perfect knowledge. The proportional error is calculated as the differ-
ence between the estimated and true values, divided by the true value. 
We also calculated the proportional errors produced by the superen-
semble for estimates of B/BMSY, MSY, FMSY and harvest ratio prior to 
management.

3  | RESULTS

3.1 | Reaching maximum sustainable yield and 
avoiding overfished stocks

Before applying the catch-only harvest strategies, the majority of 
simulated stocks were overfished (median B/BMSY = 0.57) with 
16.9% of stocks above BMSY (Supporting Information Figure S1a). 
The catch-only superensemble generally overestimated stock status 
(median proportional error in OW scenario: 0.44; in ED03 scenario: 
0.97, Supporting Information Figure S1b,c).

After 5 years of management, the HCRs based on the catch-only 
superensemble with calibrated buffers resulted in a higher proba-
bility of stocks being above BMSY than BAU (objective 1, Table 2). 
Even so, most stocks remained overfished (stock status < BMSY) after 
5 years of management, across all species, underlying effort dynam-
ics, and HCRs (Figure 4). The lower 10th percentiles of B/BMSY, which 
is a measure of biological risk, were above 25% BMSY for all HCRs 
under the one-way trip harvest dynamics after 5 years (Table 2). In 
the bioeconomic coupled harvest-dynamic scenario, only the stocks 
with effort-based HCRs were above this limit reference point after 
5 years (Table 2). The short-lived species (sardine and skipjack tuna) 
responded more quickly to the management strategies, but also had 
higher uncertainty in their stock status after 5 years (Figure 4). Over 
the 5-year management period, the median proportion of years that 
biomass fell below 0.25 BMSY (objective 2) was low across all HCRs, 
species and effort dynamics, although the catch-based HCRs had a 
higher probability of stocks at risk of collapse over time than BAU 
(Table 2).

After 20 years of management without reassessment, the 
catch-based 40-10 and step HCRs performed consistently worse 

F IGURE  3 An example time series of population status (B/BMSY) of corvina reina before and after the catch-only assessment (dotted 
line: t60). This example is from the scenario that was simulated with one-way trip effort dynamics (black line). The catch-only assessment 
was conducted in year 60, assuming only 20 years of catch data were available, using three catch-only models (dark shading = 25th and 
75th  percentiles, light shading = 2.5th and 97.5th percentiles) and a random forest superensemble to estimate B/BMSY. In this case, the 
superensemble and COMSIR overestimated stock status, while CMSY and mPRM were more accurate. Projections based on the catch-only 
assessment show the predicted outcomes from each harvest control rule (HCR) over a 5-year (dash-dot line, t65) and 20-year management 
period: effort-based 40-10 HCR, an effort-based HCR set using a step function, a catch-based 40-10 HCR, a catch-based step HCR, and a 
business as usual scenario (BAU). In this case, the effort-based step HCR was the only strategy that recovered the stock after 20 years
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than BAU, with a high risk of collapse (10th percentiles of B/BMSY 
were below 10% of BMSY; Figure 4, Table 2). In contrast, the effort-
based 40-10 and step HCRs resulted in lower probabilities of col-
lapse, for example, 10th percentiles >25% BMSY (Figure 4, Table 2). 
All HCRs resulted in much higher proportions of stocks above BMSY 
than BAU (Table 2), but also had higher variation of final B/BMSY 
values (across iterations per species) than BAU (Figure 4).

3.2 | Avoiding overfishing and maximizing yield

The third and fourth management objectives we tested were to 
reduce the likelihood of overfishing (defined as F/FMSY > 1) after 5 
or 20 years and over the course of management. The effort-based 
HCRs achieved higher proportions of stocks with fishing mortality 
at or below FMSY at the end of the management period compared to 

catch-based HCRs and BAU (Supporting Information Figure S2). This 
was the case across all species, underlying effort dynamics and man-
agement periods, except the effort-based 40-10 HCR under the one-
way trip scenario for rockfish, sole and tuna (Supporting Information 
Figure S2). In particular, the effort-based step HCR performed best, 
with 80.9% of stocks having a final fishing mortality lower than FMSY, 
pooled across species, effort dynamics and management period 
(compared to effort-based 40-10: 65.9%, catch-based 40-10: 59.5%, 
catch-based step: 67.6%, BAU: 23.1%). The effort-based step HCR 
also had the lowest frequency of overfishing that occurred during 
the management period (Table 2).

The catch-based HCRs resulted in extreme and highly variable 
fishing mortalities (Supporting Information Figure S2). This outcome 
was consistent for both the step and 40-10 HCRs, both harvest dy-
namics (one-way trip and bioeconomic coupling), and 5- and 20-year 

TABLE  2 Summary results of performance metrics for the harvest control rules (HCRs) with the precautionary buffers (in parentheses) 
across two harvest dynamics and two management periods, showing the average lower 10th percentile of B/BMSY (averaged over the last 
3 years of management), the proportion of iterations above BMSY at the end of management period (B/BMSY averaged over last 3 years 
greater or equal to 1), average proportion of years during management period within an iteration that were not heavily overfished and at risk 
of collapse (B/BMSY > 0.25), average proportion of years during the management period within an iteration where overfishing was not 
occurring (F/FMSY < 1), and the mean catch per year in management period, relative to fishing at FMSY. All results are averaged across species 
and iterations. Shaded results show when the HCRs perform better than business as usual (BAU) for that scenario

Scenario HCR (buffer)
10th percentile 
B/BMSY

Prop. iterations 
above BMSY

Prop. years not 
heavily overfished

Prop. years not 
overfishing

Mean catch 
relative to FMSY

ED03 5yr Effort 40-10 
(0.5)

0.27 0.26 0.86 1 0.68

ED03 5yr Effort step (0.5) 0.31 0.32 0.87 1 0.43

ED03 5yr Catch 40-10 
(0.5)

0.12 0.28 0.77 0.6 0.92

ED03 5yr Catch step (0.7) 0.15 0.3 0.79 1 0.58

ED03 5yr BAU 0.2 0.15 0.81 0.48 0.95

ED03 20yr Effort 40-10 
(0.5)

0.36 0.53 0.91 1 0.8

ED03 20yr Effort step (0.5) 0.49 0.66 0.93 1 0.57

ED03 20yr Catch 40-10 
(0.5)

0.06 0.52 0.73 0.81 0.64

ED03 20yr Catch step (0.7) 0.07 0.62 0.78 0.99 0.48

ED03 20yr BAU 0.25 0.22 0.85 0.49 0.9

OW 5yr Effort 40-10 
(0.5)

0.38 0.25 0.96 0.64 0.95

OW 5yr Effort step (0.5) 0.44 0.33 0.97 1 0.69

OW 5yr Catch 40-10 
(0.5)

0.27 0.28 0.92 0.56 0.95

OW 5yr Catch step (0.7) 0.27 0.31 0.92 0.88 0.8

OW 5yr BAU 0.31 0.13 0.93 0 1.26

OW 20yr Effort 40-10 
(0.5)

0.39 0.4 0.96 0.66 0.97

OW 20yr Effort step (0.5) 0.51 0.59 0.98 1 0.81

OW 20yr Catch 40-10 
(0.5)

0.06 0.51 0.81 0.75 0.72

OW 20yr Catch step (0.7) 0.07 0.56 0.82 0.92 0.61

OW 20yr BAU 0.22 0.07 0.88 0 1.02
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management periods (Supporting Information Figure S2). The high and 
variable F/FMSY values attributed to the catch-based HCRs were be-
cause the annual catch target remained constant even if total stock 
biomass declined over time. Catch-based HCR target values also had 
greater proportional error than the estimated effort-based HCR target 
values (Supporting Information Figure S3). CMSY and COMSIR often 
overestimated MSY (Supporting Information Figure S4a), leading to 
subsequently higher catch-based HCR quotas. In contrast, the effort-
based HCRs are driven by FMSY (derived from population growth rate 
(r) values from the catch-only models), which are much more accurate 
than the MSY estimates (Supporting Information Figure S4b).

The HCRs with calibrated buffers produced mean annual yields 
lower than BAU in most scenarios and were consistently below the 
potential yield if stocks were fished at FMSY (objective 5, Supporting 
Information Figure S5). The mean annual yields produced across iter-
ations within a scenario were highly variable during the first 5 years 
of management, particularly for long-lived stocks in the one-way 
trip scenario, but this variation stabilized over 20 years (Supporting 
Information Figure S5). Another measure of yield is the variation 
(standard deviation) across years within an iteration (objective 6). All 
HCRs had, on average, lower interannual variation in yield than BAU 
consistently across all scenarios (i.e., better performance), although 
the effort-based HCRs did result in high variation in some iterations 
for sardine and tuna (Supporting Information Figure S6).

3.3 | Trade-offs between objectives

No HCR performed the best across all management objectives, 
resulting in trade-offs between yield, sustainable harvest rates 
and biological status. The performance of HCRs was very similar 
across species except skipjack tuna, so we present trade-off plots 
for bocaccio rockfish as representative for all species (Figure 5) 
and tuna separately (Figure 6). For most species, the effort-based 
step HCR performed best at reducing the risk of being overfished 
(with higher values of 10th percentile BMSY), while maintaining 
the highest proportion of stocks above BMSY at the end of both 
management periods (Figure 5). However, the effort-based step 
HCR resulted in the lowest yields across all scenarios (Figure 5). 
The effort-based 40-10 rule had slightly lower performance than 
the effort-based step rule for overfished and overfishing metrics 
but yielded higher catches (Figure 5), although in the one-way trip 
scenarios, it resulted in slightly higher levels of overfishing. After 
20 years, the catch-based HCRs caused at least 10% of stocks of 
all species except tuna to collapse to zero (Figure 5). In contrast, 
the catch-based HCRs did not cause tuna stocks to collapse after 
20 years (Figure 6). Across all species, the effort-based HCRs 
were generally more risk averse and performed better than the 
BAU scenario for the biological status metrics, though as a conse-
quence resulted in poor yields (Figure 5).

F IGURE  4 Bean plots of fisheries status (B/BMSY) after 5 and 20 years of management using each harvest control rule for the one-way 
trip (OW) and bioeconomic coupling (ED) effort dynamic scenarios (600 iterations per species). Solid line shows BMSY and stocks below the 
dotted line are heavily overfished (B/BMSY <0.25)
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3.4 | Performance compared to management 
assuming perfect information

The five-year management projections based on true B/BMSY and 
true biological references (i.e., the perfect information scenarios) 
demonstrated that most HCRs (except the effort-based 40-10 HCR) 
can recover short-lived species after 5 years and long-lived species 
after 20 years of management (i.e., median status equal to or greater 
than BMSY, Supporting Information Figure S7). After 20 years, when 
the calibrated HCRs were implemented using perfect information, 
the catch-based step HCR performed better than any other HCR 
consistently across species and most management objectives ex-
cept yield, but lack of reassessment during this period caused high 
variation in stock status (Supporting Information Figure S8). This is 
in contrast to the scenarios when management was based on esti-
mates from the catch-only superensemble, where the effort-based 
step HCRs performed best across most objectives (Figure 5).

The overall performance of the HCRs using the catch-only su-
perensemble was very poor in comparison with management pro-
jections based on perfect information across most metrics, except 
yield (Supporting Information Table S4). Over 5 years of manage-
ment, the catch-only superensemble resulted in 10th percentiles of 
B/BMSY that were 7% to 94% lower than when perfect information 
was used (Supporting Information Table S4). Catch-based HCRs 
based on catch-only superensembles performed particularly poorly 

in comparison with perfect information in the percentile of biomass 
and the proportion above BMSY metrics (Supporting Information 
Table S4).

How large should the buffers be to maximize catch while ensur-
ing the lower 10th percentile of B/BMSY at the end of management 
is >25% BMSY? Compared to the calibrated buffers that were fine-
tuned based on perfect information (i.e., 50%–70% of MSY or FMSY), 
the catch-only superensemble HCRs required more precautionary 
buffers to achieve this yield-risk objective (Supporting Information 
Table S5). This was to account for large errors in the estimates of 
B/BMSY (Supporting Information Figure S1) and other parameters 
(Supporting Information Figure S4). The effort-based HCRs required 
60 or 80% buffers, while the catch-based HCRs would only achieve 
the biomass objective with 30 and 40% buffers, when pooled across 
species (Supporting Information Table S5).

Over a 5-year management period, shifting the HCR buffers from 
1 through to 0.3 resulted in a large reduction in yield with minimal 
improvement in the 10th percentile of B/BMSY, particularly for long-
lived species (Supporting Information Figure S9). After 20 years, the 
yield-risk relationship across the size of buffers was shallower for 
effort-based HCRs, as more precautionary buffers achieved similar 
yields, with lower risk of stock collapse. In contrast, for catch-based 
HCRs, lower buffers had no effect on the risk of collapse, until a 
definite threshold was reached at either 0.3 or 0.4 (except for tuna, 
Supporting Information Figure S9, Table S5).

F IGURE  5 Performance of each 
harvest control rule based on the catch-
only superensemble model and calibrated 
buffers for bocaccio rockfish representing 
the trade-off between four objectives, 
clockwise from left corner: (i) lower 
10th percentile of B/BMSY status (across 
iterations, averaged over the last three 
years of management), (ii) proportion of 
stocks that were above B/BMSY at end 
of management period (B/BMSY > 1), (iii) 
annual median yield over management 
period across iterations relative to yield if 
fished at FMSY and (iv) median proportion 
of years where overfishing was not 
occurring across the management period 
(F/FMSY < 1). Each plot shows a different 
scenario of harvest dynamics and 
management period, and the results from 
rockfish are representative of all other 
species, except tuna shown in Figure 6. 
All axes have centre values = 0. Each axis 
along the radar plot displays a different 
objective, where data points further from 
the centre of the graph indicate better 
performance
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3.5 | Sensitivity analysis with underreported catch

When catches were underreported (with negative bias), catch-only 
superensemble effort-based HCRs had similar or slightly worse per-
formance across all metrics to management runs without bias in 
the catch (Supporting Information Table S6). However, the catch-
based HCRs performed significantly better in the biomass metrics 
with underreporting than without (Supporting Information Table 
S6), especially for species with higher underreporting (corvina and 
tuna, UR = 50%, results not shown). This is because the proportional 
error of MSY with underreported catch was much lower (median: 
−0.22, min: −0.10, max: 15.7), compared with unbiased catch data 
(median: 0.14, min: −0.10, max: 27.5). Instead, the effort-based rules 
are derived from FMSY, which had similar proportional error with or 
without catch biases (underreporting: median = −0.09, min = −0.83, 
max = 1.63, no underreporting: median = −0.09, min = −0.83, 
max = 1.62). The median proportional error of B/BMSY with under-
reported catch was slightly higher (median proportional error: 0.73, 
min: −0.68, max: 28.3), compared with the proportional error from 
unbiased data (median: 0.65, min: −0.95, max: 21.94), although the 

effect on performance metrics was minimal. With underreporting 
bias in the catch data, the buffers required to reach a 10th percentile 
B/BMSY > 0.25 for the effort-based HCRs were equal to or more pre-
cautionary than if the catch data were unbiased, while catch-based 
HCRs required less conservative buffers (Supporting Information 
Table S5).

4  | DISCUSSION

Our study builds on previous MSEs that test the performance of 
other data-limited methods and HCRs (Carruthers et al., 2014, 
2015; Dichmont et al., 2017; Punt et al., 2014; Wetzel & Punt, 2011; 
Wiedenmann et al., 2013). However, these past studies have been 
largely restricted to empirical harvest strategies that bypass the 
need for estimating population status (Dowling et al., 2015). The 
recent development and testing of catch-only models and super-
ensembles that estimate population status (B/BMSY) has established 
several new management options to set catch limits for data-limited 
stocks, particularly the use of dynamic harvest control rules that 

F IGURE  6 Performance of each harvest control rule for skipjack tuna across scenarios, based on the catch-only superensemble 
model and calibrated buffers representing the trade-off between four objectives clockwise from left corner: (i) lower 10th percentile of 
B/BMSY status (across iterations, averaged over the last 3 years of management), (ii) proportion of stocks that were above B/BMSY at end of 
management period (B/BMSY > 1), (iii) annual median yield over management period across iterations relative to yield if fished at FMSY and (iv) 
median proportion of years where overfishing was not occurring across the management period (F/FMSY < 1)
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rely on quantitative biomass status estimates. We demonstrate that, 
for the wide range of stocks and management scenarios we have 
simulated, catch-only models coupled with effort-based HCRs and 
precautionary buffers can improve the stock status and reduce the 
likelihood of overfishing though with considerable variability across 
runs.

4.1 | Performance of catch-only harvest strategies

In practice, fishing quotas and catch limits can reduce the risk of over-
fishing and effectively achieve a biomass that can sustain maximum 
sustainable yields (Edward & Dankel, 2016). None of the harvest 
strategies tested in our analysis performed best across all perfor-
mance metrics and scenarios. However, the HCRs had better perfor-
mance than BAU across most scenarios, except yield (Figures 5 and 
6). Another specific exception was when BAU performed better than 
the catch-based HCRs for biological risk (10th percentile B/BMSY) for 
the rockfish, corvina, sole and sardine (Figure 5). The effort-based 
HCRs were generally better at avoiding fishery collapse (10th per-
centile B/BMSY > 0.25) and overfishing levels, and were able to re-
cover the population status of most stocks to at or above BMSY after 
20 years. The effort-based HCR using a step function with a buffer 
of fishing at 50% FMSY only above 110% of BMSY (as calibrated based 
on perfect information) was the most effective management strat-
egy at reducing the risk of overfishing and being heavily overfished. 
However, it did not maintain reasonable yields across most simulated 
scenarios of species and underlying effort dynamics, given the high 
precautionary buffer.

Catch-only models produced falsely high and often unsus-
tainable recommendations for fishing catch targets (Supporting 
Information Figure S3) and catch-based HCRs resulted in severe 
overfishing (Supporting Information Figure S2) and overfished 
stocks (Figures 4 and 5). This was due to positive biases in MSY 
(Supporting Information Figure S4). These concerning levels of 
overfishing reduced the overall effectiveness of the catch-based 
HCRs for the five species in our simulated management setting. In 
contrast, effort-based HCRs had lower proportional errors (due to 
more accurate estimates of FMSY values, Supporting Information 
Figure S4). This result is consistent with previous work showing that 
fishing-mortality-based management targets are more responsive to 
changes in biomass than fisheries management targets for total har-
vest (Squires et al., 2017).

The positively biased estimates of B/BMSY from the catch-only 
superensemble (Supporting Information Figure S1) and the inaccu-
racy of the reference point estimates (MSY and FMSY, Supporting 
Information Figure S4) required very precautionary buffers to 
consistently ensure the population biomass was above 0.25 BMSY 
(Supporting Information Table S5). This in turn resulted in very low 
yields, which may not be acceptable to some fishery managers. This 
overestimation of B/BMSY is interesting, given past research showed 
that the random forest catch-only superensemble had low bias when 
tested with cross-validation using a full factorial simulated data set, 
and on stocks from the RAM Legacy Database (Anderson et al., 

2017). While the exact reason for the bias found in this study is un-
clear, we suspect it is because the superensemble was fit to simu-
lated data from four effort dynamic options, while we only used two 
of these effort dynamics here.

The MSE also revealed that the management outcomes of the 
catch-only harvest strategies were sensitive to life-history traits. 
The choice of HCR and suitable buffer was more important for 
short-lived, fast-growing stocks (e.g., sardine or tuna) when relying 
on these catch-only harvest strategies, given the quick response 
time of these populations. Choosing an ineffective harvest control 
rule, such as a catch-based 40-10 rule or HCRs with less precaution-
ary buffers, could have much more dramatic and negative outcomes 
for short-lived species. Alternative management strategies such as 
escapement rules may be more effective for short-lived species 
(Cochrane, Butterworth, De Oliveira, & Roel, 1998).

4.2 | Using catch-only methods within a stepping 
stone approach

We demonstrated that information on catch and simple life-history 
characteristics of targeted species can be used to develop esti-
mates of stock status, which, when coupled with precautionary, 
model-based HCRs, could be a possible alternative in the toolbox to 
manage data-limited fisheries. This is a useful advance for stock as-
sessment modelling, given that model-based HCRs would have pre-
viously been reserved for data-moderate or data-rich stocks. Rather 
than relying on past trends of catches such as the DACS, ORCS and 
Restrepo methods, the catch-only superensemble method informs 
HCRs with an estimate of biomass status. As new data-limited as-
sessment models become available in future, they can be easily 
added to an ensemble or superensemble, making this approach flex-
ible, cost-effective and relatively easy to implement. The downside 
to these methods is that precautionary buffers are required, lead-
ing to reduced yields. In addition to conservative buffers, as tested 
here, it would be important to consider a broader suite of decision 
rules and conservation measures, such as protected areas, seasonal 
closures and gear restrictions. As with all HCRs, we recommend 
conducting thorough simulation testing on a case-specific fishery, 
including an assessment of the influence of priors and potential error 
sources, before applying the superensemble catch-only methods to 
management of real stocks.

While the superensemble of catch-only models presented here 
tended to produce positively biased status estimates, the HCRs 
using these estimates and precautionary buffers did outperform 
the BAU scenarios, resulting in lower risks of severely overfished 
populations and effective stock recovery after 20 years. This sug-
gested that there is value in using the limited available data in the 
early stages of a longer-term management plan. It may be possible 
to use the catch-only models as a preliminary assessment tool while 
preparing to transition to data-moderate assessment methods that 
include more data types. However, the catch-only methods are not 
intended to be a long-term solution for data-limited stocks. We en-
vision that they could be used alongside monitoring programmes to 



     |  15WALSH et al.

collect additional data, which would eventually allow stocks under 
catch-only HCRs to transition to data-rich assessments methods in 
future. This way, they can act as a stepping stone in the right direc-
tion towards the implementation of methods integrating more infor-
mation to inform estimates of stock status.

It is generally accepted that, in truly data-limited fisheries, 
more information could improve stock assessment, thus lowering 
the risk of overfishing (e.g., Dichmont et al., 2017), and potentially 
reducing the need for precautionary buffers. An example of an 
intermediate step between the catch-only approaches evaluated 
here and full stock assessment could be the collection of catch-
at-age or effort data, which can be used to improve estimates of 
population status and fishing mortality rate within models such as 
the catch curve stock reduction analysis (Thorson & Cope, 2015). 
Investigating the potential benefits of incorporating additional in-
formation into catch-only models, such as the age or size compo-
sition of the catch or trends in fishing effort, will be an important 
focus for future research. Such an analysis would be able to answer 
questions about trade-offs between allocating time to implement 
an interim HCR or focusing efforts on collecting more data to con-
duct a more accurate assessment in a few years. Ultimately, data-
limited fisheries are a result of limited resources being spent on 
their exploitation, management and monitoring. The need for more 
information creates a need for more resources, which is a gover-
nance challenge.

4.3 | Limitations of catch-only harvest strategies for 
implementation

There are several technical caveats and limitations that should be 
considered before using catch-only models to inform management 
strategies.

1.	 Quality of catch data: For many data-limited species, particularly 
in developing countries, even the modest data requirements 
of catch-only models are difficult to meet. Annual catch data, 
when it is available, may consist of extrapolated estimates 
from short intermittent data collection periods, only include a 
proportion of fishing vessels, or only account for landings from 
specific sectors (i.e., commercial), excluding discards or landings 
from small-scale or subsistence fisheries (Pauly & Zeller, 2016). 
We accounted for different observation error between devel-
oped and developing regions in the analyses, but any effects 
in the management performance were overridden by different 
life histories. This suggests that the HCRs are robust to modest 
to high levels of observation error. Additionally, catch-only 
models should be applied to catch data that have “contrast” 
through time, meaning that the stock has been at both high 
and low abundance levels. It has been noted that CMSY, in 
particular, should not be applied to very lightly exploited fish 
stocks as the time series will not contain sufficient information 
about productivity (Froese, Demirel, Coro, Kleisner, & Winker, 
2017). Finally, it will be difficult to define the upper bound 

on carrying capacity in a developing fishery or a fishery that 
displays a continuous increase in catch as the maximum po-
tential has yet to be realized.

2.	 Biases in catch data: The improved performance of catch-based 
HCRs when applied to biased catch data was counterintuitive 
(Supporting Information Tables S5 and S6) but occurred because 
an input of lower catch into the catch-only models produced a 
lower MSY estimate. The lower estimated MSY in turn resulted in 
lower catch or effort targets and thus higher biomass status. This 
created a negative feedback loop. The biological and economic 
consequences of this finding are important to consider: It is pos-
sible that overreporting catch (positive bias) could lead to an op-
posite result, with higher MSY estimates, higher catch and effort 
quotas and thus lower biomass.

3.	 Time series of catch data: The performance of these catch-only 
models has been simulation tested with a minimum of 20 years of 
data (of a 60-year fishing history) with minimal-to-moderate biases 
in observation error (this study, Rosenberg et al., 2014). An incom-
plete catch history already violates the assumption of the catch-
only models that a complete catch history is required. Their 
performance with a shorter time series is unknown and is likely to 
decrease the precision and accuracy of the B/BMSY estimates. For 
stocks where 20 years of catch data are not available, harvest strat-
egies that involve gear restrictions, spatial closures or “move on” 
decision rules may be more appropriate (Dowling et al., 2015). This, 
indeed, may restrict the use of the catch-only superensemble in 
regions that have only recently started collecting the information 
(or recently improved the quality of data collection programmes).

4.	 Management history: The catch-only models are designed for 
stocks that have not been previously managed, because they rely 
on annual variation in total catch to estimate biomass status (see 
above point 1 regarding contrast in the data). Management that 
fixes catch at a certain level, such as a total allowable catch, stalls 
any useful information input into the model or can otherwise af-
fect the interpretation of catch time-series data (Thorson et al., 
2013). For this reason, they may be better suited as an initial 
guide, when starting to improve management of unassessed 
stocks, within a stepping stone approach before other data are 
collected.

5.	 Management capacity: Many data-limited fisheries are also lim-
ited in their management capacity, which often may preclude 
their ability to effectively control catch or effort. In this analysis, 
we assumed that there was capacity for management to be intro-
duced and enforced for intended fisheries and that the catch or 
effort could be controlled with moderate (20%) to high (50%) lev-
els of implementation error.

6.	 Assumptions used to set fishing targets: The superensemble of 
catch-only models used here was designed to only estimate B/
BMSY. It does not produce estimates of other information re-
quired to set the HCRs, such as FMSY or MSY (although such a 
superensemble could potentially be built). Instead, to set the 
catch-based and effort-based HCRs, we relied on output from 
two of the underlying catch-only models and assumptions from 
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theoretical fisheries dynamics to estimate these biological refer-
ence points, for example, MSY = rK/4 (Supporting Information 
Table S3). While these assumptions are not ideal, they allowed 
us to implement more sophisticated, dynamic harvest rules that 
have previously not been possible for data-limited stocks. Biases 
and uncertainty in these estimated biological reference points 
propagated through the setting of harvest rates, which reduced 
the performance of each management strategy, but still pro-
vided better management outcomes than business as usual.

If these limitations are carefully considered, the catch-only 
superensemble may provide an alternative method of stock sta-
tus estimation for some data-limited stocks—a transition step 
between catch-based empirical static or dynamic methods, and 
data-moderate methods. This could be an approach for data-
limited fisheries where initial investments into collecting catch 
data can inform the implementation of more effective manage-
ment systems that are data-driven and evidence-based. This set of 
conditions might occur more frequently for small-scale fisheries in 
developed countries.

5  | CONCLUSION

There is potential value in using catch-only superensemble models 
coupled with large precautionary buffers to inform short-term man-
agement, in addition to the current empirical methods derived from 
catch. Catch-only methods and HCR combinations did not recover 
most populations to BMSY after 5 years, but they reduced the risk of 
overfishing and stock collapse. We found that the effort-based HCRs 
were more robust and less sensitive to error in catch-only models 
than catch-based HCRs. The positive biases and inaccuracies of the 
biological status and reference points estimated from the catch-
only models strongly affected the long-term performance of the 
catch-based HCRs in terms of their risk of overfishing. In some cir-
cumstances when suitable catch data are available (e.g., small-scale 
fisheries in developed countries), these data-limited approaches 
could provide a “stop gap” to reduce overfishing and the probability 
of being overfished, at the expense of low yields. However, due to 
restrictive data requirements, technical caveats and large yield-risk 
trade-offs, catch-only superensembles are not likely to provide re-
liable or practical management advice for all data-limited fisheries 
(including those in developing regions limited in management and 
research capacity).
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